- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2011Publisher:Inter-Research Science Center Tremblay-Boyer, Laura; Gascuel, Didier; Watson, Reg; Christensen, Villy; Pauly, Daniel;doi: 10.3354/meps09375
Marine fisheries have endured for centuries but the last 50 yr have seen a drastic increase in their reach and intensity. We generated global estimates of biomass for marine ecosystems and evaluated the effects that fisheries have had on ocean biomass since the 1950s. A simple and versatile ecosystem model was used to represent ecosystems as a function of energy fluxes through trophic levels (TLs). Using primary production, sea surface temperature, transfer efficiency, fisheries catch and TL of species, the model was applied on a half-degree spatial grid covering all oceans. Estimates of biomass by TLs were derived for marine ecosystems in an unexploited state, as well as for all decades since the 1950s. Trends in the decline of marine biomass from the unexploited state were analyzed with a special emphasis on predator species as they are highly vulnerable to overexploitation. This study highlights 3 main trends in the global effects of fishing: (1) predators are more affected than organisms at lower TLs
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2013Publisher:Wiley Publicly fundedJones, Daniel O.B.; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A.; Ruhl, Henry A.; Watson, Reg A.; Gehlen, Marion;Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide.
Global Change Biolog... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southampton: e-Prints SotonArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 146 citations 146 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southampton: e-Prints SotonArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Funded by:NSERC, ARC | Discovery Projects - Gran...NSERC ,ARC| Discovery Projects - Grant ID: DP140101377Heike K. Lotze; David A. Carozza; Nicholas K. Dulvy; Reg Watson; Andrea Bryndum-Buchholz; Elizabeth A. Fulton; Elizabeth A. Fulton; Richard S. Cottrell; Lindsay Davidson; Olivier Maury; John P. Dunne; Kirsty L. Nash; Christoph Müller; Derek P. Tittensor; Julia L. Blanchard; Matthias Büchner; William W. L. Cheung; Tyler D. Eddy; Tyler D. Eddy; Simon Jennings; Simon Jennings; Eric D. Galbraith; Joshua Elliott;pmid: 29046559
Fisheries and aquaculture make a crucial contribution to global food security, nutrition and livelihoods. However, the UN Sustainable Development Goals separate marine and terrestrial food production sectors and ecosystems. To sustainably meet increasing global demands for fish, the interlinkages among goals within and across fisheries, aquaculture and agriculture sectors must be recognized and addressed along with their changing nature. Here, we assess and highlight development challenges for fisheries-dependent countries based on analyses of interactions and trade-offs between goals focusing on food, biodiversity and climate change. We demonstrate that some countries are likely to face double jeopardies in both fisheries and agriculture sectors under climate change. The strategies to mitigate these risks will be context-dependent, and will need to directly address the trade-offs among Sustainable Development Goals, such as halting biodiversity loss and reducing poverty. Countries with low adaptive capacity but increasing demand for food require greater support and capacity building to transition towards reconciling trade-offs. Necessary actions are context-dependent and include effective governance, improved management and conservation, maximizing societal and environmental benefits from trade, increased equitability of distribution and innovation in food production, including continued development of low input and low impact aquaculture.
Horizon / Pleins tex... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 210 citations 210 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Horizon / Pleins tex... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Preprint 2018Publisher:Center for Open Science Authors: Watson, Reg; Tidd, Alex;Understanding global fisheries patterns contributes significantly to their management. By combining harmonized unmapped data sources with maps from satellite tracking data, regional tuna management organisations, the ranges of fished taxa, the access of fleets and the logistics of associated fishing gears the expansion and intensification of marine fisheries for nearly a century and half (1869–2015) is illustrated. Estimates of industrial, non-industrial reported, illegal/unreported (IUU) and discards reveal changes in country dominance, catch composition and fishing gear use. Catch of industrial and non-industrial marine fishing by year, fishing country, taxa and gear by 30-min spatial cell broken to reported, IUU and discards is available. Results show a historical increase in bottom trawl with corresponding reduction in the landings from seines. Though diverse, global landings are now dominated by demersal and small pelagic species.
OSF Preprints arrow_drop_down https://doi.org/10.31230/osf.i...Article . 2018 . Peer-reviewedLicense: CC 0Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert OSF Preprints arrow_drop_down https://doi.org/10.31230/osf.i...Article . 2018 . Peer-reviewedLicense: CC 0Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Wiley Funded by:NSERCNSERCGretta T. Pecl; Reg Watson; Graham J. Edgar; Dan A. Smale; Ben Radford; Ben Radford; Elizabeth A. Fulton; Neville S. Barrett; Peter A. Thompson; Rick D. Stuart-Smith; Alistair J. Hobday; Jennifer M. Sunday; Jennifer M. Sunday; Dirk Slawinski; Neil J. Holbrook; Ming Feng; Stewart Frusher; Nicole A. Hill; Thomas Wernberg; Thomas Wernberg; Amanda E. Bates; Amanda E. Bates;doi: 10.1111/ele.12474
pmid: 26189556
AbstractSpecies' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean‐warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small‐ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southampton: e-Prints SotonArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.387 citations 387 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southampton: e-Prints SotonArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2010Publisher:American Association for the Advancement of Science (AAAS) Suhel Quader; Valerie Kapos; Valerie Kapos; Carmen Revenga; Geneviève M. Carr; Megan Tierney; Jorge Csirke; John R. Sauer; Andy Symes; Jörn P. W. Scharlemann; Rosamunde E. A. Almond; Stuart H. M. Butchart; Stuart H. M. Butchart; Frank Dentener; Arco J. van Strien; Reg Watson; Jonathan Loh; Anna M. Chenery; Simon N. Stuart; Anahit Minasyan; Damon Stanwell-Smith; Fiona Leverington; Tristan D. Tyrrell; Melodie A. McGeoch; Daniel Pauly; Jonathan E. M. Baillie; Benjamin Skolnik; Kent E. Carpenter; Nick C. Davidson; Thomasina E.E. Oldfield; James N. Galloway; Dian Spear; Matthew N. Foster; Alessandro Galli; Matt Walpole; Jean Christophe Vié; Bastian Bomhard; Jean-Francois Lamarque; Marc Hockings; Monica Hernández Morcillo; Ciaire Brown; Richard D. Gregory; Louise McRae; Ben Collen; Piero Genovesi; Janice Chanson; John F. Bruno;pmid: 20430971
Global Biodiversity Target Missed In 2002, the Convention on Biological Diversity (CBD) committed to a significant reduction in the rate of biodiversity loss by 2010. There has been widespread conjecture that this target has not been met. Butchart et al. (p. 1164 , published online 29 April) analyzed over 30 indicators developed within the CBD's framework. These indicators include the condition or state of biodiversity (e.g., species numbers, population sizes), the pressures on biodiversity (e.g., deforestation), and the responses to maintain biodiversity (e.g., protected areas) and were assessed between about 1970 and 2005. Taken together, the results confirm that we have indeed failed to meet the 2010 targets.
Science arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 4K citations 3,883 popularity Top 0.01% influence Top 0.01% impulse Top 0.01% Powered by BIP!
more_vert Science arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2010Publisher:Wiley Funded by:UKRI | End to End logistic suppo...UKRI| End to End logistic support tools for effective aerial drone delivery against COVID-19Chassot, Emmanuel; Bonhommeau, Sylvain; Dulvy, Nicholas; Mélin, Frédéric; Watson, Reg; Gascuel, Didier; Le Pape, Olivier;pmid: 20141525
Ecology Letters (2010) 13: 495–505AbstractPrimary production must constrain the amount of fish and invertebrates available to expanding fisheries; however the degree of limitation has only been demonstrated at regional scales to date. Here we show that phytoplanktonic primary production, estimated from an ocean‐colour satellite (SeaWiFS), is related to global fisheries catches at the scale of Large Marine Ecosystems, while accounting for temperature and ecological factors such as ecosystem size and type, species richness, animal body size, and the degree and nature of fisheries exploitation. Indeed we show that global fisheries catches since 1950 have been increasingly constrained by the amount of primary production. The primary production appropriated by current global fisheries is 17–112% higher than that appropriated by sustainable fisheries. Global primary production appears to be declining, in some part due to climate variability and change, with consequences for the near future fisheries catches.
Ecology Letters arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2010Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 372 citations 372 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2010Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140101377Elizabeth A. Fulton; Elizabeth A. Fulton; Kirsty L. Nash; Reg Watson; Richard S. Cottrell; Julia L. Blanchard; Aysha Fleming; Aysha Fleming;doi: 10.1111/gcb.13873
pmid: 28833818
AbstractWith the human population expected to near 10 billion by 2050, and diets shifting towards greater per‐capita consumption of animal protein, meeting future food demands will place ever‐growing burdens on natural resources and those dependent on them. Solutions proposed to increase the sustainability of agriculture, aquaculture, and capture fisheries have typically approached development from single sector perspectives. Recent work highlights the importance of recognising links among food sectors, and the challenge cross‐sector dependencies create for sustainable food production. Yet without understanding the full suite of interactions between food systems on land and sea, development in one sector may result in unanticipated trade‐offs in another. We review the interactions between terrestrial and aquatic food systems. We show that most of the studied land–sea interactions fall into at least one of four categories: ecosystem connectivity, feed interdependencies, livelihood interactions, and climate feedback. Critically, these interactions modify nutrient flows, and the partitioning of natural resource use between land and sea, amid a backdrop of climate variability and change that reaches across all sectors. Addressing counter‐productive trade‐offs resulting from land‐sea links will require simultaneous improvements in food production and consumption efficiency, while creating more sustainable feed products for fish and livestock. Food security research and policy also needs to better integrate aquatic and terrestrial production to anticipate how cross‐sector interactions could transmit change across ecosystem and governance boundaries into the future.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2010Publisher:Wiley Elizabeth A. Fulton; S.J. Metcalf; Richard J. Matear; Robyn E. Forrest; Anthony J. Richardson; Anthony J. Richardson; Villy Christensen; Neil Gribble; Reg Watson; C Bulman; Christopher J. Brown; Christopher J. Brown; Hugh P. Possingham; Alistair J. Hobday; Hector Lozano-Montes; Shane P. Griffiths; Thomas A. Okey; Peter C. Gehrke; José M. Martín;AbstractClimate change is altering the rate and distribution of primary production in the world's oceans. Primary production is critical to maintaining biodiversity and supporting fishery catches, but predicting the response of populations to primary production change is complicated by predation and competition interactions. We simulated the effects of change in primary production on diverse marine ecosystems across a wide latitudinal range in Australia using the marine food web model Ecosim. We link models of primary production of lower trophic levels (phytoplankton and benthic producers) under climate change with Ecosim to predict changes in fishery catch, fishery value, biomass of animals of conservation interest, and indicators of community composition. Under a plausible climate change scenario, primary production will increase around Australia and generally this benefits fisheries catch and value and leads to increased biomass of threatened marine animals such as turtles and sharks. However, community composition is not strongly affected. Sensitivity analyses indicate overall positive linear responses of functional groups to primary production change. Responses are robust to the ecosystem type and the complexity of the model used. However, model formulations with more complex predation and competition interactions can reverse the expected responses for some species, resulting in catch declines for some fished species and localized declines of turtle and marine mammal populations under primary productivity increases. We conclude that climate‐driven primary production change needs to be considered by marine ecosystem managers and more specifically, that production increases can simultaneously benefit fisheries and conservation. Greater focus on incorporating predation and competition interactions into models will significantly improve the ability to identify species and industries most at risk from climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.185 citations 185 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2010Publisher:Springer Science and Business Media LLC Reg Watson; Trevor A. Branch; Grace T. Pablico; Sean R. Tracey; Elizabeth A. Fulton; Carey R. McGilliard; Simon Jennings; Simon Jennings; Daniel Ricard;doi: 10.1038/nature09528
pmid: 21085178
Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse ("fishing down marine food webs") and when low-trophic-level fisheries expand ("fishing through marine food webs"). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.
Nature arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.312 citations 312 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nature arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2011Publisher:Inter-Research Science Center Tremblay-Boyer, Laura; Gascuel, Didier; Watson, Reg; Christensen, Villy; Pauly, Daniel;doi: 10.3354/meps09375
Marine fisheries have endured for centuries but the last 50 yr have seen a drastic increase in their reach and intensity. We generated global estimates of biomass for marine ecosystems and evaluated the effects that fisheries have had on ocean biomass since the 1950s. A simple and versatile ecosystem model was used to represent ecosystems as a function of energy fluxes through trophic levels (TLs). Using primary production, sea surface temperature, transfer efficiency, fisheries catch and TL of species, the model was applied on a half-degree spatial grid covering all oceans. Estimates of biomass by TLs were derived for marine ecosystems in an unexploited state, as well as for all decades since the 1950s. Trends in the decline of marine biomass from the unexploited state were analyzed with a special emphasis on predator species as they are highly vulnerable to overexploitation. This study highlights 3 main trends in the global effects of fishing: (1) predators are more affected than organisms at lower TLs
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2013Publisher:Wiley Publicly fundedJones, Daniel O.B.; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A.; Ruhl, Henry A.; Watson, Reg A.; Gehlen, Marion;Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide.
Global Change Biolog... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southampton: e-Prints SotonArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 146 citations 146 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southampton: e-Prints SotonArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Funded by:NSERC, ARC | Discovery Projects - Gran...NSERC ,ARC| Discovery Projects - Grant ID: DP140101377Heike K. Lotze; David A. Carozza; Nicholas K. Dulvy; Reg Watson; Andrea Bryndum-Buchholz; Elizabeth A. Fulton; Elizabeth A. Fulton; Richard S. Cottrell; Lindsay Davidson; Olivier Maury; John P. Dunne; Kirsty L. Nash; Christoph Müller; Derek P. Tittensor; Julia L. Blanchard; Matthias Büchner; William W. L. Cheung; Tyler D. Eddy; Tyler D. Eddy; Simon Jennings; Simon Jennings; Eric D. Galbraith; Joshua Elliott;pmid: 29046559
Fisheries and aquaculture make a crucial contribution to global food security, nutrition and livelihoods. However, the UN Sustainable Development Goals separate marine and terrestrial food production sectors and ecosystems. To sustainably meet increasing global demands for fish, the interlinkages among goals within and across fisheries, aquaculture and agriculture sectors must be recognized and addressed along with their changing nature. Here, we assess and highlight development challenges for fisheries-dependent countries based on analyses of interactions and trade-offs between goals focusing on food, biodiversity and climate change. We demonstrate that some countries are likely to face double jeopardies in both fisheries and agriculture sectors under climate change. The strategies to mitigate these risks will be context-dependent, and will need to directly address the trade-offs among Sustainable Development Goals, such as halting biodiversity loss and reducing poverty. Countries with low adaptive capacity but increasing demand for food require greater support and capacity building to transition towards reconciling trade-offs. Necessary actions are context-dependent and include effective governance, improved management and conservation, maximizing societal and environmental benefits from trade, increased equitability of distribution and innovation in food production, including continued development of low input and low impact aquaculture.
Horizon / Pleins tex... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 210 citations 210 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Horizon / Pleins tex... arrow_drop_down Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Preprint 2018Publisher:Center for Open Science Authors: Watson, Reg; Tidd, Alex;Understanding global fisheries patterns contributes significantly to their management. By combining harmonized unmapped data sources with maps from satellite tracking data, regional tuna management organisations, the ranges of fished taxa, the access of fleets and the logistics of associated fishing gears the expansion and intensification of marine fisheries for nearly a century and half (1869–2015) is illustrated. Estimates of industrial, non-industrial reported, illegal/unreported (IUU) and discards reveal changes in country dominance, catch composition and fishing gear use. Catch of industrial and non-industrial marine fishing by year, fishing country, taxa and gear by 30-min spatial cell broken to reported, IUU and discards is available. Results show a historical increase in bottom trawl with corresponding reduction in the landings from seines. Though diverse, global landings are now dominated by demersal and small pelagic species.
OSF Preprints arrow_drop_down https://doi.org/10.31230/osf.i...Article . 2018 . Peer-reviewedLicense: CC 0Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert OSF Preprints arrow_drop_down https://doi.org/10.31230/osf.i...Article . 2018 . Peer-reviewedLicense: CC 0Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Wiley Funded by:NSERCNSERCGretta T. Pecl; Reg Watson; Graham J. Edgar; Dan A. Smale; Ben Radford; Ben Radford; Elizabeth A. Fulton; Neville S. Barrett; Peter A. Thompson; Rick D. Stuart-Smith; Alistair J. Hobday; Jennifer M. Sunday; Jennifer M. Sunday; Dirk Slawinski; Neil J. Holbrook; Ming Feng; Stewart Frusher; Nicole A. Hill; Thomas Wernberg; Thomas Wernberg; Amanda E. Bates; Amanda E. Bates;doi: 10.1111/ele.12474
pmid: 26189556
AbstractSpecies' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean‐warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small‐ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southampton: e-Prints SotonArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.387 citations 387 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southampton: e-Prints SotonArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2010Publisher:American Association for the Advancement of Science (AAAS) Suhel Quader; Valerie Kapos; Valerie Kapos; Carmen Revenga; Geneviève M. Carr; Megan Tierney; Jorge Csirke; John R. Sauer; Andy Symes; Jörn P. W. Scharlemann; Rosamunde E. A. Almond; Stuart H. M. Butchart; Stuart H. M. Butchart; Frank Dentener; Arco J. van Strien; Reg Watson; Jonathan Loh; Anna M. Chenery; Simon N. Stuart; Anahit Minasyan; Damon Stanwell-Smith; Fiona Leverington; Tristan D. Tyrrell; Melodie A. McGeoch; Daniel Pauly; Jonathan E. M. Baillie; Benjamin Skolnik; Kent E. Carpenter; Nick C. Davidson; Thomasina E.E. Oldfield; James N. Galloway; Dian Spear; Matthew N. Foster; Alessandro Galli; Matt Walpole; Jean Christophe Vié; Bastian Bomhard; Jean-Francois Lamarque; Marc Hockings; Monica Hernández Morcillo; Ciaire Brown; Richard D. Gregory; Louise McRae; Ben Collen; Piero Genovesi; Janice Chanson; John F. Bruno;pmid: 20430971
Global Biodiversity Target Missed In 2002, the Convention on Biological Diversity (CBD) committed to a significant reduction in the rate of biodiversity loss by 2010. There has been widespread conjecture that this target has not been met. Butchart et al. (p. 1164 , published online 29 April) analyzed over 30 indicators developed within the CBD's framework. These indicators include the condition or state of biodiversity (e.g., species numbers, population sizes), the pressures on biodiversity (e.g., deforestation), and the responses to maintain biodiversity (e.g., protected areas) and were assessed between about 1970 and 2005. Taken together, the results confirm that we have indeed failed to meet the 2010 targets.
Science arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 4K citations 3,883 popularity Top 0.01% influence Top 0.01% impulse Top 0.01% Powered by BIP!
more_vert Science arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2010Publisher:Wiley Funded by:UKRI | End to End logistic suppo...UKRI| End to End logistic support tools for effective aerial drone delivery against COVID-19Chassot, Emmanuel; Bonhommeau, Sylvain; Dulvy, Nicholas; Mélin, Frédéric; Watson, Reg; Gascuel, Didier; Le Pape, Olivier;pmid: 20141525
Ecology Letters (2010) 13: 495–505AbstractPrimary production must constrain the amount of fish and invertebrates available to expanding fisheries; however the degree of limitation has only been demonstrated at regional scales to date. Here we show that phytoplanktonic primary production, estimated from an ocean‐colour satellite (SeaWiFS), is related to global fisheries catches at the scale of Large Marine Ecosystems, while accounting for temperature and ecological factors such as ecosystem size and type, species richness, animal body size, and the degree and nature of fisheries exploitation. Indeed we show that global fisheries catches since 1950 have been increasingly constrained by the amount of primary production. The primary production appropriated by current global fisheries is 17–112% higher than that appropriated by sustainable fisheries. Global primary production appears to be declining, in some part due to climate variability and change, with consequences for the near future fisheries catches.
Ecology Letters arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2010Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 372 citations 372 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2010Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140101377Elizabeth A. Fulton; Elizabeth A. Fulton; Kirsty L. Nash; Reg Watson; Richard S. Cottrell; Julia L. Blanchard; Aysha Fleming; Aysha Fleming;doi: 10.1111/gcb.13873
pmid: 28833818
AbstractWith the human population expected to near 10 billion by 2050, and diets shifting towards greater per‐capita consumption of animal protein, meeting future food demands will place ever‐growing burdens on natural resources and those dependent on them. Solutions proposed to increase the sustainability of agriculture, aquaculture, and capture fisheries have typically approached development from single sector perspectives. Recent work highlights the importance of recognising links among food sectors, and the challenge cross‐sector dependencies create for sustainable food production. Yet without understanding the full suite of interactions between food systems on land and sea, development in one sector may result in unanticipated trade‐offs in another. We review the interactions between terrestrial and aquatic food systems. We show that most of the studied land–sea interactions fall into at least one of four categories: ecosystem connectivity, feed interdependencies, livelihood interactions, and climate feedback. Critically, these interactions modify nutrient flows, and the partitioning of natural resource use between land and sea, amid a backdrop of climate variability and change that reaches across all sectors. Addressing counter‐productive trade‐offs resulting from land‐sea links will require simultaneous improvements in food production and consumption efficiency, while creating more sustainable feed products for fish and livestock. Food security research and policy also needs to better integrate aquatic and terrestrial production to anticipate how cross‐sector interactions could transmit change across ecosystem and governance boundaries into the future.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2010Publisher:Wiley Elizabeth A. Fulton; S.J. Metcalf; Richard J. Matear; Robyn E. Forrest; Anthony J. Richardson; Anthony J. Richardson; Villy Christensen; Neil Gribble; Reg Watson; C Bulman; Christopher J. Brown; Christopher J. Brown; Hugh P. Possingham; Alistair J. Hobday; Hector Lozano-Montes; Shane P. Griffiths; Thomas A. Okey; Peter C. Gehrke; José M. Martín;AbstractClimate change is altering the rate and distribution of primary production in the world's oceans. Primary production is critical to maintaining biodiversity and supporting fishery catches, but predicting the response of populations to primary production change is complicated by predation and competition interactions. We simulated the effects of change in primary production on diverse marine ecosystems across a wide latitudinal range in Australia using the marine food web model Ecosim. We link models of primary production of lower trophic levels (phytoplankton and benthic producers) under climate change with Ecosim to predict changes in fishery catch, fishery value, biomass of animals of conservation interest, and indicators of community composition. Under a plausible climate change scenario, primary production will increase around Australia and generally this benefits fisheries catch and value and leads to increased biomass of threatened marine animals such as turtles and sharks. However, community composition is not strongly affected. Sensitivity analyses indicate overall positive linear responses of functional groups to primary production change. Responses are robust to the ecosystem type and the complexity of the model used. However, model formulations with more complex predation and competition interactions can reverse the expected responses for some species, resulting in catch declines for some fished species and localized declines of turtle and marine mammal populations under primary productivity increases. We conclude that climate‐driven primary production change needs to be considered by marine ecosystem managers and more specifically, that production increases can simultaneously benefit fisheries and conservation. Greater focus on incorporating predation and competition interactions into models will significantly improve the ability to identify species and industries most at risk from climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.185 citations 185 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2010Publisher:Springer Science and Business Media LLC Reg Watson; Trevor A. Branch; Grace T. Pablico; Sean R. Tracey; Elizabeth A. Fulton; Carey R. McGilliard; Simon Jennings; Simon Jennings; Daniel Ricard;doi: 10.1038/nature09528
pmid: 21085178
Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse ("fishing down marine food webs") and when low-trophic-level fisheries expand ("fishing through marine food webs"). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.
Nature arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.312 citations 312 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nature arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
