- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 MalaysiaPublisher:MDPI AG Rana Muhammad Adnan; Salim Heddam; Zaher Mundher Yaseen; Shamsuddin Shahid; Ozgur Kisi; Binquan Li;doi: 10.3390/su13010297
The potential or reference evapotranspiration (ET0) is considered as one of the fundamental variables for irrigation management, agricultural planning, and modeling different hydrological pr°Cesses, and therefore, its accurate prediction is highly essential. The study validates the feasibility of new temperature based heuristic models (i.e., group method of data handling neural network (GMDHNN), multivariate adaptive regression spline (MARS), and M5 model tree (M5Tree)) for estimating monthly ET0. The outcomes of the newly developed models are compared with empirical formulations including Hargreaves-Samani (HS), calibrated HS, and Stephens-Stewart (SS) models based on mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency. Monthly maximum and minimum temperatures (Tmax and Tmin) observed at two stations in Turkey are utilized as inputs for model development. In the applications, three data division scenarios are utilized and the effect of periodicity component (PC) on models’ accuracies are also examined. By importing PC into the model inputs, the RMSE accuracy of GMDHNN, MARS, and M5Tree models increased by 1.4%, 8%, and 6% in one station, respectively. The GMDHNN model with periodic input provides a superior performance to the other alternatives in both stations. The recommended model reduced the average error of MARS, M5Tree, HS, CHS, and SS models with respect to RMSE by 3.7–6.4%, 10.7–3.9%, 76–75%, 10–35%, and 0.8–17% in estimating monthly ET0, respectively. The HS model provides the worst accuracy while the calibrated version significantly improves its accuracy. The GMDHNN, MARS, M5Tree, SS, and CHS models are also compared in estimating monthly mean ET0. The GMDHNN generally gave the best accuracy while the CHS provides considerably over/under-estimations. The study indicated that the only one data splitting scenario may mislead the modeler and for better validation of the heuristic methods, more data splitting scenarios should be applied.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/297/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/297/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Australia, Australia, MalaysiaPublisher:Elsevier BV Funded by:EC | DTA3EC| DTA3Mahmoud Eltaweel; Aya H. Heggy; Zaher Mundher Yaseen; Omer A. Alawi; Mayadah W. Falah; Omar A. Hussein; Waqar Ahmed; Raad Z. Homod; Ali H. Abdelrazek;In recent studies, Thermo-Electric Coolers (TEC) have been utilized for dehumidification purposes, which is mainly based on the extraction of moisture from humid atmospheric air. The reviewed literature showed that the rate of water collection from the TEC-based system can be affected by various parameters such as the module’s input voltage, the heat sink orientation, and tilt angles. In this research, the analysis of variance (ANOVA) was used to examine the significance of these factors and their interaction within the system on the TEC-based dehumidification system. Four levels were investigated for both, the Peltier’s input voltage and the rotation angle, and three levels for the tilt angle. This study indicated the significance of the studied factors and their interactions within the dehumidification system along with performing an overall numerical optimization. The experiments were conducted under the same working conditions in an enclosed environment to minimize errors. According to the overall numerical optimization, which was validated experimentally, the optimum system performance was predicted to be obtained at approximately 6.8V Peltier input volt, 65° rotation angle, and 90° tilt angles, with predicted optimum productivities of 0.32278 L/kWh and 13.03 mL/hr. For the same set of parameters, the variation between the experiment and the numerical optimization was less than 4%. The experiments show that when optimizing water collection rates for thermoelectric cooling heat sinks under high humidity conditions, the orientation of the heat sink should be considered.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.08.193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.08.193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Australia, SwedenPublisher:Institute of Electrical and Electronics Engineers (IEEE) Hai Tao; Ahmad Sharafati; Mohammed Achite; Sinan Q. Salih; Ravinesh C. Deo; Nadhir Al‐Ansari; Zaher Mundher Yaseen;L'utilisation durable du rayonnement solaire librement disponible comme source d'énergie renouvelable nécessite des modèles prédictifs précis pour évaluer quantitativement les potentiels énergétiques futurs. Dans cette recherche, une évaluation de la précision du modèle de machine d'apprentissage extrême (ELM) en tant que cadre rapide et efficace pour estimer le rayonnement solaire incident global (G) est entreprise. Des ensembles de données météorologiques quotidiennes adaptés à l'estimation de G appartiennent aux parties nord du bassin de Cheliff, dans le nord-ouest de l'Algérie, et sont utilisés pour construire le modèle d'estimation. Des fonctions de corrélation croisée sont appliquées entre les entrées et la variable cible (c'est-à-dire G) où plusieurs informations climatologiques sont utilisées comme prédicteurs pour l'estimation du niveau de surface G. Les entrées de modèle les plus significatives sont déterminées conformément aux corrélations croisées les plus élevées compte tenu de la covariance des prédicteurs avec l'ensemble de données G. Par la suite, sept modèles ELM avec des architectures neuronales uniques en termes de neurones d'entrée-sortie cachés sont développés avec des combinaisons d'entrée appropriées. Les performances d'estimation du modèle ELM prescrit au cours de la phase de test sont évaluées par rapport à des régressions linéaires multiples (MLR), à des modèles de moyenne mobile intégrée autorégressive (ARIMA) et à plusieurs études documentaires bien établies. Cela se fait conformément à plusieurs mesures de score statistiques. En termes quantitatifs, l'erreur quadratique moyenne (RMSE) et l'erreur absolue moyenne (MAE) sont considérablement plus faibles pour le modèle ELM optimal avec RMSE et MAE = 3,28 et 2,32 Wm -2 par rapport à 4,24 et 3,24 Wm -2 (MLR) et 8,33 et 5,37 Wm -2 (ARIMA). La utilización sostenible de la radiación solar disponible gratuitamente como fuente de energía renovable requiere modelos predictivos precisos para evaluar cuantitativamente los potenciales energéticos futuros. En esta investigación, se realiza una evaluación de la precisión del modelo de máquina de aprendizaje extremo (ELM) como un marco rápido y eficiente para estimar la radiación solar incidente global (G). Los conjuntos de datos meteorológicos diarios adecuados para la estimación de G pertenecen a las partes septentrionales de la cuenca de Cheliff en el noroeste de Argelia, se utilizan para construir el modelo de estimación. Las funciones de correlación cruzada se aplican entre las entradas y la variable objetivo (es decir, G), donde se utilizan varias informaciones climatológicas como predictores para la estimación del nivel de superficie G. Las entradas del modelo más significativas se determinan de acuerdo con las correlaciones cruzadas más altas considerando la covarianza de los predictores con el conjunto de datos G. Posteriormente, se desarrollan siete modelos ELM con arquitecturas neuronales únicas en términos de sus neuronas de entrada-salida oculta con combinaciones de entrada apropiadas. El rendimiento de estimación del modelo ELM prescrito durante la fase de prueba se evalúa frente a regresiones lineales múltiples (MLR), modelos de media móvil integrada autorregresiva (ARIMA) y varios estudios de literatura bien establecidos. Esto se hace de acuerdo con varias métricas de puntuación estadística. En términos cuantitativos, el error cuadrático medio (RMSE) y el error absoluto medio (MAE) son dramáticamente más bajos para el modelo ELM óptimo con RMSE y MAE = 3.28 y 2.32 Wm -2 en comparación con 4.24 y 3.24 Wm -2 (MLR) y 8.33 y 5.37 Wm -2 (ARIMA). Sustainable utilization of the freely available solar radiation as renewable energy source requires accurate predictive models to quantitatively evaluate future energy potentials. In this research, an evaluation of the preciseness of extreme learning machine (ELM) model as a fast and efficient framework for estimating global incident solar radiation (G) is undertaken. Daily meteorological datasets suitable for G estimation belongs to the northern parts of the Cheliff Basin in Northwest Algeria, is used to construct the estimation model. Cross-correlation functions are applied between the inputs and the target variable (i.e., G) where several climatological information's are used as the predictors for surface level G estimation. The most significant model inputs are determined in accordance with highest cross-correlations considering the covariance of the predictors with the G dataset. Subsequently, seven ELM models with unique neuronal architectures in terms of their input-hidden-output neurons are developed with appropriate input combinations. The prescribed ELM model's estimation performance over the testing phase is evaluated against multiple linear regressions (MLR), autoregressive integrated moving average (ARIMA) models and several well-established literature studies. This is done in accordance with several statistical score metrics. In quantitative terms, the root mean square error (RMSE) and mean absolute error (MAE) are dramatically lower for the optimal ELM model with RMSE and MAE = 3.28 and 2.32 Wm -2 compared to 4.24 and 3.24 Wm -2 (MLR) and 8.33 and 5.37 Wm -2 (ARIMA). يتطلب الاستخدام المستدام للإشعاع الشمسي المتاح مجانًا كمصدر للطاقة المتجددة نماذج تنبؤية دقيقة للتقييم الكمي لإمكانات الطاقة المستقبلية. في هذا البحث، يتم إجراء تقييم لدقة نموذج آلة التعلم المتطرفة (ELM) كإطار سريع وفعال لتقدير الإشعاع الشمسي الساقط العالمي (G). مجموعات بيانات الأرصاد الجوية اليومية المناسبة لتقدير G تنتمي إلى الأجزاء الشمالية من حوض Cheliff في شمال غرب الجزائر، ويستخدم لبناء نموذج التقدير. يتم تطبيق وظائف الارتباط المتبادل بين المدخلات والمتغير المستهدف (أي G) حيث يتم استخدام العديد من المعلومات المناخية كمؤشرات لتقدير المستوى السطحي G. يتم تحديد مدخلات النموذج الأكثر أهمية وفقًا لأعلى الارتباطات المتبادلة مع الأخذ في الاعتبار التباين المشترك للمتنبئين مع مجموعة البيانات G. في وقت لاحق، يتم تطوير سبعة نماذج ELM مع بنى عصبية فريدة من نوعها من حيث الخلايا العصبية المخفية للمدخلات والمخرجات مع تركيبات المدخلات المناسبة. يتم تقييم أداء تقدير نموذج علم المحدد خلال مرحلة الاختبار مقابل الانحدارات الخطية المتعددة (MLR)، ونماذج المتوسط المتحرك المتكامل الانحداري الذاتي (ARIMA) والعديد من الدراسات الأدبية الراسخة. ويتم ذلك وفقًا للعديد من مقاييس الدرجات الإحصائية. من الناحية الكمية، فإن متوسط خطأ الجذر التربيعي (RMSE) ومتوسط الخطأ المطلق (MAE) أقل بشكل كبير لنموذج ELM الأمثل مع RMSE و MAE = 3.28 و 2.32 Wm -2 مقارنة بـ 4.24 و 3.24 Wm -2 (MLR) و 8.33 و 5.37 Wm -2 (ARIMA).
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationer Luleå Tekniska UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.2965303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationer Luleå Tekniska UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.2965303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Ali O. Al-Sulttani; Amimul Ahsan; Basim A. R. Al-Bakri; Mahir Mahmod Hason; Nik Norsyahariati Nik Daud; S. Idrus; Omer A. Alawi; Elżbieta Macioszek; Zaher Mundher Yaseen;doi: 10.3390/en15217881
handle: 1959.3/469713
In low-latitude areas less than 10° in latitude angle, the solar radiation that goes into the solar still increases as the cover slope approaches the latitude angle. However, the amount of water that is condensed and then falls toward the solar-still basin is also increased in this case. Consequently, the solar yield still is significantly decreased, and the accuracy of the prediction method is affected. This reduction in the yield and the accuracy of the prediction method is inversely proportional to the time in which the condensed water stays on the inner side of the condensing cover without collection because more drops will fall down into the basin of the solar-still. Different numbers of scraper motions per hour (NSM), that is, 1, 2, 3, 4, 5, 6, and 7, are implemented to increase the hourly yield of solar still (HYSS) of the double-slope solar still hybrid with rubber scrapers (DSSSHS) in areas at low latitudes and develop an accurate model for forecasting the HYSS. The proposed model is developed by determining the best values of the constant factors that are associated with NSM, and the optimal values of exponent (n) and the unknown constant (C) for the Nusselt number expression (Nu). These variables are used in formulating the models for estimating HYSS. The particle swarm optimization (PSO) algorithm is used to solve the optimization problem, thereby determining the optimal yields. Water that condensed and accumulated inside the condensing glass cover of the DSSSHS is collected by increasing NSM. This process increases in the specific productivity of DSSSHS and the accuracy of the HYSS prediction model. Results show that the proposed model can consistently and accurately estimate HYSS. Based on the relative root mean square error (RRMSE), the proposed model PSO–HYSS attained a minimum value (2.81), whereas the validation models attained Dunkle’s (78.68) and Kumar and Tiwari’s (141.37).
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7881/pdfData sources: Multidisciplinary Digital Publishing InstituteSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7881/pdfData sources: Multidisciplinary Digital Publishing InstituteSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Samuel da Costa Alves Basílio; Camila Martins Saporetti; Zaher Mundher Yaseen; Leonardo Goliatt;Environmental Develo... arrow_drop_down Environmental DevelopmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envdev.2022.100766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Environmental Develo... arrow_drop_down Environmental DevelopmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envdev.2022.100766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 Sweden, SpainPublisher:MDPI AG Neeraj Bokde; Andrés Feijóo; Nadhir Al-Ansari; Siyu Tao; Zaher Mundher Yaseen;doi: 10.3390/en13071666
handle: 11093/3374
In this research, two hybrid intelligent models are proposed for prediction accuracy enhancement for wind speed and power modeling. The established models are based on the hybridisation of Ensemble Empirical Mode Decomposition (EEMD) with a Pattern Sequence-based Forecasting (PSF) model and the integration of EEMD-PSF with Autoregressive Integrated Moving Average (ARIMA) model. In both models (i.e., EEMD-PSF and EEMD-PSF-ARIMA), the EEMD method is used to decompose the time-series into a set of sub-series and the forecasting of each sub-series is initiated by respective prediction models. In the EEMD-PSF model, all sub-series are predicted using the PSF model, whereas in the EEMD-PSF-ARIMA model, the sub-series with high and low frequencies are predicted using PSF and ARIMA, respectively. The selection of the PSF or ARIMA models for the prediction process is dependent on the time-series characteristics of the decomposed series obtained with the EEMD method. The proposed models are examined for predicting wind speed and wind power time-series at Maharashtra state, India. In case of short-term wind power time-series prediction, both proposed methods have shown at least 18.03 and 14.78 percentage improvement in forecast accuracy in terms of root mean square error (RMSE) as compared to contemporary methods considered in this study for direct and iterated strategies, respectively. Similarly, for wind speed data, those improvement observed to be 20.00 and 23.80 percentages, respectively. These attained prediction results evidenced the potential of the proposed models for the wind speed and wind power forecasting. The current proposed methodology is transformed into R package ‘decomposedPSF’ which is discussed in the Appendix.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1666/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer Luleå Tekniska UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1666/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer Luleå Tekniska UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:EC | DTA3EC| DTA3Raad Z. Homod; Zaher Mundher Yaseen; Ahmed Kadhim Hussein; Amjad Almusaed; Omer A. Alawi; Mayadah W. Falah; Ali H. Abdelrazek; Waqar Ahmed; Mahmoud Eltaweel;Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Building EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.105689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Building EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.105689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Turkey, Hong Kong, China (People's Republic of), Sweden, China (People's Republic of), Hong KongPublisher:Informa UK Limited Ufuk Beyaztas; Sinan Q. Salih; Kwok-Wing Chau; Nadhir Al-Ansari; Zaher Mundher Yaseen;handle: 11772/12599 , 11772/10142 , 10397/81635
To support initiatives for global emissions targets set by the United Nations Framework Convention on climate change, sustainable extraction of usable power from freely-available global solar radiation as a renewable energy resource requires accurate estimation and forecasting models for solar energy. Understanding the Global Solar Radiation (GSR) pattern is highly significant for determining the solar energy in any particular environment. The current study develops a new mathematical model based on the concept of Functional Data Analysis (FDA) to predict daily-scale GSR in the Burkina Faso region of West Africa. Eight meteorological stations are adopted to examine the proposed predictive model. The modeling procedure of the regression FDA is performed using two different internal parameter tuning approaches including Generalized Cross-Validation (GCV) and Generalized Bayesian Information Criteria (GBIC). The modeling procedure is established based on a cross-station paradigm wherein the climatological variables of six stations are used to predict GSR at two targeted meteorological stations. The performance of the proposed method is compared with the panel data regression model. Based on various statistical metrics, the applied FDA model attained convincing absolute error measures and best goodness of fit compared with the observed measured GSR. In quantitative evaluation, the predictions of GSR at the Ouahigouya and Dori stations attained correlation coefficients of R = 0.84 and 0.90 using the FDA model, respectively. All in all, the FDA model introduced a reliable alternative modeling strategy for global solar radiation prediction over the Burkina Faso region with accurate line fit predictions.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10397/81635Data sources: Bielefeld Academic Search Engine (BASE)Engineering Applications of Computational Fluid MechanicsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEngineering Applications of Computational Fluid MechanicsArticleLicense: CC BYData sources: UnpayWallEngineering Applications of Computational Fluid MechanicsConference objectData sources: OpenAPC Global InitiativeEngineering Applications of Computational Fluid MechanicsJournalData sources: Microsoft Academic GraphBartın Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Bartın Üniversitesi Akademik Arşiv SistemiBartın Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Bartın Üniversitesi Akademik Arşiv SistemiPublikationer Luleå Tekniska UniversitetArticle . 2019 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19942060.2019.1676314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10397/81635Data sources: Bielefeld Academic Search Engine (BASE)Engineering Applications of Computational Fluid MechanicsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEngineering Applications of Computational Fluid MechanicsArticleLicense: CC BYData sources: UnpayWallEngineering Applications of Computational Fluid MechanicsConference objectData sources: OpenAPC Global InitiativeEngineering Applications of Computational Fluid MechanicsJournalData sources: Microsoft Academic GraphBartın Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Bartın Üniversitesi Akademik Arşiv SistemiBartın Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Bartın Üniversitesi Akademik Arşiv SistemiPublikationer Luleå Tekniska UniversitetArticle . 2019 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19942060.2019.1676314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Springer Science and Business Media LLC Nur Aimi Jani; Larbi Haddad; Ahmed Saud Abdulhameed; Ali H. Jawad; Zeid A. ALOthman; Zaher Mundher Yaseen;In this study, a renewable and effective bio-adsorbent was derived from Malaysian durian seeds (DSs) to act as a promising biosorbent for phytoremediation application towards removal of a hazardous cationic dye (crystal violet, CV) from aqueous environments. The physiochemical characteristics of DS were investigated by several analytical methods such as FTIR, TGA-DTG, BET, pHpzc, and SEM-EDX. Subsequently, a statistical optimization for CV removal by DS was carried out via Box-Behnken design (BBD) and numerical desirability function. In this regard, four operational factors that affect CV adsorption, i.e., DS dosage (0.02–0.1 g), initial pH (4–10), temperature (25–50 °C), and adsorption time (5–25 min) were optimized by BBD and numerical desirability function. Hence, the highest CV removal (93.91%) was recorded under the optimal conditions found through desirability function as follows: DS dosage of 0.081 g, solution pH = 9.9, working temperature = 34.6 °C, and contact time = 24.9 min. Furthermore, ANOVA test indicated the significant parametric interactions towards CV removal (%) can be observed between AB (DS dose vs. initial pH), AD (DS dose vs. time), and BC (initial pH vs. temperature) interactions. The adsorption kinetic process was well described by a pseudo-second-order model. Subsequently, the adsorption equilibrium isotherm was well presented by Freundlich and Temkin isotherm models with maximum adsorption capacity of 158 mg/g. Thus, the thermodynamic functions revealed that the adsorption process was spontaneous and endothermic in nature. The adsorption mechanism of CV on the DS surface can be ascribed to the electrostatic forces, n-π stacking, and H-bonding interactions. Thus, the output of the research work indicates the potential applicability of DS as a renewable and effective biosorbent for the removal of CV from aqueous environments.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-022-03319-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-022-03319-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Other literature type 2023Publisher:MDPI AG Fahad Mushtaq; Habibur Rehman; Umair Ali; Muhammad Salman Babar; Mohammad Saleh Al-Suwaiyan; Zaher Mundher Yaseen;Groundwater is an essential water resource in the current era, and studying its sustainability and management is highly necessary nowadays. In the current area of research interest, the reduced mean annual Sutlej River flow, the increase in the population/built-up areas, and enhanced groundwater abstractions have reduced groundwater recharge. To address this issue, groundwater recharge modeling through ponding of the Sutlej River was carried out using a modular three-dimensional finite-difference groundwater flow model (MODFLOW) in a 400 km2 area adjacent to Sutlej River. The mean historical water table decline rate in the study area is 139 mm/year. The population and urbanization rates have increased by 2.23 and 1.62% per year in the last 8 years. Domestic and agricultural groundwater abstraction are increasing by 1.15–1.30% per year. Abstraction from wells and recharge from the river, the Fordwah Canal, and rainfall were modeled in MODFLOW, which was calibrated and validated using observed data for 3 years. The model results show that the study area’s average water table depletion rate will be 201 mm/year for 20 years. The model was re-run for this scenario, providing river ponding levels of 148–151 m. The model results depict that the water table adjacent to the river will rise by 3–5 m, and average water table depletion is expected to be reduced to 151 to 95 mm/year. The model results reveal that for ponding levels of 148–151 m, storage capacity varies from 26.5–153 Mm3, contributing a recharge of 7.91–12.50 million gallons per day (MGD), and benefiting a 27,650–32,100-acre area; this means that for areas benefitted by dam recharge, the groundwater abstraction rate will remain sustainable for more than 50 years, and for the overall study area, it will remain sustainable for 7–12.3 years. Considering the current water balance, a recharging mechanism, i.e., ponding in the river through the dam, is recommended for sustainable groundwater abstraction.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/2/1047/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.37247/pasus...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15021047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/2/1047/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.37247/pasus...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15021047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 MalaysiaPublisher:MDPI AG Rana Muhammad Adnan; Salim Heddam; Zaher Mundher Yaseen; Shamsuddin Shahid; Ozgur Kisi; Binquan Li;doi: 10.3390/su13010297
The potential or reference evapotranspiration (ET0) is considered as one of the fundamental variables for irrigation management, agricultural planning, and modeling different hydrological pr°Cesses, and therefore, its accurate prediction is highly essential. The study validates the feasibility of new temperature based heuristic models (i.e., group method of data handling neural network (GMDHNN), multivariate adaptive regression spline (MARS), and M5 model tree (M5Tree)) for estimating monthly ET0. The outcomes of the newly developed models are compared with empirical formulations including Hargreaves-Samani (HS), calibrated HS, and Stephens-Stewart (SS) models based on mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency. Monthly maximum and minimum temperatures (Tmax and Tmin) observed at two stations in Turkey are utilized as inputs for model development. In the applications, three data division scenarios are utilized and the effect of periodicity component (PC) on models’ accuracies are also examined. By importing PC into the model inputs, the RMSE accuracy of GMDHNN, MARS, and M5Tree models increased by 1.4%, 8%, and 6% in one station, respectively. The GMDHNN model with periodic input provides a superior performance to the other alternatives in both stations. The recommended model reduced the average error of MARS, M5Tree, HS, CHS, and SS models with respect to RMSE by 3.7–6.4%, 10.7–3.9%, 76–75%, 10–35%, and 0.8–17% in estimating monthly ET0, respectively. The HS model provides the worst accuracy while the calibrated version significantly improves its accuracy. The GMDHNN, MARS, M5Tree, SS, and CHS models are also compared in estimating monthly mean ET0. The GMDHNN generally gave the best accuracy while the CHS provides considerably over/under-estimations. The study indicated that the only one data splitting scenario may mislead the modeler and for better validation of the heuristic methods, more data splitting scenarios should be applied.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/297/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/297/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Australia, Australia, MalaysiaPublisher:Elsevier BV Funded by:EC | DTA3EC| DTA3Mahmoud Eltaweel; Aya H. Heggy; Zaher Mundher Yaseen; Omer A. Alawi; Mayadah W. Falah; Omar A. Hussein; Waqar Ahmed; Raad Z. Homod; Ali H. Abdelrazek;In recent studies, Thermo-Electric Coolers (TEC) have been utilized for dehumidification purposes, which is mainly based on the extraction of moisture from humid atmospheric air. The reviewed literature showed that the rate of water collection from the TEC-based system can be affected by various parameters such as the module’s input voltage, the heat sink orientation, and tilt angles. In this research, the analysis of variance (ANOVA) was used to examine the significance of these factors and their interaction within the system on the TEC-based dehumidification system. Four levels were investigated for both, the Peltier’s input voltage and the rotation angle, and three levels for the tilt angle. This study indicated the significance of the studied factors and their interactions within the dehumidification system along with performing an overall numerical optimization. The experiments were conducted under the same working conditions in an enclosed environment to minimize errors. According to the overall numerical optimization, which was validated experimentally, the optimum system performance was predicted to be obtained at approximately 6.8V Peltier input volt, 65° rotation angle, and 90° tilt angles, with predicted optimum productivities of 0.32278 L/kWh and 13.03 mL/hr. For the same set of parameters, the variation between the experiment and the numerical optimization was less than 4%. The experiments show that when optimizing water collection rates for thermoelectric cooling heat sinks under high humidity conditions, the orientation of the heat sink should be considered.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.08.193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.08.193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Australia, SwedenPublisher:Institute of Electrical and Electronics Engineers (IEEE) Hai Tao; Ahmad Sharafati; Mohammed Achite; Sinan Q. Salih; Ravinesh C. Deo; Nadhir Al‐Ansari; Zaher Mundher Yaseen;L'utilisation durable du rayonnement solaire librement disponible comme source d'énergie renouvelable nécessite des modèles prédictifs précis pour évaluer quantitativement les potentiels énergétiques futurs. Dans cette recherche, une évaluation de la précision du modèle de machine d'apprentissage extrême (ELM) en tant que cadre rapide et efficace pour estimer le rayonnement solaire incident global (G) est entreprise. Des ensembles de données météorologiques quotidiennes adaptés à l'estimation de G appartiennent aux parties nord du bassin de Cheliff, dans le nord-ouest de l'Algérie, et sont utilisés pour construire le modèle d'estimation. Des fonctions de corrélation croisée sont appliquées entre les entrées et la variable cible (c'est-à-dire G) où plusieurs informations climatologiques sont utilisées comme prédicteurs pour l'estimation du niveau de surface G. Les entrées de modèle les plus significatives sont déterminées conformément aux corrélations croisées les plus élevées compte tenu de la covariance des prédicteurs avec l'ensemble de données G. Par la suite, sept modèles ELM avec des architectures neuronales uniques en termes de neurones d'entrée-sortie cachés sont développés avec des combinaisons d'entrée appropriées. Les performances d'estimation du modèle ELM prescrit au cours de la phase de test sont évaluées par rapport à des régressions linéaires multiples (MLR), à des modèles de moyenne mobile intégrée autorégressive (ARIMA) et à plusieurs études documentaires bien établies. Cela se fait conformément à plusieurs mesures de score statistiques. En termes quantitatifs, l'erreur quadratique moyenne (RMSE) et l'erreur absolue moyenne (MAE) sont considérablement plus faibles pour le modèle ELM optimal avec RMSE et MAE = 3,28 et 2,32 Wm -2 par rapport à 4,24 et 3,24 Wm -2 (MLR) et 8,33 et 5,37 Wm -2 (ARIMA). La utilización sostenible de la radiación solar disponible gratuitamente como fuente de energía renovable requiere modelos predictivos precisos para evaluar cuantitativamente los potenciales energéticos futuros. En esta investigación, se realiza una evaluación de la precisión del modelo de máquina de aprendizaje extremo (ELM) como un marco rápido y eficiente para estimar la radiación solar incidente global (G). Los conjuntos de datos meteorológicos diarios adecuados para la estimación de G pertenecen a las partes septentrionales de la cuenca de Cheliff en el noroeste de Argelia, se utilizan para construir el modelo de estimación. Las funciones de correlación cruzada se aplican entre las entradas y la variable objetivo (es decir, G), donde se utilizan varias informaciones climatológicas como predictores para la estimación del nivel de superficie G. Las entradas del modelo más significativas se determinan de acuerdo con las correlaciones cruzadas más altas considerando la covarianza de los predictores con el conjunto de datos G. Posteriormente, se desarrollan siete modelos ELM con arquitecturas neuronales únicas en términos de sus neuronas de entrada-salida oculta con combinaciones de entrada apropiadas. El rendimiento de estimación del modelo ELM prescrito durante la fase de prueba se evalúa frente a regresiones lineales múltiples (MLR), modelos de media móvil integrada autorregresiva (ARIMA) y varios estudios de literatura bien establecidos. Esto se hace de acuerdo con varias métricas de puntuación estadística. En términos cuantitativos, el error cuadrático medio (RMSE) y el error absoluto medio (MAE) son dramáticamente más bajos para el modelo ELM óptimo con RMSE y MAE = 3.28 y 2.32 Wm -2 en comparación con 4.24 y 3.24 Wm -2 (MLR) y 8.33 y 5.37 Wm -2 (ARIMA). Sustainable utilization of the freely available solar radiation as renewable energy source requires accurate predictive models to quantitatively evaluate future energy potentials. In this research, an evaluation of the preciseness of extreme learning machine (ELM) model as a fast and efficient framework for estimating global incident solar radiation (G) is undertaken. Daily meteorological datasets suitable for G estimation belongs to the northern parts of the Cheliff Basin in Northwest Algeria, is used to construct the estimation model. Cross-correlation functions are applied between the inputs and the target variable (i.e., G) where several climatological information's are used as the predictors for surface level G estimation. The most significant model inputs are determined in accordance with highest cross-correlations considering the covariance of the predictors with the G dataset. Subsequently, seven ELM models with unique neuronal architectures in terms of their input-hidden-output neurons are developed with appropriate input combinations. The prescribed ELM model's estimation performance over the testing phase is evaluated against multiple linear regressions (MLR), autoregressive integrated moving average (ARIMA) models and several well-established literature studies. This is done in accordance with several statistical score metrics. In quantitative terms, the root mean square error (RMSE) and mean absolute error (MAE) are dramatically lower for the optimal ELM model with RMSE and MAE = 3.28 and 2.32 Wm -2 compared to 4.24 and 3.24 Wm -2 (MLR) and 8.33 and 5.37 Wm -2 (ARIMA). يتطلب الاستخدام المستدام للإشعاع الشمسي المتاح مجانًا كمصدر للطاقة المتجددة نماذج تنبؤية دقيقة للتقييم الكمي لإمكانات الطاقة المستقبلية. في هذا البحث، يتم إجراء تقييم لدقة نموذج آلة التعلم المتطرفة (ELM) كإطار سريع وفعال لتقدير الإشعاع الشمسي الساقط العالمي (G). مجموعات بيانات الأرصاد الجوية اليومية المناسبة لتقدير G تنتمي إلى الأجزاء الشمالية من حوض Cheliff في شمال غرب الجزائر، ويستخدم لبناء نموذج التقدير. يتم تطبيق وظائف الارتباط المتبادل بين المدخلات والمتغير المستهدف (أي G) حيث يتم استخدام العديد من المعلومات المناخية كمؤشرات لتقدير المستوى السطحي G. يتم تحديد مدخلات النموذج الأكثر أهمية وفقًا لأعلى الارتباطات المتبادلة مع الأخذ في الاعتبار التباين المشترك للمتنبئين مع مجموعة البيانات G. في وقت لاحق، يتم تطوير سبعة نماذج ELM مع بنى عصبية فريدة من نوعها من حيث الخلايا العصبية المخفية للمدخلات والمخرجات مع تركيبات المدخلات المناسبة. يتم تقييم أداء تقدير نموذج علم المحدد خلال مرحلة الاختبار مقابل الانحدارات الخطية المتعددة (MLR)، ونماذج المتوسط المتحرك المتكامل الانحداري الذاتي (ARIMA) والعديد من الدراسات الأدبية الراسخة. ويتم ذلك وفقًا للعديد من مقاييس الدرجات الإحصائية. من الناحية الكمية، فإن متوسط خطأ الجذر التربيعي (RMSE) ومتوسط الخطأ المطلق (MAE) أقل بشكل كبير لنموذج ELM الأمثل مع RMSE و MAE = 3.28 و 2.32 Wm -2 مقارنة بـ 4.24 و 3.24 Wm -2 (MLR) و 8.33 و 5.37 Wm -2 (ARIMA).
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationer Luleå Tekniska UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.2965303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationer Luleå Tekniska UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.2965303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Ali O. Al-Sulttani; Amimul Ahsan; Basim A. R. Al-Bakri; Mahir Mahmod Hason; Nik Norsyahariati Nik Daud; S. Idrus; Omer A. Alawi; Elżbieta Macioszek; Zaher Mundher Yaseen;doi: 10.3390/en15217881
handle: 1959.3/469713
In low-latitude areas less than 10° in latitude angle, the solar radiation that goes into the solar still increases as the cover slope approaches the latitude angle. However, the amount of water that is condensed and then falls toward the solar-still basin is also increased in this case. Consequently, the solar yield still is significantly decreased, and the accuracy of the prediction method is affected. This reduction in the yield and the accuracy of the prediction method is inversely proportional to the time in which the condensed water stays on the inner side of the condensing cover without collection because more drops will fall down into the basin of the solar-still. Different numbers of scraper motions per hour (NSM), that is, 1, 2, 3, 4, 5, 6, and 7, are implemented to increase the hourly yield of solar still (HYSS) of the double-slope solar still hybrid with rubber scrapers (DSSSHS) in areas at low latitudes and develop an accurate model for forecasting the HYSS. The proposed model is developed by determining the best values of the constant factors that are associated with NSM, and the optimal values of exponent (n) and the unknown constant (C) for the Nusselt number expression (Nu). These variables are used in formulating the models for estimating HYSS. The particle swarm optimization (PSO) algorithm is used to solve the optimization problem, thereby determining the optimal yields. Water that condensed and accumulated inside the condensing glass cover of the DSSSHS is collected by increasing NSM. This process increases in the specific productivity of DSSSHS and the accuracy of the HYSS prediction model. Results show that the proposed model can consistently and accurately estimate HYSS. Based on the relative root mean square error (RRMSE), the proposed model PSO–HYSS attained a minimum value (2.81), whereas the validation models attained Dunkle’s (78.68) and Kumar and Tiwari’s (141.37).
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7881/pdfData sources: Multidisciplinary Digital Publishing InstituteSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7881/pdfData sources: Multidisciplinary Digital Publishing InstituteSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Samuel da Costa Alves Basílio; Camila Martins Saporetti; Zaher Mundher Yaseen; Leonardo Goliatt;Environmental Develo... arrow_drop_down Environmental DevelopmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envdev.2022.100766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Environmental Develo... arrow_drop_down Environmental DevelopmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envdev.2022.100766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 Sweden, SpainPublisher:MDPI AG Neeraj Bokde; Andrés Feijóo; Nadhir Al-Ansari; Siyu Tao; Zaher Mundher Yaseen;doi: 10.3390/en13071666
handle: 11093/3374
In this research, two hybrid intelligent models are proposed for prediction accuracy enhancement for wind speed and power modeling. The established models are based on the hybridisation of Ensemble Empirical Mode Decomposition (EEMD) with a Pattern Sequence-based Forecasting (PSF) model and the integration of EEMD-PSF with Autoregressive Integrated Moving Average (ARIMA) model. In both models (i.e., EEMD-PSF and EEMD-PSF-ARIMA), the EEMD method is used to decompose the time-series into a set of sub-series and the forecasting of each sub-series is initiated by respective prediction models. In the EEMD-PSF model, all sub-series are predicted using the PSF model, whereas in the EEMD-PSF-ARIMA model, the sub-series with high and low frequencies are predicted using PSF and ARIMA, respectively. The selection of the PSF or ARIMA models for the prediction process is dependent on the time-series characteristics of the decomposed series obtained with the EEMD method. The proposed models are examined for predicting wind speed and wind power time-series at Maharashtra state, India. In case of short-term wind power time-series prediction, both proposed methods have shown at least 18.03 and 14.78 percentage improvement in forecast accuracy in terms of root mean square error (RMSE) as compared to contemporary methods considered in this study for direct and iterated strategies, respectively. Similarly, for wind speed data, those improvement observed to be 20.00 and 23.80 percentages, respectively. These attained prediction results evidenced the potential of the proposed models for the wind speed and wind power forecasting. The current proposed methodology is transformed into R package ‘decomposedPSF’ which is discussed in the Appendix.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1666/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer Luleå Tekniska UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1666/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer Luleå Tekniska UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:EC | DTA3EC| DTA3Raad Z. Homod; Zaher Mundher Yaseen; Ahmed Kadhim Hussein; Amjad Almusaed; Omer A. Alawi; Mayadah W. Falah; Ali H. Abdelrazek; Waqar Ahmed; Mahmoud Eltaweel;Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Building EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.105689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Building EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.105689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Turkey, Hong Kong, China (People's Republic of), Sweden, China (People's Republic of), Hong KongPublisher:Informa UK Limited Ufuk Beyaztas; Sinan Q. Salih; Kwok-Wing Chau; Nadhir Al-Ansari; Zaher Mundher Yaseen;handle: 11772/12599 , 11772/10142 , 10397/81635
To support initiatives for global emissions targets set by the United Nations Framework Convention on climate change, sustainable extraction of usable power from freely-available global solar radiation as a renewable energy resource requires accurate estimation and forecasting models for solar energy. Understanding the Global Solar Radiation (GSR) pattern is highly significant for determining the solar energy in any particular environment. The current study develops a new mathematical model based on the concept of Functional Data Analysis (FDA) to predict daily-scale GSR in the Burkina Faso region of West Africa. Eight meteorological stations are adopted to examine the proposed predictive model. The modeling procedure of the regression FDA is performed using two different internal parameter tuning approaches including Generalized Cross-Validation (GCV) and Generalized Bayesian Information Criteria (GBIC). The modeling procedure is established based on a cross-station paradigm wherein the climatological variables of six stations are used to predict GSR at two targeted meteorological stations. The performance of the proposed method is compared with the panel data regression model. Based on various statistical metrics, the applied FDA model attained convincing absolute error measures and best goodness of fit compared with the observed measured GSR. In quantitative evaluation, the predictions of GSR at the Ouahigouya and Dori stations attained correlation coefficients of R = 0.84 and 0.90 using the FDA model, respectively. All in all, the FDA model introduced a reliable alternative modeling strategy for global solar radiation prediction over the Burkina Faso region with accurate line fit predictions.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10397/81635Data sources: Bielefeld Academic Search Engine (BASE)Engineering Applications of Computational Fluid MechanicsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEngineering Applications of Computational Fluid MechanicsArticleLicense: CC BYData sources: UnpayWallEngineering Applications of Computational Fluid MechanicsConference objectData sources: OpenAPC Global InitiativeEngineering Applications of Computational Fluid MechanicsJournalData sources: Microsoft Academic GraphBartın Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Bartın Üniversitesi Akademik Arşiv SistemiBartın Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Bartın Üniversitesi Akademik Arşiv SistemiPublikationer Luleå Tekniska UniversitetArticle . 2019 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19942060.2019.1676314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10397/81635Data sources: Bielefeld Academic Search Engine (BASE)Engineering Applications of Computational Fluid MechanicsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEngineering Applications of Computational Fluid MechanicsArticleLicense: CC BYData sources: UnpayWallEngineering Applications of Computational Fluid MechanicsConference objectData sources: OpenAPC Global InitiativeEngineering Applications of Computational Fluid MechanicsJournalData sources: Microsoft Academic GraphBartın Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Bartın Üniversitesi Akademik Arşiv SistemiBartın Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Bartın Üniversitesi Akademik Arşiv SistemiPublikationer Luleå Tekniska UniversitetArticle . 2019 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19942060.2019.1676314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Springer Science and Business Media LLC Nur Aimi Jani; Larbi Haddad; Ahmed Saud Abdulhameed; Ali H. Jawad; Zeid A. ALOthman; Zaher Mundher Yaseen;In this study, a renewable and effective bio-adsorbent was derived from Malaysian durian seeds (DSs) to act as a promising biosorbent for phytoremediation application towards removal of a hazardous cationic dye (crystal violet, CV) from aqueous environments. The physiochemical characteristics of DS were investigated by several analytical methods such as FTIR, TGA-DTG, BET, pHpzc, and SEM-EDX. Subsequently, a statistical optimization for CV removal by DS was carried out via Box-Behnken design (BBD) and numerical desirability function. In this regard, four operational factors that affect CV adsorption, i.e., DS dosage (0.02–0.1 g), initial pH (4–10), temperature (25–50 °C), and adsorption time (5–25 min) were optimized by BBD and numerical desirability function. Hence, the highest CV removal (93.91%) was recorded under the optimal conditions found through desirability function as follows: DS dosage of 0.081 g, solution pH = 9.9, working temperature = 34.6 °C, and contact time = 24.9 min. Furthermore, ANOVA test indicated the significant parametric interactions towards CV removal (%) can be observed between AB (DS dose vs. initial pH), AD (DS dose vs. time), and BC (initial pH vs. temperature) interactions. The adsorption kinetic process was well described by a pseudo-second-order model. Subsequently, the adsorption equilibrium isotherm was well presented by Freundlich and Temkin isotherm models with maximum adsorption capacity of 158 mg/g. Thus, the thermodynamic functions revealed that the adsorption process was spontaneous and endothermic in nature. The adsorption mechanism of CV on the DS surface can be ascribed to the electrostatic forces, n-π stacking, and H-bonding interactions. Thus, the output of the research work indicates the potential applicability of DS as a renewable and effective biosorbent for the removal of CV from aqueous environments.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-022-03319-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-022-03319-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Other literature type 2023Publisher:MDPI AG Fahad Mushtaq; Habibur Rehman; Umair Ali; Muhammad Salman Babar; Mohammad Saleh Al-Suwaiyan; Zaher Mundher Yaseen;Groundwater is an essential water resource in the current era, and studying its sustainability and management is highly necessary nowadays. In the current area of research interest, the reduced mean annual Sutlej River flow, the increase in the population/built-up areas, and enhanced groundwater abstractions have reduced groundwater recharge. To address this issue, groundwater recharge modeling through ponding of the Sutlej River was carried out using a modular three-dimensional finite-difference groundwater flow model (MODFLOW) in a 400 km2 area adjacent to Sutlej River. The mean historical water table decline rate in the study area is 139 mm/year. The population and urbanization rates have increased by 2.23 and 1.62% per year in the last 8 years. Domestic and agricultural groundwater abstraction are increasing by 1.15–1.30% per year. Abstraction from wells and recharge from the river, the Fordwah Canal, and rainfall were modeled in MODFLOW, which was calibrated and validated using observed data for 3 years. The model results show that the study area’s average water table depletion rate will be 201 mm/year for 20 years. The model was re-run for this scenario, providing river ponding levels of 148–151 m. The model results depict that the water table adjacent to the river will rise by 3–5 m, and average water table depletion is expected to be reduced to 151 to 95 mm/year. The model results reveal that for ponding levels of 148–151 m, storage capacity varies from 26.5–153 Mm3, contributing a recharge of 7.91–12.50 million gallons per day (MGD), and benefiting a 27,650–32,100-acre area; this means that for areas benefitted by dam recharge, the groundwater abstraction rate will remain sustainable for more than 50 years, and for the overall study area, it will remain sustainable for 7–12.3 years. Considering the current water balance, a recharging mechanism, i.e., ponding in the river through the dam, is recommended for sustainable groundwater abstraction.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/2/1047/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.37247/pasus...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15021047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/2/1047/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.37247/pasus...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15021047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu