- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, Argentina, Czech Republic, Belgium, Germany, Argentina, United KingdomPublisher:Wiley Funded by:EC | UnderSCORE, SNSF | How does forest microclim..., EC | FORMICA +1 projectsEC| UnderSCORE ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimateKamila Reczyńska; Martin Macek; Florian Zellweger; Jonathan Lenoir; Wolfgang Schmidt; Imre Berki; Thomas Dirnböck; Lander Baeten; Markus Bernhardt-Römermann; Krzysztof Świerkosz; Pieter De Frenne; Sandra Díaz; Sandra Díaz; Tomasz Durak; Remigiusz Pielech; Kris Verheyen; Jörg Brunet; Bogdan Jaroszewicz; Radim Hédl; Monika Wulf; Guillaume Decocq; Thilo Heinken; Petr Petřík; Martin Kopecký; Martin Kopecký; María Mercedes Carón; Marek Malicki; Marek Malicki; Balázs Teleki; Thomas A. Nagel; František Máliš; Michael P. Perring; Michael P. Perring;handle: 11336/157745 , 1854/LU-8746181
Abstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023 Belgium, Spain, Poland, GermanyPublisher:Wiley Funded by:UKRI | RootDetect: Remote Detect..., EC | eLTER PLUSUKRI| RootDetect: Remote Detection and Precision Management of Root Health ,EC| eLTER PLUSAuthors: Josep Padullés Cubino; Jonathan Lenoir; Daijiang Li; Flavia A. Montaño‐Centellas; +30 AuthorsJosep Padullés Cubino; Jonathan Lenoir; Daijiang Li; Flavia A. Montaño‐Centellas; Javier Retana; Lander Baeten; Markus Bernhardt‐Römermann; Markéta Chudomelová; Déborah Closset; Guillaume Decocq; Pieter De Frenne; Martin Diekmann; Thomas Dirnböck; Tomasz Durak; Radim Hédl; Thilo Heinken; Bogdan Jaroszewicz; Martin Kopecký; Martin Macek; František Máliš; Tobias Naaf; Anna Orczewska; Petr Petřík; Remigiusz Pielech; Kamila Reczyńska; Wolfgang Schmidt; Tibor Standovár; Krzysztof Świerkosz; Balázs Teleki; Kris Verheyen; Ondřej Vild; Donald Waller; Monika Wulf; Milan Chytrý;Summary Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi‐permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.
New Phytologist arrow_drop_down Diposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABGhent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert New Phytologist arrow_drop_down Diposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABGhent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024 Slovenia, Belgium, Belgium, Netherlands, Germany, United Kingdom, SloveniaPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | German Centre for Integra..., EC | FORMICA, SNSF | Climate change impacts on... +1 projectsDFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| eLTER PLUSPieter Sanczuk; Kris Verheyen; Jonathan Lenoir; Florian Zellweger; Jonas J. Lembrechts; Francisco Rodríguez-Sánchez; Lander Baeten; Markus Bernhardt-Römermann; Karen De Pauw; Pieter Vangansbeke; Michael P. Perring; Imre Berki; Anne D. Bjorkman; Jörg Brunet; Markéta Chudomelová; Emiel De Lombaerde; Guillaume Decocq; Thomas Dirnböck; Tomasz Durak; Caroline Greiser; Radim Hédl; Thilo Heinken; Ute Jandt; Bogdan Jaroszewicz; Martin Kopecký; Dries Landuyt; Martin Macek; František Máliš; Tobias Naaf; Thomas A. Nagel; Petr Petřík; Kamila Reczyńska; Wolfgang Schmidt; Tibor Standovár; Ingmar R. Staude; Krzysztof Świerkosz; Balázs Teleki; Thomas Vanneste; Ondrej Vild; Donald Waller; Pieter De Frenne;Climate change is commonly assumed to induce species’ range shifts toward the poles. Yet, other environmental changes may affect the geographical distribution of species in unexpected ways. Here, we quantify multidecadal shifts in the distribution of European forest plants and link these shifts to key drivers of forest biodiversity change: climate change, atmospheric deposition (nitrogen and sulfur), and forest canopy dynamics. Surprisingly, westward distribution shifts were 2.6 times more likely than northward ones. Not climate change, but nitrogen-mediated colonization events, possibly facilitated by the recovery from past acidifying deposition, best explain westward movements. Biodiversity redistribution patterns appear complex and are more likely driven by the interplay among several environmental changes than due to the exclusive effects of climate change alone.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, Czech Republic, BelgiumPublisher:Wiley Funded by:EC | MOVINGTREES, EC | FORMICAEC| MOVINGTREES ,EC| FORMICAOndřej Vild; Pieter Vangansbeke; Markéta Chudomelová; Pieter De Frenne; Monika Wulf; Ute Jahn; Francisco Rodríguez-Sánchez; Francisco Rodríguez-Sánchez; Radim Hédl; František Máliš; Erik Welk;doi: 10.1111/geb.13303
handle: 1854/LU-8708229
AbstractMotivationDetailed knowledge on the climatic tolerances of species is crucial to understand, quantify and predict the impact of climate change on biodiversity and ecosystem functions. However, quantitative data are limited; often, only expert‐based qualitative estimates are available. With the ClimPlant database, we capitalize on the link between species distribution ranges and macroclimate to infer the realized climatic niches of 968 European forest plant species.Main types of variables containedThe ClimPlant database contains information on the distribution of monthly, growing‐season and annual mean, minimum and maximum temperature and total precipitation within the distribution range of 968 European forest plants.Spatial location and grainEurope in 10 arc‐min grid cells; the study area has been cropped rectangularly at 15° W (Atlantic Ocean), 60° E (Ural Mountains), 25° N (Sahara) and 75° N (Arctic Ocean).Time period and grainThe distribution ranges of forest plant species are based on two renowned distribution atlases. The monthly mean, minimum and maximum temperature and precipitation between 1970 and 2000 were extracted from WorldClim v.2.Major taxa and level of measurementNine hundred and sixty‐eight vascular plant species of European forests, with taxonomy following the Euro+Med PlantBase nomenclature .Software formatData in 56 CSV files, with 1,000 values for monthly, growing season and annual observations of mean, minimum and maximum temperature and precipitation in the distribution range for every species. One summary CSV file with summary statistics (mean, median, fifth and 95th percentile), for every species, of each climatic variable, together with seven key geographical descriptors: area of the distribution range, latitude and longitude of the centroid, and northern, eastern, western and southern range limits within the study area.
Global Ecology and B... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Global Ecology and B... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 18 May 2020 Czech Republic, Germany, Slovenia, United Kingdom, Belgium, Czech RepublicPublisher:American Association for the Advancement of Science (AAAS) Funded by:SNSF | How does forest microclim..., EC | PASTFORWARD, EC | FORMICASNSF| How does forest microclimate affect biodiversity dynamics? ,EC| PASTFORWARD ,EC| FORMICAJonathan Lenoir; Bogdan Jaroszewicz; Tomasz Durak; Marek Malicki; Pieter Vangansbeke; Hans Van Calster; Thilo Heinken; Balázs Teleki; Krzysztof Świerkosz; Markéta Chudomelová; Wolfgang Schmidt; Monika Wulf; Pieter De Frenne; Radim Hédl; František Máliš; Adrienne Ortmann-Ajkai; Tibor Standovár; Guillaume Decocq; Florian Zellweger; Florian Zellweger; Remigiusz Pielech; Imre Berki; David A. Coomes; Lander Baeten; Martin Macek; Kris Verheyen; Ondřej Vild; Jörg Brunet; Thomas A. Nagel; Thomas Dirnböck; Petr Petřík; Tobias Naaf; Kamila Reczyńska; Martin Kopecký; Martin Kopecký; Markus Bernhardt-Römermann;pmid: 32409476
handle: 11104/0315476 , 20.500.12556/RUL-116516 , 1854/LU-8674965
Local factors restrain forest warming Microclimates are key to understanding how organisms and ecosystems respond to macroclimate change, yet they are frequently neglected when studying biotic responses to global change. Zellweger et al. provide a long-term, continental-scale assessment of the effects of micro- and macroclimate on the community composition of European forests (see the Perspective by Lembrechts and Nijs). They show that changes in forest canopy cover are fundamentally important for driving community responses to climate change. Closed canopies buffer against the effects of macroclimatic change through their cooling effect, slowing shifts in community composition, whereas open canopies tend to accelerate community change through local heating effects. Science , this issue p. 772 ; see also p. 711
Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Germany, Czech Republic, Czech Republic, Netherlands, GermanyPublisher:Wiley Funded by:EC | PASTFORWARDEC| PASTFORWARDKris Verheyen; Sybryn L. Maes; Thilo Heinken; Jan den Ouden; Jan Van den Bulcke; Steffi Heinrichs; Monika Wulf; Radim Hédl; Margot Vanhellemont; Guillaume Decocq; Bogdan Jaroszewicz; Jörg Brunet; František Máliš; Werner Härdtle; Michael P. Perring; Michael P. Perring; Martin Kopecký; Martin Kopecký; Guntis Brūmelis; Leen Depauw;doi: 10.1111/gcb.14493
pmid: 30346104
AbstractForecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management forQuercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefitedFraxinus,but negatively affectedQuercus’growth, highlighting species‐specific interactive tree growth responses to combined drivers. ForFagus,a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures onQuercus’growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.
Global Change Biolog... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Repository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2018Data sources: Publikationsserver der Universität Potsdamhttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Global Change Biolog... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Repository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2018Data sources: Publikationsserver der Universität Potsdamhttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Poland, France, France, Norway, Germany, France, BelgiumPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | IntBIO Collaborative Rese..., NSF | IntBIO Collaborative Rese..., UKRI | RootDetect: Remote Detect... +1 projectsNSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales ,NSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales ,UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scalesPablo Moreno-García; Flavia Montaño-Centellas; Yu Liu; Evelin Y. Reyes-Mendez; Rohit Raj Jha; Robert P. Guralnick; Ryan Folk; Donald M. Waller; Kris Verheyen; Lander Baeten; Antoine Becker-Scarpitta; Imre Berki; Markus Bernhardt-Römermann; Jörg Brunet; Hans Van Calster; Markéta Chudomelová; Deborah Closset; Pieter De Frenne; Guillaume Decocq; Frank S. Gilliam; John-Arvid Grytnes; Radim Hédl; Thilo Heinken; Bogdan Jaroszewicz; Martin Kopecký; Jonathan Lenoir; Martin Macek; František Máliš; Tobias Naaf; Anna Orczewska; Petr Petřík; Kamila Reczyńska; Fride Høistad Schei; Wolfgang Schmidt; Alina Stachurska-Swakoń; Tibor Standovár; Krzysztof Świerkosz; Balázs Teleki; Ondřej Vild; Daijiang Li;pmid: 39423266
pmc: PMC11488573
Biological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare. Here, we examine temporal trends in the diversity of nitrogen-fixing plants and their relationships with anthropogenic nitrogen deposition while accounting for changes in temperature and aridity. We used forest-floor vegetation resurveys of temperate forests in Europe and the United States spanning multiple decades. Nitrogen-fixer richness declined as nitrogen deposition increased over time but did not respond to changes in climate. Phylogenetic diversity also declined, as distinct lineages of N-fixers were lost between surveys, but the “winners” and “losers” among nitrogen-fixing lineages varied among study sites, suggesting that losses are context dependent. Anthropogenic nitrogen deposition reduces nitrogen-fixing plant diversity in ways that may strongly affect natural nitrogen fixation.
Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Bergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Bergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Proceedings of the National Academy of Sciences Funded by:AKA | Harnessing global data on..., AKA | Predicting biodiversity c..., AKA | Data and seeds as time ca... +4 projectsAKA| Harnessing global data on Lepidoptera to unravel biodiversity change (SynthBioChange) ,AKA| Predicting biodiversity change in the Anthropocene – species and community-level responses to climate change ,AKA| Data and seeds as time capsules – disentangling the relative roles of phenotypic plasticity and evolutionary adaptation in species realized adjustment to climate change ,AKA| Cumulative and interactive responses of species to climate change ,EC| SURVIVALIST ,AKA| Community assembly and the strength of biodiversity effects on ecosystem functioning ,AKA| Project VEGA: Vegetation dynamics of the ArcticJussi Mäkinen; Emilie E. Ellis; Laura H. Antão; Andréa Davrinche; Anna-Liisa Laine; Marjo Saastamoinen; Irene Conenna; Maria Hällfors; Andrea Santangeli; Elina Kaarlejärvi; Janne Heliölä; Ida-Maria Huikkonen; Mikko Kuussaari; Reima Leinonen; Aleksi Lehikoinen; Juha Pöyry; Anna Suuronen; Maija Salemaa; Tiina Tonteri; Kristiina M. Vuorio; Birger Skjelbred; Marko Järvinen; Stina Drakare; Laurence Carvalho; Erik Welk; Gunnar Seidler; Pieter Vangansbeke; František Máliš; Radim Hédl; Alistair G. Auffret; Jan Plue; Pieter De Frenne; Jesse M. Kalwij; Jarno Vanhatalo; Tomas Roslin;pmid: 40258150
Globally, rising temperatures are increasingly favoring warm-affiliated species. Although changes in community composition are typically measured by the mean temperature affinity of species (the community temperature index, CTI), they may be driven by different processes and accompanied by shifts in the diversity of temperature affinities and breadth of species thermal niches. To resolve the pathways to community warming in Finnish flora and fauna, we examined multidecadal changes in the dominance and diversity of temperature affinities among understory forest plant, freshwater phytoplankton, butterfly, moth, and bird communities. CTI increased for all animal communities, with no change observed for plants or phytoplankton. In addition, the diversity of temperature affinities declined for all groups except butterflies, and this loss was more pronounced for the fastest-warming communities. These changes were driven in animals mainly by a decrease in cold-affiliated species and an increase in warm-affiliated species. In plants and phytoplankton the decline of thermal diversity was driven by declines of both cold- and warm-affiliated species. Plant and moth communities were increasingly dominated by thermal specialist species, and birds by thermal generalists. In general, climate warming outpaced changes in both the mean and diversity of temperature affinities of communities. Our results highlight the complex dynamics underpinning the thermal reorganization of communities across a large spatiotemporal gradient, revealing that extinctions of cold-affiliated species and colonization by warm-affiliated species lag behind changes in ambient temperature, while communities become less thermally diverse. Such changes can have important implications for community structure and ecosystem functioning under accelerating rates of climate change.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United States, United Kingdom, United Kingdom, Spain, Netherlands, Australia, Brazil, France, United Kingdom, United Kingdom, Netherlands, Czech Republic, United Kingdom, United Kingdom, Netherlands, France, United Kingdom, France, Brazil, France, France, France, Netherlands, France, Australia, Netherlands, Portugal, United Kingdom, France, Czech Republic, United States, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | Amazon Integrated Carbon ..., UKRI | BIOmes of Brasil - Resili..., UKRI | Biodiversity and ecosyste... +5 projectsUKRI| Amazon Integrated Carbon Analysis / AMAZONICA ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,EC| AMAZALERT ,EC| T-FORCES ,EC| GEOCARBON ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| Tropical Biomes in TransitionGerardo Flores Llampazo; Aurélie Dourdain; Jean-Louis Doucet; Sean C. Thomas; Luiz E. O. C. Aragão; Luiz E. O. C. Aragão; Sophie Fauset; Alberto Vicentini; Murielle Simo-Droissart; Ervan Rutishauser; Maureen Playfair; Julie Peacock; Hans Beeckman; Erika Berenguer; Erika Berenguer; Jérôme Chave; Serge K. Begne; Serge K. Begne; Mark van Nieuwstadt; Nallaret Davila Cardozo; Ana Andrade; Ricardo Keichi Umetsu; Thaiane Rodrigues de Sousa; Peter S. Ashton; Hannah L. Mossman; John Pipoly; Ben Hur Marimon; Varun Swamy; Carolina V. Castilho; Timothy J. Killeen; Peter van der Hout; Terry L. Erwin; Sabina Cerruto Ribeiro; Oliver L. Phillips; Plínio Barbosa de Camargo; Rafael de Paiva Salomão; Rafael de Paiva Salomão; Axel Dalberg Poulsen; Zorayda Restrepo Correa; Miguel E. Leal; Christopher Baraloto; Aida Cuni Sanchez; Aida Cuni Sanchez; Bonaventure Sonké; Patricia Alvarez Loayza; Connie J. Clark; Henrique E. M. Nascimento; Lily Rodriguez Bayona; David W. Galbraith; Jan Reitsma; Alan Hamilton; James Taplin; Raquel Thomas; Aline Pontes Lopes; Jason Vleminckx; Marcos Silveira; John R. Poulsen; Lan Qie; Jean-François Bastin; Jean-François Bastin; Géraldine Derroire; Ted R. Feldpausch; Matt Bradford; Wannes Hubau; Wannes Hubau; Wannes Hubau; Jagoba Malumbres-Olarte; Jagoba Malumbres-Olarte; Kanehiro Kitayama; Georgia Pickavance; Lip Khoon Kho; Marcelo Brilhante de Medeiros; William Milliken; Nicholas J. Berry; Andrew R. Marshall; Andrew R. Marshall; Pieter A. Zuidema; Eliana Jimenez-Rojas; José Luís Camargo; Karina Melgaço; Keith C. Hamer; Flávia R. C. Costa; Radim Hédl; Fabricio Beggiato Baccaro; Paulo S. Morandi; Kofi Affum-Baffoe; Alejandro Araujo-Murakami; Marie Noël Kamdem Djuikouo; Edmar Almeida de Oliveira; Ima Célia Guimarães Vieira; Lindsay F. Banin; Percy Núñez Vargas; Terese B. Hart; Terese B. Hart; Luzmila Arroyo; John Terborgh; Kathryn J. Jeffery; Miguel Alexiades; Ronald Vernimmen; John T. Woods; Anthony Di Fiore; Geertje M. F. van der Heijden; Martin J. P. Sullivan; Martin J. P. Sullivan; David A. Neill; Greta C. Dargie; Francis Q. Brearley; Jefferson S. Hall; Annette Hladik; Murray Collins; Clément Stahl; Jos Barlow; Jon C. Lovett; Jon C. Lovett; Timothy R. Baker; Michelle Kalamandeen; Michelle Kalamandeen; Michelle Kalamandeen; Fernanda Coelho de Souza; Vincent A. Vos; Andrew Ford; Vianet Mihindou; Gabriela Lopez-Gonzalez; Ophelia Wang; Richarlly da Costa Silva; Amy C. Bennett; Ângelo Gilberto Manzatto; Manuel Gloor; Verginia Wortel; Edward T. A. Mitchard; Thomas E. Lovejoy; Walter A. Palacios; Martin Gilpin; Susan G. Laurance; Hirma Ramírez-Angulo; Pascal Boeckx; Nigel C. A. Pitman; James Singh; Juliana Stropp; Peter J. Van Der Meer; Aurora Levesley; Bruno Herault; Armando Torres-Lezama; Javier Silva Espejo; Vincent Droissart; William F. Laurance; Yahn Carlos Soto Shareva; Adriana Prieto; Stuart J. Davies; Eric Arets; Yadvinder Malhi; Toby R. Marthews; Jorcely Barroso; Luisa Fernanda Duque; Casimiro Mendoza; Juliana Schietti; Simon L. Lewis; Simon L. Lewis; Lourens Poorter; Terry Sunderland; Terry Sunderland; Kamariah Abu Salim; Janvier Lisingo; Lilian Blanc; Walter Huaraca Huasco; Lola da Costa; Simone Matias Reis; Simone Matias Reis; Marcelo F. Simon; Simone Aparecida Vieira; Richard Lowe; Everton Cristo de Almeida; Joey Talbot; Massiel Corrales Medina; Anand Roopsind; Laszlo Nagy; Fernando Elias; Richard B. Primack; Lise Zemagho; David Taylor; Adriano José Nogueira Lima; Joeri A. Zwerts; Beatriz Schwantes Marimon; Foster Brown; Colin R. Maycock; Hermann Taedoumg; Hermann Taedoumg; Victor Chama Moscoso; Elizabeth Kearsley; Michael D. Swaine; Ernest G. Foli; Sarah A. Batterman; William E. Magnusson; Martin Dančák; Roel J. W. Brienen; Damien Bonal; Hans Verbeeck; Agustín Rudas; Colin A. Pendry; Jhon del Aguila Pasquel;pmid: 32439789
Thermal sensitivity of tropical trees A key uncertainty in climate change models is the thermal sensitivity of tropical forests and how this value might influence carbon fluxes. Sullivan et al. measured carbon stocks and fluxes in permanent forest plots distributed globally. This synthesis of plot networks across climatic and biogeographic gradients shows that forest thermal sensitivity is dominated by high daytime temperatures. This extreme condition depresses growth rates and shortens the time that carbon resides in the ecosystem by killing trees under hot, dry conditions. The effect of temperature is worse above 32°C, and a greater magnitude of climate change thus risks greater loss of tropical forest carbon stocks. Nevertheless, forest carbon stocks are likely to remain higher under moderate climate change if they are protected from direct impacts such as clearance, logging, or fires. Science , this issue p. 869
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/112879Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositório da Universidade dos AçoresArticle . 2020Data sources: Repositório da Universidade dos AçoresRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesHAL - Université de Bourgogne (HAL-uB)Other literature type . 2020Data sources: HAL - Université de Bourgogne (HAL-uB)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/112879Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositório da Universidade dos AçoresArticle . 2020Data sources: Repositório da Universidade dos AçoresRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesHAL - Université de Bourgogne (HAL-uB)Other literature type . 2020Data sources: HAL - Université de Bourgogne (HAL-uB)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023 Netherlands, Germany, France, France, France, United Kingdom, BelgiumPublisher:Wiley Funded by:EC | PASTFORWARDEC| PASTFORWARDLanduyt, Dries; Perring, Michael; Blondeel, Haben; de Lombaerde, Emiel; Depauw, Leen; Lorer, Eline; Maes, Sybryn; Baeten, Lander; Bergès, Laurent; Bernhardt-Römermann, Markus; Brūmelis, Guntis; Brunet, Jörg; Chudomelová, Markéta; Czerepko, Janusz; Decocq, Guillaume; den Ouden, Jan; de Frenne, Pieter; Dirnböck, Thomas; Durak, Tomasz; Fichtner, Andreas; Gawryś, Radosław; Härdtle, Werner; Hédl, Radim; Heinrichs, Steffi; Heinken, Thilo; Jaroszewicz, Bogdan; Kirby, Keith; Kopecký, Martin; Máliš, František; Macek, Martin; Mitchell, Fraser; Naaf, Tobias; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Swierkosz, Krzysztof; Smart, Simon; van Calster, Hans; Vild, Ondřej; Waller, Donald; Wulf, Monika; Verheyen, Kris;AbstractPlant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global‐change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, Argentina, Czech Republic, Belgium, Germany, Argentina, United KingdomPublisher:Wiley Funded by:EC | UnderSCORE, SNSF | How does forest microclim..., EC | FORMICA +1 projectsEC| UnderSCORE ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimateKamila Reczyńska; Martin Macek; Florian Zellweger; Jonathan Lenoir; Wolfgang Schmidt; Imre Berki; Thomas Dirnböck; Lander Baeten; Markus Bernhardt-Römermann; Krzysztof Świerkosz; Pieter De Frenne; Sandra Díaz; Sandra Díaz; Tomasz Durak; Remigiusz Pielech; Kris Verheyen; Jörg Brunet; Bogdan Jaroszewicz; Radim Hédl; Monika Wulf; Guillaume Decocq; Thilo Heinken; Petr Petřík; Martin Kopecký; Martin Kopecký; María Mercedes Carón; Marek Malicki; Marek Malicki; Balázs Teleki; Thomas A. Nagel; František Máliš; Michael P. Perring; Michael P. Perring;handle: 11336/157745 , 1854/LU-8746181
Abstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023 Belgium, Spain, Poland, GermanyPublisher:Wiley Funded by:UKRI | RootDetect: Remote Detect..., EC | eLTER PLUSUKRI| RootDetect: Remote Detection and Precision Management of Root Health ,EC| eLTER PLUSAuthors: Josep Padullés Cubino; Jonathan Lenoir; Daijiang Li; Flavia A. Montaño‐Centellas; +30 AuthorsJosep Padullés Cubino; Jonathan Lenoir; Daijiang Li; Flavia A. Montaño‐Centellas; Javier Retana; Lander Baeten; Markus Bernhardt‐Römermann; Markéta Chudomelová; Déborah Closset; Guillaume Decocq; Pieter De Frenne; Martin Diekmann; Thomas Dirnböck; Tomasz Durak; Radim Hédl; Thilo Heinken; Bogdan Jaroszewicz; Martin Kopecký; Martin Macek; František Máliš; Tobias Naaf; Anna Orczewska; Petr Petřík; Remigiusz Pielech; Kamila Reczyńska; Wolfgang Schmidt; Tibor Standovár; Krzysztof Świerkosz; Balázs Teleki; Kris Verheyen; Ondřej Vild; Donald Waller; Monika Wulf; Milan Chytrý;Summary Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi‐permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.
New Phytologist arrow_drop_down Diposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABGhent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert New Phytologist arrow_drop_down Diposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABGhent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024 Slovenia, Belgium, Belgium, Netherlands, Germany, United Kingdom, SloveniaPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | German Centre for Integra..., EC | FORMICA, SNSF | Climate change impacts on... +1 projectsDFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| eLTER PLUSPieter Sanczuk; Kris Verheyen; Jonathan Lenoir; Florian Zellweger; Jonas J. Lembrechts; Francisco Rodríguez-Sánchez; Lander Baeten; Markus Bernhardt-Römermann; Karen De Pauw; Pieter Vangansbeke; Michael P. Perring; Imre Berki; Anne D. Bjorkman; Jörg Brunet; Markéta Chudomelová; Emiel De Lombaerde; Guillaume Decocq; Thomas Dirnböck; Tomasz Durak; Caroline Greiser; Radim Hédl; Thilo Heinken; Ute Jandt; Bogdan Jaroszewicz; Martin Kopecký; Dries Landuyt; Martin Macek; František Máliš; Tobias Naaf; Thomas A. Nagel; Petr Petřík; Kamila Reczyńska; Wolfgang Schmidt; Tibor Standovár; Ingmar R. Staude; Krzysztof Świerkosz; Balázs Teleki; Thomas Vanneste; Ondrej Vild; Donald Waller; Pieter De Frenne;Climate change is commonly assumed to induce species’ range shifts toward the poles. Yet, other environmental changes may affect the geographical distribution of species in unexpected ways. Here, we quantify multidecadal shifts in the distribution of European forest plants and link these shifts to key drivers of forest biodiversity change: climate change, atmospheric deposition (nitrogen and sulfur), and forest canopy dynamics. Surprisingly, westward distribution shifts were 2.6 times more likely than northward ones. Not climate change, but nitrogen-mediated colonization events, possibly facilitated by the recovery from past acidifying deposition, best explain westward movements. Biodiversity redistribution patterns appear complex and are more likely driven by the interplay among several environmental changes than due to the exclusive effects of climate change alone.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, Czech Republic, BelgiumPublisher:Wiley Funded by:EC | MOVINGTREES, EC | FORMICAEC| MOVINGTREES ,EC| FORMICAOndřej Vild; Pieter Vangansbeke; Markéta Chudomelová; Pieter De Frenne; Monika Wulf; Ute Jahn; Francisco Rodríguez-Sánchez; Francisco Rodríguez-Sánchez; Radim Hédl; František Máliš; Erik Welk;doi: 10.1111/geb.13303
handle: 1854/LU-8708229
AbstractMotivationDetailed knowledge on the climatic tolerances of species is crucial to understand, quantify and predict the impact of climate change on biodiversity and ecosystem functions. However, quantitative data are limited; often, only expert‐based qualitative estimates are available. With the ClimPlant database, we capitalize on the link between species distribution ranges and macroclimate to infer the realized climatic niches of 968 European forest plant species.Main types of variables containedThe ClimPlant database contains information on the distribution of monthly, growing‐season and annual mean, minimum and maximum temperature and total precipitation within the distribution range of 968 European forest plants.Spatial location and grainEurope in 10 arc‐min grid cells; the study area has been cropped rectangularly at 15° W (Atlantic Ocean), 60° E (Ural Mountains), 25° N (Sahara) and 75° N (Arctic Ocean).Time period and grainThe distribution ranges of forest plant species are based on two renowned distribution atlases. The monthly mean, minimum and maximum temperature and precipitation between 1970 and 2000 were extracted from WorldClim v.2.Major taxa and level of measurementNine hundred and sixty‐eight vascular plant species of European forests, with taxonomy following the Euro+Med PlantBase nomenclature .Software formatData in 56 CSV files, with 1,000 values for monthly, growing season and annual observations of mean, minimum and maximum temperature and precipitation in the distribution range for every species. One summary CSV file with summary statistics (mean, median, fifth and 95th percentile), for every species, of each climatic variable, together with seven key geographical descriptors: area of the distribution range, latitude and longitude of the centroid, and northern, eastern, western and southern range limits within the study area.
Global Ecology and B... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Global Ecology and B... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 18 May 2020 Czech Republic, Germany, Slovenia, United Kingdom, Belgium, Czech RepublicPublisher:American Association for the Advancement of Science (AAAS) Funded by:SNSF | How does forest microclim..., EC | PASTFORWARD, EC | FORMICASNSF| How does forest microclimate affect biodiversity dynamics? ,EC| PASTFORWARD ,EC| FORMICAJonathan Lenoir; Bogdan Jaroszewicz; Tomasz Durak; Marek Malicki; Pieter Vangansbeke; Hans Van Calster; Thilo Heinken; Balázs Teleki; Krzysztof Świerkosz; Markéta Chudomelová; Wolfgang Schmidt; Monika Wulf; Pieter De Frenne; Radim Hédl; František Máliš; Adrienne Ortmann-Ajkai; Tibor Standovár; Guillaume Decocq; Florian Zellweger; Florian Zellweger; Remigiusz Pielech; Imre Berki; David A. Coomes; Lander Baeten; Martin Macek; Kris Verheyen; Ondřej Vild; Jörg Brunet; Thomas A. Nagel; Thomas Dirnböck; Petr Petřík; Tobias Naaf; Kamila Reczyńska; Martin Kopecký; Martin Kopecký; Markus Bernhardt-Römermann;pmid: 32409476
handle: 11104/0315476 , 20.500.12556/RUL-116516 , 1854/LU-8674965
Local factors restrain forest warming Microclimates are key to understanding how organisms and ecosystems respond to macroclimate change, yet they are frequently neglected when studying biotic responses to global change. Zellweger et al. provide a long-term, continental-scale assessment of the effects of micro- and macroclimate on the community composition of European forests (see the Perspective by Lembrechts and Nijs). They show that changes in forest canopy cover are fundamentally important for driving community responses to climate change. Closed canopies buffer against the effects of macroclimatic change through their cooling effect, slowing shifts in community composition, whereas open canopies tend to accelerate community change through local heating effects. Science , this issue p. 772 ; see also p. 711
Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Germany, Czech Republic, Czech Republic, Netherlands, GermanyPublisher:Wiley Funded by:EC | PASTFORWARDEC| PASTFORWARDKris Verheyen; Sybryn L. Maes; Thilo Heinken; Jan den Ouden; Jan Van den Bulcke; Steffi Heinrichs; Monika Wulf; Radim Hédl; Margot Vanhellemont; Guillaume Decocq; Bogdan Jaroszewicz; Jörg Brunet; František Máliš; Werner Härdtle; Michael P. Perring; Michael P. Perring; Martin Kopecký; Martin Kopecký; Guntis Brūmelis; Leen Depauw;doi: 10.1111/gcb.14493
pmid: 30346104
AbstractForecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management forQuercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefitedFraxinus,but negatively affectedQuercus’growth, highlighting species‐specific interactive tree growth responses to combined drivers. ForFagus,a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures onQuercus’growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.
Global Change Biolog... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Repository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2018Data sources: Publikationsserver der Universität Potsdamhttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Global Change Biolog... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Repository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2018Data sources: Publikationsserver der Universität Potsdamhttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Poland, France, France, Norway, Germany, France, BelgiumPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | IntBIO Collaborative Rese..., NSF | IntBIO Collaborative Rese..., UKRI | RootDetect: Remote Detect... +1 projectsNSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales ,NSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales ,UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scalesPablo Moreno-García; Flavia Montaño-Centellas; Yu Liu; Evelin Y. Reyes-Mendez; Rohit Raj Jha; Robert P. Guralnick; Ryan Folk; Donald M. Waller; Kris Verheyen; Lander Baeten; Antoine Becker-Scarpitta; Imre Berki; Markus Bernhardt-Römermann; Jörg Brunet; Hans Van Calster; Markéta Chudomelová; Deborah Closset; Pieter De Frenne; Guillaume Decocq; Frank S. Gilliam; John-Arvid Grytnes; Radim Hédl; Thilo Heinken; Bogdan Jaroszewicz; Martin Kopecký; Jonathan Lenoir; Martin Macek; František Máliš; Tobias Naaf; Anna Orczewska; Petr Petřík; Kamila Reczyńska; Fride Høistad Schei; Wolfgang Schmidt; Alina Stachurska-Swakoń; Tibor Standovár; Krzysztof Świerkosz; Balázs Teleki; Ondřej Vild; Daijiang Li;pmid: 39423266
pmc: PMC11488573
Biological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare. Here, we examine temporal trends in the diversity of nitrogen-fixing plants and their relationships with anthropogenic nitrogen deposition while accounting for changes in temperature and aridity. We used forest-floor vegetation resurveys of temperate forests in Europe and the United States spanning multiple decades. Nitrogen-fixer richness declined as nitrogen deposition increased over time but did not respond to changes in climate. Phylogenetic diversity also declined, as distinct lineages of N-fixers were lost between surveys, but the “winners” and “losers” among nitrogen-fixing lineages varied among study sites, suggesting that losses are context dependent. Anthropogenic nitrogen deposition reduces nitrogen-fixing plant diversity in ways that may strongly affect natural nitrogen fixation.
Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Bergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Bergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Proceedings of the National Academy of Sciences Funded by:AKA | Harnessing global data on..., AKA | Predicting biodiversity c..., AKA | Data and seeds as time ca... +4 projectsAKA| Harnessing global data on Lepidoptera to unravel biodiversity change (SynthBioChange) ,AKA| Predicting biodiversity change in the Anthropocene – species and community-level responses to climate change ,AKA| Data and seeds as time capsules – disentangling the relative roles of phenotypic plasticity and evolutionary adaptation in species realized adjustment to climate change ,AKA| Cumulative and interactive responses of species to climate change ,EC| SURVIVALIST ,AKA| Community assembly and the strength of biodiversity effects on ecosystem functioning ,AKA| Project VEGA: Vegetation dynamics of the ArcticJussi Mäkinen; Emilie E. Ellis; Laura H. Antão; Andréa Davrinche; Anna-Liisa Laine; Marjo Saastamoinen; Irene Conenna; Maria Hällfors; Andrea Santangeli; Elina Kaarlejärvi; Janne Heliölä; Ida-Maria Huikkonen; Mikko Kuussaari; Reima Leinonen; Aleksi Lehikoinen; Juha Pöyry; Anna Suuronen; Maija Salemaa; Tiina Tonteri; Kristiina M. Vuorio; Birger Skjelbred; Marko Järvinen; Stina Drakare; Laurence Carvalho; Erik Welk; Gunnar Seidler; Pieter Vangansbeke; František Máliš; Radim Hédl; Alistair G. Auffret; Jan Plue; Pieter De Frenne; Jesse M. Kalwij; Jarno Vanhatalo; Tomas Roslin;pmid: 40258150
Globally, rising temperatures are increasingly favoring warm-affiliated species. Although changes in community composition are typically measured by the mean temperature affinity of species (the community temperature index, CTI), they may be driven by different processes and accompanied by shifts in the diversity of temperature affinities and breadth of species thermal niches. To resolve the pathways to community warming in Finnish flora and fauna, we examined multidecadal changes in the dominance and diversity of temperature affinities among understory forest plant, freshwater phytoplankton, butterfly, moth, and bird communities. CTI increased for all animal communities, with no change observed for plants or phytoplankton. In addition, the diversity of temperature affinities declined for all groups except butterflies, and this loss was more pronounced for the fastest-warming communities. These changes were driven in animals mainly by a decrease in cold-affiliated species and an increase in warm-affiliated species. In plants and phytoplankton the decline of thermal diversity was driven by declines of both cold- and warm-affiliated species. Plant and moth communities were increasingly dominated by thermal specialist species, and birds by thermal generalists. In general, climate warming outpaced changes in both the mean and diversity of temperature affinities of communities. Our results highlight the complex dynamics underpinning the thermal reorganization of communities across a large spatiotemporal gradient, revealing that extinctions of cold-affiliated species and colonization by warm-affiliated species lag behind changes in ambient temperature, while communities become less thermally diverse. Such changes can have important implications for community structure and ecosystem functioning under accelerating rates of climate change.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United States, United Kingdom, United Kingdom, Spain, Netherlands, Australia, Brazil, France, United Kingdom, United Kingdom, Netherlands, Czech Republic, United Kingdom, United Kingdom, Netherlands, France, United Kingdom, France, Brazil, France, France, France, Netherlands, France, Australia, Netherlands, Portugal, United Kingdom, France, Czech Republic, United States, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | Amazon Integrated Carbon ..., UKRI | BIOmes of Brasil - Resili..., UKRI | Biodiversity and ecosyste... +5 projectsUKRI| Amazon Integrated Carbon Analysis / AMAZONICA ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,EC| AMAZALERT ,EC| T-FORCES ,EC| GEOCARBON ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| Tropical Biomes in TransitionGerardo Flores Llampazo; Aurélie Dourdain; Jean-Louis Doucet; Sean C. Thomas; Luiz E. O. C. Aragão; Luiz E. O. C. Aragão; Sophie Fauset; Alberto Vicentini; Murielle Simo-Droissart; Ervan Rutishauser; Maureen Playfair; Julie Peacock; Hans Beeckman; Erika Berenguer; Erika Berenguer; Jérôme Chave; Serge K. Begne; Serge K. Begne; Mark van Nieuwstadt; Nallaret Davila Cardozo; Ana Andrade; Ricardo Keichi Umetsu; Thaiane Rodrigues de Sousa; Peter S. Ashton; Hannah L. Mossman; John Pipoly; Ben Hur Marimon; Varun Swamy; Carolina V. Castilho; Timothy J. Killeen; Peter van der Hout; Terry L. Erwin; Sabina Cerruto Ribeiro; Oliver L. Phillips; Plínio Barbosa de Camargo; Rafael de Paiva Salomão; Rafael de Paiva Salomão; Axel Dalberg Poulsen; Zorayda Restrepo Correa; Miguel E. Leal; Christopher Baraloto; Aida Cuni Sanchez; Aida Cuni Sanchez; Bonaventure Sonké; Patricia Alvarez Loayza; Connie J. Clark; Henrique E. M. Nascimento; Lily Rodriguez Bayona; David W. Galbraith; Jan Reitsma; Alan Hamilton; James Taplin; Raquel Thomas; Aline Pontes Lopes; Jason Vleminckx; Marcos Silveira; John R. Poulsen; Lan Qie; Jean-François Bastin; Jean-François Bastin; Géraldine Derroire; Ted R. Feldpausch; Matt Bradford; Wannes Hubau; Wannes Hubau; Wannes Hubau; Jagoba Malumbres-Olarte; Jagoba Malumbres-Olarte; Kanehiro Kitayama; Georgia Pickavance; Lip Khoon Kho; Marcelo Brilhante de Medeiros; William Milliken; Nicholas J. Berry; Andrew R. Marshall; Andrew R. Marshall; Pieter A. Zuidema; Eliana Jimenez-Rojas; José Luís Camargo; Karina Melgaço; Keith C. Hamer; Flávia R. C. Costa; Radim Hédl; Fabricio Beggiato Baccaro; Paulo S. Morandi; Kofi Affum-Baffoe; Alejandro Araujo-Murakami; Marie Noël Kamdem Djuikouo; Edmar Almeida de Oliveira; Ima Célia Guimarães Vieira; Lindsay F. Banin; Percy Núñez Vargas; Terese B. Hart; Terese B. Hart; Luzmila Arroyo; John Terborgh; Kathryn J. Jeffery; Miguel Alexiades; Ronald Vernimmen; John T. Woods; Anthony Di Fiore; Geertje M. F. van der Heijden; Martin J. P. Sullivan; Martin J. P. Sullivan; David A. Neill; Greta C. Dargie; Francis Q. Brearley; Jefferson S. Hall; Annette Hladik; Murray Collins; Clément Stahl; Jos Barlow; Jon C. Lovett; Jon C. Lovett; Timothy R. Baker; Michelle Kalamandeen; Michelle Kalamandeen; Michelle Kalamandeen; Fernanda Coelho de Souza; Vincent A. Vos; Andrew Ford; Vianet Mihindou; Gabriela Lopez-Gonzalez; Ophelia Wang; Richarlly da Costa Silva; Amy C. Bennett; Ângelo Gilberto Manzatto; Manuel Gloor; Verginia Wortel; Edward T. A. Mitchard; Thomas E. Lovejoy; Walter A. Palacios; Martin Gilpin; Susan G. Laurance; Hirma Ramírez-Angulo; Pascal Boeckx; Nigel C. A. Pitman; James Singh; Juliana Stropp; Peter J. Van Der Meer; Aurora Levesley; Bruno Herault; Armando Torres-Lezama; Javier Silva Espejo; Vincent Droissart; William F. Laurance; Yahn Carlos Soto Shareva; Adriana Prieto; Stuart J. Davies; Eric Arets; Yadvinder Malhi; Toby R. Marthews; Jorcely Barroso; Luisa Fernanda Duque; Casimiro Mendoza; Juliana Schietti; Simon L. Lewis; Simon L. Lewis; Lourens Poorter; Terry Sunderland; Terry Sunderland; Kamariah Abu Salim; Janvier Lisingo; Lilian Blanc; Walter Huaraca Huasco; Lola da Costa; Simone Matias Reis; Simone Matias Reis; Marcelo F. Simon; Simone Aparecida Vieira; Richard Lowe; Everton Cristo de Almeida; Joey Talbot; Massiel Corrales Medina; Anand Roopsind; Laszlo Nagy; Fernando Elias; Richard B. Primack; Lise Zemagho; David Taylor; Adriano José Nogueira Lima; Joeri A. Zwerts; Beatriz Schwantes Marimon; Foster Brown; Colin R. Maycock; Hermann Taedoumg; Hermann Taedoumg; Victor Chama Moscoso; Elizabeth Kearsley; Michael D. Swaine; Ernest G. Foli; Sarah A. Batterman; William E. Magnusson; Martin Dančák; Roel J. W. Brienen; Damien Bonal; Hans Verbeeck; Agustín Rudas; Colin A. Pendry; Jhon del Aguila Pasquel;pmid: 32439789
Thermal sensitivity of tropical trees A key uncertainty in climate change models is the thermal sensitivity of tropical forests and how this value might influence carbon fluxes. Sullivan et al. measured carbon stocks and fluxes in permanent forest plots distributed globally. This synthesis of plot networks across climatic and biogeographic gradients shows that forest thermal sensitivity is dominated by high daytime temperatures. This extreme condition depresses growth rates and shortens the time that carbon resides in the ecosystem by killing trees under hot, dry conditions. The effect of temperature is worse above 32°C, and a greater magnitude of climate change thus risks greater loss of tropical forest carbon stocks. Nevertheless, forest carbon stocks are likely to remain higher under moderate climate change if they are protected from direct impacts such as clearance, logging, or fires. Science , this issue p. 869
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/112879Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositório da Universidade dos AçoresArticle . 2020Data sources: Repositório da Universidade dos AçoresRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesHAL - Université de Bourgogne (HAL-uB)Other literature type . 2020Data sources: HAL - Université de Bourgogne (HAL-uB)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/112879Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositório da Universidade dos AçoresArticle . 2020Data sources: Repositório da Universidade dos AçoresRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesHAL - Université de Bourgogne (HAL-uB)Other literature type . 2020Data sources: HAL - Université de Bourgogne (HAL-uB)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023 Netherlands, Germany, France, France, France, United Kingdom, BelgiumPublisher:Wiley Funded by:EC | PASTFORWARDEC| PASTFORWARDLanduyt, Dries; Perring, Michael; Blondeel, Haben; de Lombaerde, Emiel; Depauw, Leen; Lorer, Eline; Maes, Sybryn; Baeten, Lander; Bergès, Laurent; Bernhardt-Römermann, Markus; Brūmelis, Guntis; Brunet, Jörg; Chudomelová, Markéta; Czerepko, Janusz; Decocq, Guillaume; den Ouden, Jan; de Frenne, Pieter; Dirnböck, Thomas; Durak, Tomasz; Fichtner, Andreas; Gawryś, Radosław; Härdtle, Werner; Hédl, Radim; Heinrichs, Steffi; Heinken, Thilo; Jaroszewicz, Bogdan; Kirby, Keith; Kopecký, Martin; Máliš, František; Macek, Martin; Mitchell, Fraser; Naaf, Tobias; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Swierkosz, Krzysztof; Smart, Simon; van Calster, Hans; Vild, Ondřej; Waller, Donald; Wulf, Monika; Verheyen, Kris;AbstractPlant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global‐change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
