- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Pedrazzi S.; Santunione G.; Mustone M.; Cannazza G.; Citti C.; Francia E.; Allesina G.;handle: 20.500.14243/535713 , 11380/1247972
Abstract The hemp market is fast growing due to demand for cannabidiol, nutraceutical and hemp fiber products. This work demonstrates the economical advantage of biomass gasification application to indoor hemp production. Gasifiers provide electrical energy, heat and biochar: these are highly valuable products for indoor growers where lights and thermal management are key costs of the business. Energy produced in an autonomous and renewable way increases the sustainability and in the facility. In this paper a small scale gasifier is fueled with certified “A1 plus” wood pellets to test its behavior and its biochar production rate. Biochar is used for hemp growing tests in an indoor hemp production facility. Results show how a 22 kW power plant is sufficient to guarantee almost complete sustainability in a 80 m2 facility. In the best case scenario where energy saving, biochar and thermal energy selling are considered, the gasifier investment has a payback time of about 3.5 years. At the end of the gasifier lifespan, the Net Present Value reaches 249 k€ considering a discount rate of 6%. Consequential results were also obtained from biochar application to pot growing substrates: there was a 7.7% increase in dry flower production and a 33.9% increase in total plant fresh biomass. Cannabinoids profiles resulted not affected by biochar application.
IRIS Cnr arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IRIS Cnr arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Wiley Cinzia Citti; Daniela Braghiroli; Maria Angela Vandelli; Martin G. Schmid; Giuseppe Cannazza; Umberto Maria Battisti; Umberto Maria Battisti; Giuseppe Ciccarella;AbstractIntroductionCannabis sativa L. is a powerful medicinal plant and its use has recently increased for the treatment of several pathologies. Nonetheless, side effects, like dizziness and hallucinations, and long‐term effects concerning memory and cognition, can occur. Most alarming is the lack of a standardised procedure to extract medicinal cannabis. Indeed, each galenical preparation has an unknown chemical composition in terms of cannabinoids and other active principles that depends on the extraction procedure.ObjectiveThis study aims to highlight the main differences in the chemical composition of Bediol® extracts when the extraction is carried out with either ethyl alcohol or olive oil for various times (0, 60, 120 and 180 min for ethyl alcohol, and 0, 60, 90 and 120 min for olive oil).Methodology.Cannabis medicinal extracts (CMEs) were analysed by liquid chromatography coupled to high‐resolution tandem mass spectrometry (LC–MS/MS) using an untargeted metabolomics approach. The data sets were processed by unsupervised multivariate analysis.ResultsOur results suggested that the main difference lies in the ratio of acid to decarboxylated cannabinoids, which dramatically influences the pharmacological activity of CMEs. Minor cannabinoids, alkaloids, and amino acids contributing to this difference are also discussed. The main cannabinoids were quantified in each extract applying a recently validated LC–MS and LC‐UV method.ConclusionsNotwithstanding the use of a standardised starting plant material, great changes are caused by different extraction procedures. The metabolomics approach is a useful tool for the evaluation of the chemical composition of cannabis extracts. Copyright © 2017 John Wiley & Sons, Ltd.
IRIS UNIMORE - Archi... arrow_drop_down Phytochemical AnalysisArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IRIS UNIMORE - Archi... arrow_drop_down Phytochemical AnalysisArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Federica Palazzoli; Cinzia Citti; Manuela Licata; Antonietta Vilella; Letizia Manca; Michele Zoli; Maria Angela Vandelli; Flavio Forni; Giuseppe Cannazza;The investigation of the possible conversion of cannabidiol (CBD) into Δ9-tetrahydrocannabinol (THC) in vivo after oral administration of CBD is reported herein since recent publications suggested a rapid conversion in simulated gastric fluid. To this end, single high dose of CBD (50mg/kg) was administered orally to rats and their blood was collected after 3 and 6h. A highly sensitive and selective LC-MS/MS method was developed and fully validated in compliance with the Scientific Working Group of Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. This method also involved the optimization of cannabinoids and their metabolites extraction in order to remove co-eluting phospholipids and increase the sensitivity of the MS detection. Neither THC nor its metabolites were detected in rat whole blood after 3 or 6h from CBD administration. After oral administration, the amount of CBD dissolved in olive oil was higher than that absorbed from an ethanolic solution. This could be explained by the protection of lipid excipients towards CBD from acidic gastric juice.
IRIS UNIMORE - Archi... arrow_drop_down Journal of Pharmaceutical and Biomedical AnalysisArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IRIS UNIMORE - Archi... arrow_drop_down Journal of Pharmaceutical and Biomedical AnalysisArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Pedrazzi S.; Santunione G.; Mustone M.; Cannazza G.; Citti C.; Francia E.; Allesina G.;handle: 20.500.14243/535713 , 11380/1247972
Abstract The hemp market is fast growing due to demand for cannabidiol, nutraceutical and hemp fiber products. This work demonstrates the economical advantage of biomass gasification application to indoor hemp production. Gasifiers provide electrical energy, heat and biochar: these are highly valuable products for indoor growers where lights and thermal management are key costs of the business. Energy produced in an autonomous and renewable way increases the sustainability and in the facility. In this paper a small scale gasifier is fueled with certified “A1 plus” wood pellets to test its behavior and its biochar production rate. Biochar is used for hemp growing tests in an indoor hemp production facility. Results show how a 22 kW power plant is sufficient to guarantee almost complete sustainability in a 80 m2 facility. In the best case scenario where energy saving, biochar and thermal energy selling are considered, the gasifier investment has a payback time of about 3.5 years. At the end of the gasifier lifespan, the Net Present Value reaches 249 k€ considering a discount rate of 6%. Consequential results were also obtained from biochar application to pot growing substrates: there was a 7.7% increase in dry flower production and a 33.9% increase in total plant fresh biomass. Cannabinoids profiles resulted not affected by biochar application.
IRIS Cnr arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IRIS Cnr arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Wiley Cinzia Citti; Daniela Braghiroli; Maria Angela Vandelli; Martin G. Schmid; Giuseppe Cannazza; Umberto Maria Battisti; Umberto Maria Battisti; Giuseppe Ciccarella;AbstractIntroductionCannabis sativa L. is a powerful medicinal plant and its use has recently increased for the treatment of several pathologies. Nonetheless, side effects, like dizziness and hallucinations, and long‐term effects concerning memory and cognition, can occur. Most alarming is the lack of a standardised procedure to extract medicinal cannabis. Indeed, each galenical preparation has an unknown chemical composition in terms of cannabinoids and other active principles that depends on the extraction procedure.ObjectiveThis study aims to highlight the main differences in the chemical composition of Bediol® extracts when the extraction is carried out with either ethyl alcohol or olive oil for various times (0, 60, 120 and 180 min for ethyl alcohol, and 0, 60, 90 and 120 min for olive oil).Methodology.Cannabis medicinal extracts (CMEs) were analysed by liquid chromatography coupled to high‐resolution tandem mass spectrometry (LC–MS/MS) using an untargeted metabolomics approach. The data sets were processed by unsupervised multivariate analysis.ResultsOur results suggested that the main difference lies in the ratio of acid to decarboxylated cannabinoids, which dramatically influences the pharmacological activity of CMEs. Minor cannabinoids, alkaloids, and amino acids contributing to this difference are also discussed. The main cannabinoids were quantified in each extract applying a recently validated LC–MS and LC‐UV method.ConclusionsNotwithstanding the use of a standardised starting plant material, great changes are caused by different extraction procedures. The metabolomics approach is a useful tool for the evaluation of the chemical composition of cannabis extracts. Copyright © 2017 John Wiley & Sons, Ltd.
IRIS UNIMORE - Archi... arrow_drop_down Phytochemical AnalysisArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IRIS UNIMORE - Archi... arrow_drop_down Phytochemical AnalysisArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Federica Palazzoli; Cinzia Citti; Manuela Licata; Antonietta Vilella; Letizia Manca; Michele Zoli; Maria Angela Vandelli; Flavio Forni; Giuseppe Cannazza;The investigation of the possible conversion of cannabidiol (CBD) into Δ9-tetrahydrocannabinol (THC) in vivo after oral administration of CBD is reported herein since recent publications suggested a rapid conversion in simulated gastric fluid. To this end, single high dose of CBD (50mg/kg) was administered orally to rats and their blood was collected after 3 and 6h. A highly sensitive and selective LC-MS/MS method was developed and fully validated in compliance with the Scientific Working Group of Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. This method also involved the optimization of cannabinoids and their metabolites extraction in order to remove co-eluting phospholipids and increase the sensitivity of the MS detection. Neither THC nor its metabolites were detected in rat whole blood after 3 or 6h from CBD administration. After oral administration, the amount of CBD dissolved in olive oil was higher than that absorbed from an ethanolic solution. This could be explained by the protection of lipid excipients towards CBD from acidic gastric juice.
IRIS UNIMORE - Archi... arrow_drop_down Journal of Pharmaceutical and Biomedical AnalysisArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IRIS UNIMORE - Archi... arrow_drop_down Journal of Pharmaceutical and Biomedical AnalysisArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
