- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Language
Source
Research community
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object 2015Publisher:Elsevier BV Authors: Casisi, Melchiorre; De Nardi, Alberto; Pinamonti, Piero; REINI, MAURO;handle: 11368/2847027 , 11390/1024358 , 11390/1101312
Economic support policies are widely adopted in European countries in order to promote a more efficient energy usage and the growth of renewable energy technologies. On one hand these schemes allow us to reduce the overall pollutant emissions and the total cost from the point of view of the energy systems, but on the other hand their social impact in terms of economic investment needs to be evaluated. The aim of this paper is to compare the social cost of the application of each incentive with the correspondent CO2 emission reduction and overall energy saving. A Mixed Integer Linear Programming optimization procedure is used to evaluate the effect of different economic support policies on the optimal configuration and operation of a distributed energy supply system of an industrial area located in the north-east of Italy. The minimized objective function is the total annual cost for owning, operating and maintaining the whole energy system. The expectation is that a proper mix of renewable energy technologies and cogeneration systems will be included in the optimal solution, depending on the amount and nature of the supporting policies, highlighting the incentives that promote a real environmental benefit.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università degli Studi di UdineConference object . 2013add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università degli Studi di UdineConference object . 2013add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2015Publisher:Elsevier BV Authors: Armellini, Alessandro; Daniotti, S.; PINAMONTI, Piero;handle: 11390/1024362
AbstractIn order to reduce the environmental impact caused by merchant ships, the International Maritimes Organization is imposing new and stricter regulations on NOx and SOx emissions. Therefore, ships propelled by Internal Combustion Engines (ICEs) burning HFO must adopt abatement devices or switch to a cleaner fuel such as MGO. If the use of MGO is considered, a further and more drastic modification of the power system can be analyzed, namely the use of Gas Turbines (GTs) in place of ICEs. GTs are an attractive solution thanks to a reduced weight, size and NOx emissions, but are penalized by a lower electric efficiency. The case of a real cruise ship is considered in the present paper and a detailed quantification of the above mentioned differences is provided by simulating the ship operation for a reference trip.
Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 4 Powered by
more_vert Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2018Publisher:MDPI AG Authors: Casisi, Melchiorre; Costanzo, Stefano; Pinamonti, Piero; Reini, Mauro;handle: 11368/2934363 , 11390/1144060
The paper deals with the modelization and optimization of an integrated multi-component energy system. On-off operation and presence-absence of components must be described by means of binary decision variables, besides equality and inequality constraints; furthermore, the synthesis and the operation of the energy system should be optimized at the same time. In this paper a hierarchical optimization strategy is used, adopting a genetic algorithm in the higher optimization level, to choose the main binary decision variables, whilst a MILP algorithm is used in the lower level, to choose the optimal operation of the system and to supply the merit function to the genetic algorithm. The method is then applied to a distributed generation system, which has to be designed for a set of users located in the center of a small town in the North-East of Italy. The results show the advantage of distributed cogeneration, when the optimal synthesis and operation of the whole system are adopted, and significant reduction in the computing time by using the proposed two-level optimization procedure.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/1/114/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BYhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/1/114/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BYhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Gnes P.; Pinamonti P.; Reini M.;doi: 10.3390/app10196917
handle: 11368/2976431 , 11390/1193928
In recent years, ship builders and owners have to face a great effort to develop new design and management methodologies that lead to a reduction in consumption and emissions during the operation of the fleet. In the present study, the optimization of an on-board energy system of a large cruise ship is performed, both in terms of energy and of the overall dimensions of the system, while respecting the environmental constraint. In the simulation, a variable number of identical Organic Rankine Cycle (ORC)/Stirling units is considered as an energy recovery system, bottoming the main internal combustion engines, possibly integrating with the installation of photovoltaic panels, solar thermal collectors, absorption refrigeration machines and thermal storages. The optimization takes into account the effective optimal management of the energy system, which is different according to the different design choices of the energy recovery system. Two typical cruises are considered (summer and winter). To reduce the computational effort for the solution of the problem, a bi-level strategy has been developed, which prescribes managing the binary choice variables expressing the existence or not of the components by means of an evolutionary algorithm, while all the remaining choice variables are obtained by a mixed-integer linear programming model of the system (MILP) algorithm. The entire procedure can be defined within the commercial software modeFRONTIER®.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/19/6917/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/19/6917/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:ASME International Authors: MICHELI, DIEGO; PINAMONTI, PIERO; REINI, MAURO; TACCANI, RODOLFO;doi: 10.1115/1.4023098
handle: 11368/2546028 , 11390/964545
The paper presents the results of a research regarding the application of cogeneration plants, based on Organic Rankine Cycle (ORC), fed with wood residuals. In the first part of the paper an energy audit of the companies in a furniture industry district, located in the North-East of Italy, is presented. On the basis of these data a typical electricity/thermal demand profile dependent on the number of employees has been determined. In order to evaluate the potential savings achievable with an ORC cogeneration plant, a numerical simulation model has been developed to analyse the energy balances of the components as well as the whole ORC power plant performance. The effects on the system energy and exergy efficiencies of different binary and ternary mixtures of polisiloxane as working fluid and of different operating modes (cogeneration or pure electricity production) have been analysed, also in off-design conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2008Publisher:ASMEDC Authors: MELCHIORRE CASISI; CASTELLI, LORENZO; PIERO PINAMONTI; REINI, MAURO;doi: 10.1115/gt2008-50353
handle: 11368/2281920 , 11390/860848
This paper deals about the application of MILP for economic optimization of complex cogenerative systems. In particular, it optimizes both the size and operating strategy of CHP systems and the lay-out of micro district heating networks applied to a urban contest. The proposed model considers the possible adoption of a set of micro-cogeneration gas turbines located in different buildings, and of a centralized cogeneration system thus allowing part of the required thermal energy to be produced in a single site. In addition, thermal and photovoltaic panels can be integrated into the system to improve thermal and electrical energy production, respectively. Each site can be connected to the others through district heating micro-grids. Hence thermal energy can be distributed inside the system. A further objective of the paper is to evaluate the effect of different economic support policies on the optimal solution, and to relate the economic effort implied in each support policy with the expected results in terms of CO2 emissions reduction and primary energy savings.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineConference object . 2008Archivio istituzionale della ricerca - Università di TriesteConference object . 2008ArTS - Archivio della ricerca dell' Università degli Studi di TriesteConference object . 2008add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineConference object . 2008Archivio istituzionale della ricerca - Università di TriesteConference object . 2008ArTS - Archivio della ricerca dell' Università degli Studi di TriesteConference object . 2008add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Authors: Armellini A.; Daniotti S.; Pinamonti P.; Reini M.;handle: 11368/2968413 , 11390/1158705
The International Maritime Organization (IMO) has developed new and stricter rules about environmental impact of big vessels. Those rules are going to widen significantly the so called Emission Controlled Areas (ECA) and to generally gain more control over pollution levels over the seas. The solution that most ship-owners are going to prefer is most likely to be the implementation of pollutant emissions reducing systems, such as Scrubbers and Selective Catalytic Reactor Systems, to dampen emissions produced by the present propulsion systems, based on Internal Combustion Engine (ICE) which burns the cheap but polluting Heavy Fuel Oil (HFO). An alternative solution, based on the adoption of Gas Turbines (GT) in the propulsion system, fuelled by Marine Gas Oil (MGO), can be taken into account, allowing considerable savings in weight and space occupied and lover NOx as well as SOx emissions than those of ICEs, even if with a loss in the engine efficiency (Armellini et al., 2018). In this paper, the possibility of using simultaneously ICEs and GTs as well as the use of trigeneration system is analyzed, with the aim of exploiting the positive feature of both the engine systems. The paper provides a quantitative comparison among different hybrid engines configurations (ICEs and GTs working together) making reference to a large cruise ship as a real case. Considering a cruise ship rather than a cargo ship implies an important and time-dependent thermal energy demand, so that an onboard trigeneration system may result a convenient solution.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2014Publisher:Elsevier BV Authors: Buoro, Dario; Pinamonti, Piero; REINI, MAURO;handle: 11368/2847011 , 11390/1020747
The aim of the paper is to identify the optimal energy production system and its optimal operation strategy required to satisfy the energy demand of a set of users in an industrial area. A distributed energy supply system is made up of a district heating network, a solar thermal plant with long term heat storage, a set of Combined Heat and Power units and conventional components also, such as boilers and compression chillers. In this way the required heat can be produced by solar thermal modules, by natural gas cogenerators, or by conventional boilers. The decision variable set of the optimization procedure includes the sizes of various components, the solar field extension and the thermal energy recovered in the heat storage, while additional binary decision variables describe the existence/absence of each considered component and its on/off operation status. The optimization algorithm is based on a Mixed Integer Linear Programming (MILP) model that minimizes the total annual cost for owning, maintaining and operating the whole energy supply system. It allows to calculate both the economic and the environmental benefits of the solar thermal plant, cooperating with the cogeneration units, as well as the share of the thermal demand covered by renewable energy, in the optimal solutions. The results obtained analyzing different system configurations show that the minimum value of the average useful heat costs is achieved when cogenerators, district heating network, solar field and heat storage are all included in the energy supply system and optimized consistently. Thus, the integrated solution turns out to be the best from both the economic and environmental points of view.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.147 citations 147 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Authors: Armellini, A.; Daniotti, S.; Pinamonti, P.; Reini, M.;handle: 11368/2917617 , 11390/1148193
As a consequence of the new and up-coming regulations imposed by the International Maritime Organization (IMO), polluting emissions produced by large ships are now under strict control. Moreover, specific areas called “Emission Controlled Area” (ECA), which request even lower pollutant emissions, will be extended. To face up to this issue, ships propelled by Internal Combustion Engines (ICEs) burning Heavy Fuel Oil (HFO) can be equipped with abatement devices such as scrubbers and Selective Catalytic Reactor systems. Along with these solutions, which seem to be the route ship-owners will prefer, other methods can be considered, such as the use of Marine Gas Oil (MGO): a more expensive fuel, but with lower sulphur content. The use of MGO allows users to consider a further and more drastic modification of the power system, namely the use of Gas Turbines (GTs) in place of ICEs. GTs, despite being less efficient, are much lighter, more compact, and can more easily reach low NOx emissions than ICEs. Even if these aspects are theoretically well known, there are still difficulties in finding studies reporting quantitative analysis (weight, dimensions, fuel consumption) that compare GT and ICE power systems employed on board. The present paper aims to provide these data by analyzing different solutions applied to a real case. Unlike other studies, the work is focused on a cruise ship rather than on a cargo ship, because a cruise ship's operation profile is more variable during the trip.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Conference object 2015Publisher:Elsevier BV Authors: Casisi, Melchiorre; De Nardi, Alberto; Pinamonti, Piero; REINI, MAURO;handle: 11368/2847027 , 11390/1024358 , 11390/1101312
Economic support policies are widely adopted in European countries in order to promote a more efficient energy usage and the growth of renewable energy technologies. On one hand these schemes allow us to reduce the overall pollutant emissions and the total cost from the point of view of the energy systems, but on the other hand their social impact in terms of economic investment needs to be evaluated. The aim of this paper is to compare the social cost of the application of each incentive with the correspondent CO2 emission reduction and overall energy saving. A Mixed Integer Linear Programming optimization procedure is used to evaluate the effect of different economic support policies on the optimal configuration and operation of a distributed energy supply system of an industrial area located in the north-east of Italy. The minimized objective function is the total annual cost for owning, operating and maintaining the whole energy system. The expectation is that a proper mix of renewable energy technologies and cogeneration systems will be included in the optimal solution, depending on the amount and nature of the supporting policies, highlighting the incentives that promote a real environmental benefit.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università degli Studi di UdineConference object . 2013add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università degli Studi di UdineConference object . 2013add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2015Publisher:Elsevier BV Authors: Armellini, Alessandro; Daniotti, S.; PINAMONTI, Piero;handle: 11390/1024362
AbstractIn order to reduce the environmental impact caused by merchant ships, the International Maritimes Organization is imposing new and stricter regulations on NOx and SOx emissions. Therefore, ships propelled by Internal Combustion Engines (ICEs) burning HFO must adopt abatement devices or switch to a cleaner fuel such as MGO. If the use of MGO is considered, a further and more drastic modification of the power system can be analyzed, namely the use of Gas Turbines (GTs) in place of ICEs. GTs are an attractive solution thanks to a reduced weight, size and NOx emissions, but are penalized by a lower electric efficiency. The case of a real cruise ship is considered in the present paper and a detailed quantification of the above mentioned differences is provided by simulating the ship operation for a reference trip.
Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 4 Powered by
more_vert Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2018Publisher:MDPI AG Authors: Casisi, Melchiorre; Costanzo, Stefano; Pinamonti, Piero; Reini, Mauro;handle: 11368/2934363 , 11390/1144060
The paper deals with the modelization and optimization of an integrated multi-component energy system. On-off operation and presence-absence of components must be described by means of binary decision variables, besides equality and inequality constraints; furthermore, the synthesis and the operation of the energy system should be optimized at the same time. In this paper a hierarchical optimization strategy is used, adopting a genetic algorithm in the higher optimization level, to choose the main binary decision variables, whilst a MILP algorithm is used in the lower level, to choose the optimal operation of the system and to supply the merit function to the genetic algorithm. The method is then applied to a distributed generation system, which has to be designed for a set of users located in the center of a small town in the North-East of Italy. The results show the advantage of distributed cogeneration, when the optimal synthesis and operation of the whole system are adopted, and significant reduction in the computing time by using the proposed two-level optimization procedure.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/1/114/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BYhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/1/114/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BYhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Gnes P.; Pinamonti P.; Reini M.;doi: 10.3390/app10196917
handle: 11368/2976431 , 11390/1193928
In recent years, ship builders and owners have to face a great effort to develop new design and management methodologies that lead to a reduction in consumption and emissions during the operation of the fleet. In the present study, the optimization of an on-board energy system of a large cruise ship is performed, both in terms of energy and of the overall dimensions of the system, while respecting the environmental constraint. In the simulation, a variable number of identical Organic Rankine Cycle (ORC)/Stirling units is considered as an energy recovery system, bottoming the main internal combustion engines, possibly integrating with the installation of photovoltaic panels, solar thermal collectors, absorption refrigeration machines and thermal storages. The optimization takes into account the effective optimal management of the energy system, which is different according to the different design choices of the energy recovery system. Two typical cruises are considered (summer and winter). To reduce the computational effort for the solution of the problem, a bi-level strategy has been developed, which prescribes managing the binary choice variables expressing the existence or not of the components by means of an evolutionary algorithm, while all the remaining choice variables are obtained by a mixed-integer linear programming model of the system (MILP) algorithm. The entire procedure can be defined within the commercial software modeFRONTIER®.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/19/6917/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/19/6917/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:ASME International Authors: MICHELI, DIEGO; PINAMONTI, PIERO; REINI, MAURO; TACCANI, RODOLFO;doi: 10.1115/1.4023098
handle: 11368/2546028 , 11390/964545
The paper presents the results of a research regarding the application of cogeneration plants, based on Organic Rankine Cycle (ORC), fed with wood residuals. In the first part of the paper an energy audit of the companies in a furniture industry district, located in the North-East of Italy, is presented. On the basis of these data a typical electricity/thermal demand profile dependent on the number of employees has been determined. In order to evaluate the potential savings achievable with an ORC cogeneration plant, a numerical simulation model has been developed to analyse the energy balances of the components as well as the whole ORC power plant performance. The effects on the system energy and exergy efficiencies of different binary and ternary mixtures of polisiloxane as working fluid and of different operating modes (cogeneration or pure electricity production) have been analysed, also in off-design conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2008Publisher:ASMEDC Authors: MELCHIORRE CASISI; CASTELLI, LORENZO; PIERO PINAMONTI; REINI, MAURO;doi: 10.1115/gt2008-50353
handle: 11368/2281920 , 11390/860848
This paper deals about the application of MILP for economic optimization of complex cogenerative systems. In particular, it optimizes both the size and operating strategy of CHP systems and the lay-out of micro district heating networks applied to a urban contest. The proposed model considers the possible adoption of a set of micro-cogeneration gas turbines located in different buildings, and of a centralized cogeneration system thus allowing part of the required thermal energy to be produced in a single site. In addition, thermal and photovoltaic panels can be integrated into the system to improve thermal and electrical energy production, respectively. Each site can be connected to the others through district heating micro-grids. Hence thermal energy can be distributed inside the system. A further objective of the paper is to evaluate the effect of different economic support policies on the optimal solution, and to relate the economic effort implied in each support policy with the expected results in terms of CO2 emissions reduction and primary energy savings.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineConference object . 2008Archivio istituzionale della ricerca - Università di TriesteConference object . 2008ArTS - Archivio della ricerca dell' Università degli Studi di TriesteConference object . 2008add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineConference object . 2008Archivio istituzionale della ricerca - Università di TriesteConference object . 2008ArTS - Archivio della ricerca dell' Università degli Studi di TriesteConference object . 2008add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Authors: Armellini A.; Daniotti S.; Pinamonti P.; Reini M.;handle: 11368/2968413 , 11390/1158705
The International Maritime Organization (IMO) has developed new and stricter rules about environmental impact of big vessels. Those rules are going to widen significantly the so called Emission Controlled Areas (ECA) and to generally gain more control over pollution levels over the seas. The solution that most ship-owners are going to prefer is most likely to be the implementation of pollutant emissions reducing systems, such as Scrubbers and Selective Catalytic Reactor Systems, to dampen emissions produced by the present propulsion systems, based on Internal Combustion Engine (ICE) which burns the cheap but polluting Heavy Fuel Oil (HFO). An alternative solution, based on the adoption of Gas Turbines (GT) in the propulsion system, fuelled by Marine Gas Oil (MGO), can be taken into account, allowing considerable savings in weight and space occupied and lover NOx as well as SOx emissions than those of ICEs, even if with a loss in the engine efficiency (Armellini et al., 2018). In this paper, the possibility of using simultaneously ICEs and GTs as well as the use of trigeneration system is analyzed, with the aim of exploiting the positive feature of both the engine systems. The paper provides a quantitative comparison among different hybrid engines configurations (ICEs and GTs working together) making reference to a large cruise ship as a real case. Considering a cruise ship rather than a cargo ship implies an important and time-dependent thermal energy demand, so that an onboard trigeneration system may result a convenient solution.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2019License: CC BY NC NDEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2014Publisher:Elsevier BV Authors: Buoro, Dario; Pinamonti, Piero; REINI, MAURO;handle: 11368/2847011 , 11390/1020747
The aim of the paper is to identify the optimal energy production system and its optimal operation strategy required to satisfy the energy demand of a set of users in an industrial area. A distributed energy supply system is made up of a district heating network, a solar thermal plant with long term heat storage, a set of Combined Heat and Power units and conventional components also, such as boilers and compression chillers. In this way the required heat can be produced by solar thermal modules, by natural gas cogenerators, or by conventional boilers. The decision variable set of the optimization procedure includes the sizes of various components, the solar field extension and the thermal energy recovered in the heat storage, while additional binary decision variables describe the existence/absence of each considered component and its on/off operation status. The optimization algorithm is based on a Mixed Integer Linear Programming (MILP) model that minimizes the total annual cost for owning, maintaining and operating the whole energy supply system. It allows to calculate both the economic and the environmental benefits of the solar thermal plant, cooperating with the cogeneration units, as well as the share of the thermal demand covered by renewable energy, in the optimal solutions. The results obtained analyzing different system configurations show that the minimum value of the average useful heat costs is achieved when cogenerators, district heating network, solar field and heat storage are all included in the energy supply system and optimized consistently. Thus, the integrated solution turns out to be the best from both the economic and environmental points of view.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.147 citations 147 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Authors: Armellini, A.; Daniotti, S.; Pinamonti, P.; Reini, M.;handle: 11368/2917617 , 11390/1148193
As a consequence of the new and up-coming regulations imposed by the International Maritime Organization (IMO), polluting emissions produced by large ships are now under strict control. Moreover, specific areas called “Emission Controlled Area” (ECA), which request even lower pollutant emissions, will be extended. To face up to this issue, ships propelled by Internal Combustion Engines (ICEs) burning Heavy Fuel Oil (HFO) can be equipped with abatement devices such as scrubbers and Selective Catalytic Reactor systems. Along with these solutions, which seem to be the route ship-owners will prefer, other methods can be considered, such as the use of Marine Gas Oil (MGO): a more expensive fuel, but with lower sulphur content. The use of MGO allows users to consider a further and more drastic modification of the power system, namely the use of Gas Turbines (GTs) in place of ICEs. GTs, despite being less efficient, are much lighter, more compact, and can more easily reach low NOx emissions than ICEs. Even if these aspects are theoretically well known, there are still difficulties in finding studies reporting quantitative analysis (weight, dimensions, fuel consumption) that compare GT and ICE power systems employed on board. The present paper aims to provide these data by analyzing different solutions applied to a real case. Unlike other studies, the work is focused on a cruise ship rather than on a cargo ship, because a cruise ship's operation profile is more variable during the trip.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
