- home
- Advanced Search
- Energy Research
- other engineering and technologies
- Energy Research
- other engineering and technologies
description Publicationkeyboard_double_arrow_right Article 2025Publisher:The Electrochemical Society Authors: Vishal Chaudhary;Semiconductors with nanoscale dimensions are indispensable vectors for devising modern-age electronics-enabled technologies. Meeting the rising technological demand of the globally expanding population, while limiting the cost to the ecosystem, necessitates the sustainable development of green semiconductors at the nanoscale. This perspective highlights the state-of-the-art green nano-semiconductors, including metal oxides, organic materials, and hybrid nanosystems, with three key challenges: scalability, stability, and susceptibility. It also discusses alternate solutions integrating modern technologies like artificial intelligence to establish these green nano-semiconductors as a sustainable frontier to revolutionize multidimensional applications such as sensors, medicines, electronics, energy systems, and environmental remediation while minimizing ecological footprints.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2025 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ada200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2025 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ada200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:The Electrochemical Society Anil Subash S.; Manjunatha C.; Sudeep M.; Chandresh Kumar Rastogi; Vishal Chaudhary; Girish Kumar S.; Praveen Sekhar;The engineering of high-performance functional nanomaterials for efficient monitoring of Vitamin-C/Ascorbic Acid (AA) is highly desirable in the food, chemical, cosmetics, and pharmaceutical industries. In this regard, this report presents the engineering of novel cerous sulfate Ce2(SO4)3nanoflowers, decorated reduced graphene oxide (rGO) through an economic, energy-efficient and rapid one-pot hydrothermal strategy for electrochemical detection of AA. The obtained nanocomposite demonstrates the successful formation of nano Ce2(SO4)3with flower morphology having large surface area and potential to promote the electrolyte accessibility as well as electronic transmission during sensing phenomenon. The Ce2(SO4)3/rGO (CSG) nanoflower composite was drop casted on screen printed carbon electrode (SPCE) and tested for its electrochemical detection of AA. At +0.337 V, a well-defined oxidation peak of AA occurred in phosphate buffer solution of pH 7. A linear response of the CSG electrode was further obtained under optimum conditions, for the AA concentration range of 10 − 1000μM with a sensitivity of 0.2973μAμM−1cm−2and lowest detection limit of 900μM. The excellent Vitamin-C sensing ability of CSG is attributed to the synergistic effect from the dimensional anisotropy of flower-like morphological features of Ce2(SO4)3as well as the interfacial structure. The CSG was also tested for vitamin C tablets, VeeCee-Z, to validate its commercial applicability. Furthermore, fabricated electrochemical sensor exhibited significant reproducibility (98.63%) and optimum stability. Thus, the significant findings of this work are believed to hold the prospect for sensitive and prompt determination of Vitamin-C in the industrial domains.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acbe71&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acbe71&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 MalaysiaPublisher:The Electrochemical Society Golnoush Zamiri; Arman Amani Babadi; Vishal Chaudhary; Arshid Numan; Mohammad Khalid; Rashmi Walvekar; Ajit Khosla;The occurrence of sudden viral outbreaks, including (Covid-19, H1N1 flu, H5N1 flu) has globally challenged the existing medical facilities and raised critical concerns about saving affected lives, especially during pandemics. The detection of viral infections at an early stage using biosensors has been proven to be the most effective, economical, and rapid way to combat their outbreak and severity. However, state-of-the-art biosensors possess bottlenecks of long detection time, delayed stage detection, and sophisticated requirements increasing the cost and complexities of biosensing strategies. Recently, using two-dimensional MXenes as a sensing material for architecting biosensors has been touted as game-changing technology in diagnosing viral diseases. The unique surface chemistries with abundant functional terminals, excellent conductivity, tunable electric and optical attributes and high specific surface area have made MXenes an ideal material for architecting virus-diagnosing biosensors. There are numerous detecting modules in MXene-based virus-detecting biosensors based on the principle of detecting various biomolecules like viruses, enzymes, antibodies, proteins, and nucleic acid. This comprehensive review critically summarizes the state-of-the-art MXene-based virus-detecting biosensors, their limitations, potential solutions, and advanced intelligent prospects with the integration of internet-of-things, artificial intelligence, 5G communications, and cloud computing technologies. It will provide a fundamental structure for future research dedicated to intelligent and point-of-care virus detection biosensors.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acada5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acada5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:The Electrochemical Society Feven Mattews Michael; Lim Siew Shee; Gunasundari Raju; Sarvesh Rustagi; Rashmi Walvekar; Vishal Chaudhary; Mohammad Khalid;In this study, poly-lactic acid (PLA), nanohydroxyapatite (NHA), and graphene nanoplatelets (GNP) were blended to develop a nanocomposite material suitable for load-bearing bone implants with the potential for strain-sensing applications. The tensile properties and impact strength of the PLA-NHA nanocomposite were analyzed, as these are crucial biomechanical properties for load-bearing and strain-sensing applications. It was found that the impact strength decreased by 7.9% (0.05 wt% GNP) and 25.7% (0.1 wt% GNP) with increasing GNP loading compared to 0.01 wt% GNP. Besides, the biocompatibility of nanocomposites (PLA-NHA, PLA-mNHA, and PLA-mNHA-GNP) was evaluated through in-vitro analysis by attaching MG63 cells to the nanocomposites and observing their proliferation and differentiation over 7 and 21 days of incubation. The biocompatibility of the prepared nanocomposites was determined based on their ability to attach with MG63 cells, thus allowing the cells to proliferate and enhance their ability to differentiate. Results showed that the PLA-5wt%NHA nanocomposite provided better cell spreading compared to pure PLA, while the PLA-5wt%mNHA nanocomposite had the highest rate of cell proliferation. The biocompatibility of the nanocomposites was further confirmed by field emission scanning electron microscope (FESEM) imaging, MTT assays, and alkaline phosphatase (ALP) assays.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acb7a2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acb7a2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:The Electrochemical Society Authors: Vishal Chaudhary;Semiconductors with nanoscale dimensions are indispensable vectors for devising modern-age electronics-enabled technologies. Meeting the rising technological demand of the globally expanding population, while limiting the cost to the ecosystem, necessitates the sustainable development of green semiconductors at the nanoscale. This perspective highlights the state-of-the-art green nano-semiconductors, including metal oxides, organic materials, and hybrid nanosystems, with three key challenges: scalability, stability, and susceptibility. It also discusses alternate solutions integrating modern technologies like artificial intelligence to establish these green nano-semiconductors as a sustainable frontier to revolutionize multidimensional applications such as sensors, medicines, electronics, energy systems, and environmental remediation while minimizing ecological footprints.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2025 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ada200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2025 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ada200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:The Electrochemical Society Anil Subash S.; Manjunatha C.; Sudeep M.; Chandresh Kumar Rastogi; Vishal Chaudhary; Girish Kumar S.; Praveen Sekhar;The engineering of high-performance functional nanomaterials for efficient monitoring of Vitamin-C/Ascorbic Acid (AA) is highly desirable in the food, chemical, cosmetics, and pharmaceutical industries. In this regard, this report presents the engineering of novel cerous sulfate Ce2(SO4)3nanoflowers, decorated reduced graphene oxide (rGO) through an economic, energy-efficient and rapid one-pot hydrothermal strategy for electrochemical detection of AA. The obtained nanocomposite demonstrates the successful formation of nano Ce2(SO4)3with flower morphology having large surface area and potential to promote the electrolyte accessibility as well as electronic transmission during sensing phenomenon. The Ce2(SO4)3/rGO (CSG) nanoflower composite was drop casted on screen printed carbon electrode (SPCE) and tested for its electrochemical detection of AA. At +0.337 V, a well-defined oxidation peak of AA occurred in phosphate buffer solution of pH 7. A linear response of the CSG electrode was further obtained under optimum conditions, for the AA concentration range of 10 − 1000μM with a sensitivity of 0.2973μAμM−1cm−2and lowest detection limit of 900μM. The excellent Vitamin-C sensing ability of CSG is attributed to the synergistic effect from the dimensional anisotropy of flower-like morphological features of Ce2(SO4)3as well as the interfacial structure. The CSG was also tested for vitamin C tablets, VeeCee-Z, to validate its commercial applicability. Furthermore, fabricated electrochemical sensor exhibited significant reproducibility (98.63%) and optimum stability. Thus, the significant findings of this work are believed to hold the prospect for sensitive and prompt determination of Vitamin-C in the industrial domains.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acbe71&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acbe71&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 MalaysiaPublisher:The Electrochemical Society Golnoush Zamiri; Arman Amani Babadi; Vishal Chaudhary; Arshid Numan; Mohammad Khalid; Rashmi Walvekar; Ajit Khosla;The occurrence of sudden viral outbreaks, including (Covid-19, H1N1 flu, H5N1 flu) has globally challenged the existing medical facilities and raised critical concerns about saving affected lives, especially during pandemics. The detection of viral infections at an early stage using biosensors has been proven to be the most effective, economical, and rapid way to combat their outbreak and severity. However, state-of-the-art biosensors possess bottlenecks of long detection time, delayed stage detection, and sophisticated requirements increasing the cost and complexities of biosensing strategies. Recently, using two-dimensional MXenes as a sensing material for architecting biosensors has been touted as game-changing technology in diagnosing viral diseases. The unique surface chemistries with abundant functional terminals, excellent conductivity, tunable electric and optical attributes and high specific surface area have made MXenes an ideal material for architecting virus-diagnosing biosensors. There are numerous detecting modules in MXene-based virus-detecting biosensors based on the principle of detecting various biomolecules like viruses, enzymes, antibodies, proteins, and nucleic acid. This comprehensive review critically summarizes the state-of-the-art MXene-based virus-detecting biosensors, their limitations, potential solutions, and advanced intelligent prospects with the integration of internet-of-things, artificial intelligence, 5G communications, and cloud computing technologies. It will provide a fundamental structure for future research dedicated to intelligent and point-of-care virus detection biosensors.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acada5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acada5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:The Electrochemical Society Feven Mattews Michael; Lim Siew Shee; Gunasundari Raju; Sarvesh Rustagi; Rashmi Walvekar; Vishal Chaudhary; Mohammad Khalid;In this study, poly-lactic acid (PLA), nanohydroxyapatite (NHA), and graphene nanoplatelets (GNP) were blended to develop a nanocomposite material suitable for load-bearing bone implants with the potential for strain-sensing applications. The tensile properties and impact strength of the PLA-NHA nanocomposite were analyzed, as these are crucial biomechanical properties for load-bearing and strain-sensing applications. It was found that the impact strength decreased by 7.9% (0.05 wt% GNP) and 25.7% (0.1 wt% GNP) with increasing GNP loading compared to 0.01 wt% GNP. Besides, the biocompatibility of nanocomposites (PLA-NHA, PLA-mNHA, and PLA-mNHA-GNP) was evaluated through in-vitro analysis by attaching MG63 cells to the nanocomposites and observing their proliferation and differentiation over 7 and 21 days of incubation. The biocompatibility of the prepared nanocomposites was determined based on their ability to attach with MG63 cells, thus allowing the cells to proliferate and enhance their ability to differentiate. Results showed that the PLA-5wt%NHA nanocomposite provided better cell spreading compared to pure PLA, while the PLA-5wt%mNHA nanocomposite had the highest rate of cell proliferation. The biocompatibility of the nanocomposites was further confirmed by field emission scanning electron microscope (FESEM) imaging, MTT assays, and alkaline phosphatase (ALP) assays.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acb7a2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acb7a2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu