- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Enrico Drioli; Enrico Drioli; Adele Brunetti; Francesca Macedonio; Giuseppe Barbieri;Aim of the present paper is to investigate and compare the performance of three different possible membrane condenser configurations in terms of amount of recovered liquid water and energy consumption. Membrane condenser is an innovative unit operation utilized for the recovery of evaporated waste water from industrial gases. In the first proposed configuration, the fed waste gas is cooled by cooling water before entering the membrane module; in the second configuration the cooling is obtained inside the membrane module through a cold sweeping gas; the third configuration is in between the two previous ones: the fed waste gas is first partially cooled via an external medium and then a sweeping gas is used for the final cooling of the stream. The achieved results indicate that configuration 2 has the lowest energy consumption, and configuration 3 allows achieving the highest water recovery whereas its energy consumption is in between configuration 1 and 2.
CNR ExploRA arrow_drop_down Separation and Purification TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2017.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Separation and Purification TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2017.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Pasquale Francesco Zito; Adele Brunetti; Giuseppe Barbieri;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.09.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.09.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Switzerland, SwitzerlandPublisher:Elsevier BV Antonio Gasós; Viola Becattini; Adele Brunetti; Giuseppe Barbieri; Marco Mazzotti;Membrane-based gas separation processes are currently being implemented at different scales for several industrial applications. The optimal design of such processes, which is of key importance for their large-scale commercial deployment, has been extensively studied through parametric analyses and optimisation procedures. Nevertheless, the applicability of such design methodologies is generally limited by the large computational time and effort they require. In this work, surrogate models based on artificial neural networks are developed to circumvent the lengthy optimisation of a one-stage and two-stage cascade membrane-based gas separation process. In 200 ms, the surrogate model generates a Pareto front that describes the optimal trade-off between the process specific electricity consumption and productivity based on given input data, i.e., membrane material properties, feed composition and separation target. Whereas the surrogate model is applicable to any binary gas mixture, here its features are illustrated by creating process performance maps for post-combustion CO2 capture. Such maps provide valuable insights on: (i) attainable gas separation regions in term of CO2 recovery and CO2 purity, and (ii) the impact of membrane material, feed composition and separation target on the Pareto fronts and the optimal operating conditions. International Journal of Greenhouse Gas Control, 122 ISSN:1750-5836 ISSN:1878-0148
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Adele Brunetti; K.-H. Lee; D.-W. Lee; Enrico Drioli; Bongkuk Sea; Giuseppe Barbieri;Water gas shift reaction for hydrogen production was studied in a catalytic membrane reactor using a supported silica membrane at 220-290 °C temperature and 2-6 bar pressure ranges. A CO conversion higher than the thermodynamic equilibrium of a traditional reactor was obtained. The best result, 95% CO conversion, was achieved at 4 bar and 280 °C. The membrane was also characterized in terms of permeance and selectivity by means of permeation tests carried out before and after reaction. In addition, permeance and separation factor were also measured during the reaction. Permeance of all species (H2: 9.7-29; CO: 0.3-1.1; CO2: 0.4-1.5 nmol/m2 s Pa), selectivity (H2/CO, H2/CO2 and H2/N2) ranging from 15 to 40 and separation factors (H2/CO = 20-45), showed no dependence on the related permeation driving force. Differences between selectivity and separation factor were registered. Furthermore, no inhibition effects of other gases on the hydrogen flux were observed. The membrane was prepared by the soaking roller procedure depositing a silica layer on a stainless steel support with an intermediate -alumina layer. The membrane reactor allowing selective hydrogen permeation presents a good performance exceeding also the equilibrium conversion of a traditional reactor.
CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2006.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2006.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Spain, ItalyPublisher:Elsevier BV Funded by:EC | DEMCAMEREC| DEMCAMERA. Brunetti; A. Caravella; E. Fernandez; D.A. Pacheco Tanaka; F. Gallucci; E. Drioli; E. Curcio; J.L. Viviente; G. Barbieri;In hydrogen production, the syngas streams produced by reformers and/or coal gasification plants contain a large amount of H2 and CO in need of upgrading. To this purpose, reactors using Pd-based membranes have been widely studied as they allow separation and recovery of a pure hydrogen stream. However, the high cost of Pd-membranes is one of the main limitations for scaling up technology. Therefore, many researchers are now pursuing the possibility of using supported membranes with as thin as possible Pd-alloy layers. In this work, the upgrading of a syngas stream is experimentally investigated in a water gas shift membrane reactor operated in a high temperature range with an ultra-thin supported membrane (3.6 micron-thick). The membrane permeance was measured before and after catalyst packing and also after reaction for 2100 h of operation in total. Membrane reactor performance was evaluated as a function of operating conditions such as temperature, pressure, gas hourly space velocity, feed molar ratio, and sweep gas. A CO conversion significantly higher than the thermodynamics upper limit of a traditional reactor was achieved, even at high gas hourly space velocities and a 25% less reaction volume than that of a traditional reactor was enough to achieve a 90% equilibrium conversion.
TECNALIA Publication... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert TECNALIA Publication... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Pasquale Francesco Zito; Adele Brunetti; Giuseppe Barbieri;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Guangxi Dong; Ju Sung Kim; Giuseppe Barbieri; Enrica Fontananova; Young Moo Lee; Maurizio Cersosimo; Enrico Drioli; Adele Brunetti;Abstract In this work, the aging behavior of a thermally rearranged polybenzoxazole-co-imide (TR-PBOI) mixed matrix membrane loaded with 0.5 wt.% of oxidized multi-wall carbon nanotubes (MWCNT) was evaluated and then compared to a pure TR polymeric membrane prepared from the same precursor. To the best of authors knowledge, this is the first report of a mixed matrix membrane being prepared through the dispersion of MWCNTs within a thermally rearranged polymer matrix for CO2 separation. Microporous structures were created in both membranes when thermally rearranged at 375 °C, facilitating fast mass transfer ideal for membrane gas separation. The TR mixed matrix membrane with oxidized CNTs demonstrated improved separation properties with regard to both permeability and selectivity compared to the pure TR polymeric membrane due to a greater degree of thermal rearrangement (11.3%) than what was exhibited by the TR membrane (6.7%). Moreover, the high CO2 solubility typical of TR polymers coupled with diffusivity enhancements improved the CO2/N2 selectivity. The addition of oxidized CNTs to the TR-PBOI polymer did not significantly influence the aging behavior of the mixed matrix membrane. Both pure TR-PBOI and mixed matrix membranes exhibited an increase in CO2 selectivity due to physical aging. The improved separation properties in conjunction with an unchanged membrane stability over time suggested that the addition of CNTs to pure TR membranes could be an excellent approach toward improving the performance of thermally rearranged membranes applied toward gas separation.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Funded by:MIURMIURAdele Brunetti; Enrico Drioli; Enrico Drioli; Giuseppe Barbieri; Yu Sun; Alessio Caravella;The separation of biogas leads to not only recovery and sequestration of CO2, but also to much greater purification and recovery of value-added CH4 able to be used, for example, to directly feed pipelines for domestic or small plants. In this work, an alternative approach for a preliminary design of separation process based on the use of polymeric membranes is proposed. Two different types of polymeric membranes were taken into account, Hyflon AD60 and Matrimid 5218, the first showing a higher permeability with respect to other membranes but a quite low selectivity (12.9), the second exhibiting a higher selectivity with respect to other membranes (41 and 100) even though a lower permeability. Four possible operation schemes using two different types of membranes in multistage configuration system are analysed as functions of the main design parameters, i.e., pressure ratio and permeation number. The achieved results are compared with certain targets and are also discussed in terms of process metrics, according to the Process Intensification strategy. This latter analysis, coupled with a conventional one, provides an alternative point of view over the evaluation of the plant performance taking into account not only the final characteristics of the streams but also process efficiency, exploitation of raw material and energy, and the footprint occupied by the installation.
CNR ExploRA arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Frontiers Media SA Authors: Giuseppe Barbieri; Adele Brunetti;Membrane operations nowadays drive the innovative design of important separation, conversion, and upgrading processes, and contribute to realizing the main principles of “green process engineering” in various sectors. In this perspective, we propose the re-design of traditional plants for biogas upgrading and integrating and/or replacing conventional operations with innovative membrane units. Bio-digester gas streams contain valuable products such as biomethane, volatile organic compounds, and volatile fatty acids, whose recovery has important advantages for environment protection, energy saving, and waste valorization. Advanced membrane units can valorize biogas by separating its various components, and establishing environmentally friendly and small-scale energivorous novel separation processes enables researchers to pursue the requirements of circular economy.
Frontiers in Chemica... arrow_drop_down Frontiers in Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fceng.2021.775788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Chemica... arrow_drop_down Frontiers in Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fceng.2021.775788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Elsevier BV Giuseppe Barbieri; Enrico Drioli; Enrico Drioli; Kas Hemmes; Young Moo Lee; Hans de Wit;The development of fuel cells has seen rapid progress with the interest of car manufacturers for in particular in the polymer fuel cells at the end of the 1990s. But also other types of fuel cells have made important steps towards commercialization. This paper provides the state of the art of the most important fuel cell technologies and moreover provides new design concepts, integrated use of novel materials and how fuel cells can be integrated in the chemical industry and in larger energy providing systems using renewables. In this paper we follow two lines of discussion. The first deals with the need for more efficient fuel cells by improving material and component properties and the second deals with integration of various technologies and functions in a full systems approach. The first approach is more relevant for low temperature fuel cells while the second is more suited for new developments in high temperature fuel cells.
CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Enrico Drioli; Enrico Drioli; Adele Brunetti; Francesca Macedonio; Giuseppe Barbieri;Aim of the present paper is to investigate and compare the performance of three different possible membrane condenser configurations in terms of amount of recovered liquid water and energy consumption. Membrane condenser is an innovative unit operation utilized for the recovery of evaporated waste water from industrial gases. In the first proposed configuration, the fed waste gas is cooled by cooling water before entering the membrane module; in the second configuration the cooling is obtained inside the membrane module through a cold sweeping gas; the third configuration is in between the two previous ones: the fed waste gas is first partially cooled via an external medium and then a sweeping gas is used for the final cooling of the stream. The achieved results indicate that configuration 2 has the lowest energy consumption, and configuration 3 allows achieving the highest water recovery whereas its energy consumption is in between configuration 1 and 2.
CNR ExploRA arrow_drop_down Separation and Purification TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2017.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Separation and Purification TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2017.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Pasquale Francesco Zito; Adele Brunetti; Giuseppe Barbieri;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.09.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.09.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Switzerland, SwitzerlandPublisher:Elsevier BV Antonio Gasós; Viola Becattini; Adele Brunetti; Giuseppe Barbieri; Marco Mazzotti;Membrane-based gas separation processes are currently being implemented at different scales for several industrial applications. The optimal design of such processes, which is of key importance for their large-scale commercial deployment, has been extensively studied through parametric analyses and optimisation procedures. Nevertheless, the applicability of such design methodologies is generally limited by the large computational time and effort they require. In this work, surrogate models based on artificial neural networks are developed to circumvent the lengthy optimisation of a one-stage and two-stage cascade membrane-based gas separation process. In 200 ms, the surrogate model generates a Pareto front that describes the optimal trade-off between the process specific electricity consumption and productivity based on given input data, i.e., membrane material properties, feed composition and separation target. Whereas the surrogate model is applicable to any binary gas mixture, here its features are illustrated by creating process performance maps for post-combustion CO2 capture. Such maps provide valuable insights on: (i) attainable gas separation regions in term of CO2 recovery and CO2 purity, and (ii) the impact of membrane material, feed composition and separation target on the Pareto fronts and the optimal operating conditions. International Journal of Greenhouse Gas Control, 122 ISSN:1750-5836 ISSN:1878-0148
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Adele Brunetti; K.-H. Lee; D.-W. Lee; Enrico Drioli; Bongkuk Sea; Giuseppe Barbieri;Water gas shift reaction for hydrogen production was studied in a catalytic membrane reactor using a supported silica membrane at 220-290 °C temperature and 2-6 bar pressure ranges. A CO conversion higher than the thermodynamic equilibrium of a traditional reactor was obtained. The best result, 95% CO conversion, was achieved at 4 bar and 280 °C. The membrane was also characterized in terms of permeance and selectivity by means of permeation tests carried out before and after reaction. In addition, permeance and separation factor were also measured during the reaction. Permeance of all species (H2: 9.7-29; CO: 0.3-1.1; CO2: 0.4-1.5 nmol/m2 s Pa), selectivity (H2/CO, H2/CO2 and H2/N2) ranging from 15 to 40 and separation factors (H2/CO = 20-45), showed no dependence on the related permeation driving force. Differences between selectivity and separation factor were registered. Furthermore, no inhibition effects of other gases on the hydrogen flux were observed. The membrane was prepared by the soaking roller procedure depositing a silica layer on a stainless steel support with an intermediate -alumina layer. The membrane reactor allowing selective hydrogen permeation presents a good performance exceeding also the equilibrium conversion of a traditional reactor.
CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2006.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2006.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Spain, ItalyPublisher:Elsevier BV Funded by:EC | DEMCAMEREC| DEMCAMERA. Brunetti; A. Caravella; E. Fernandez; D.A. Pacheco Tanaka; F. Gallucci; E. Drioli; E. Curcio; J.L. Viviente; G. Barbieri;In hydrogen production, the syngas streams produced by reformers and/or coal gasification plants contain a large amount of H2 and CO in need of upgrading. To this purpose, reactors using Pd-based membranes have been widely studied as they allow separation and recovery of a pure hydrogen stream. However, the high cost of Pd-membranes is one of the main limitations for scaling up technology. Therefore, many researchers are now pursuing the possibility of using supported membranes with as thin as possible Pd-alloy layers. In this work, the upgrading of a syngas stream is experimentally investigated in a water gas shift membrane reactor operated in a high temperature range with an ultra-thin supported membrane (3.6 micron-thick). The membrane permeance was measured before and after catalyst packing and also after reaction for 2100 h of operation in total. Membrane reactor performance was evaluated as a function of operating conditions such as temperature, pressure, gas hourly space velocity, feed molar ratio, and sweep gas. A CO conversion significantly higher than the thermodynamics upper limit of a traditional reactor was achieved, even at high gas hourly space velocities and a 25% less reaction volume than that of a traditional reactor was enough to achieve a 90% equilibrium conversion.
TECNALIA Publication... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert TECNALIA Publication... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Pasquale Francesco Zito; Adele Brunetti; Giuseppe Barbieri;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Guangxi Dong; Ju Sung Kim; Giuseppe Barbieri; Enrica Fontananova; Young Moo Lee; Maurizio Cersosimo; Enrico Drioli; Adele Brunetti;Abstract In this work, the aging behavior of a thermally rearranged polybenzoxazole-co-imide (TR-PBOI) mixed matrix membrane loaded with 0.5 wt.% of oxidized multi-wall carbon nanotubes (MWCNT) was evaluated and then compared to a pure TR polymeric membrane prepared from the same precursor. To the best of authors knowledge, this is the first report of a mixed matrix membrane being prepared through the dispersion of MWCNTs within a thermally rearranged polymer matrix for CO2 separation. Microporous structures were created in both membranes when thermally rearranged at 375 °C, facilitating fast mass transfer ideal for membrane gas separation. The TR mixed matrix membrane with oxidized CNTs demonstrated improved separation properties with regard to both permeability and selectivity compared to the pure TR polymeric membrane due to a greater degree of thermal rearrangement (11.3%) than what was exhibited by the TR membrane (6.7%). Moreover, the high CO2 solubility typical of TR polymers coupled with diffusivity enhancements improved the CO2/N2 selectivity. The addition of oxidized CNTs to the TR-PBOI polymer did not significantly influence the aging behavior of the mixed matrix membrane. Both pure TR-PBOI and mixed matrix membranes exhibited an increase in CO2 selectivity due to physical aging. The improved separation properties in conjunction with an unchanged membrane stability over time suggested that the addition of CNTs to pure TR membranes could be an excellent approach toward improving the performance of thermally rearranged membranes applied toward gas separation.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Funded by:MIURMIURAdele Brunetti; Enrico Drioli; Enrico Drioli; Giuseppe Barbieri; Yu Sun; Alessio Caravella;The separation of biogas leads to not only recovery and sequestration of CO2, but also to much greater purification and recovery of value-added CH4 able to be used, for example, to directly feed pipelines for domestic or small plants. In this work, an alternative approach for a preliminary design of separation process based on the use of polymeric membranes is proposed. Two different types of polymeric membranes were taken into account, Hyflon AD60 and Matrimid 5218, the first showing a higher permeability with respect to other membranes but a quite low selectivity (12.9), the second exhibiting a higher selectivity with respect to other membranes (41 and 100) even though a lower permeability. Four possible operation schemes using two different types of membranes in multistage configuration system are analysed as functions of the main design parameters, i.e., pressure ratio and permeation number. The achieved results are compared with certain targets and are also discussed in terms of process metrics, according to the Process Intensification strategy. This latter analysis, coupled with a conventional one, provides an alternative point of view over the evaluation of the plant performance taking into account not only the final characteristics of the streams but also process efficiency, exploitation of raw material and energy, and the footprint occupied by the installation.
CNR ExploRA arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Frontiers Media SA Authors: Giuseppe Barbieri; Adele Brunetti;Membrane operations nowadays drive the innovative design of important separation, conversion, and upgrading processes, and contribute to realizing the main principles of “green process engineering” in various sectors. In this perspective, we propose the re-design of traditional plants for biogas upgrading and integrating and/or replacing conventional operations with innovative membrane units. Bio-digester gas streams contain valuable products such as biomethane, volatile organic compounds, and volatile fatty acids, whose recovery has important advantages for environment protection, energy saving, and waste valorization. Advanced membrane units can valorize biogas by separating its various components, and establishing environmentally friendly and small-scale energivorous novel separation processes enables researchers to pursue the requirements of circular economy.
Frontiers in Chemica... arrow_drop_down Frontiers in Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fceng.2021.775788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Chemica... arrow_drop_down Frontiers in Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fceng.2021.775788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Elsevier BV Giuseppe Barbieri; Enrico Drioli; Enrico Drioli; Kas Hemmes; Young Moo Lee; Hans de Wit;The development of fuel cells has seen rapid progress with the interest of car manufacturers for in particular in the polymer fuel cells at the end of the 1990s. But also other types of fuel cells have made important steps towards commercialization. This paper provides the state of the art of the most important fuel cell technologies and moreover provides new design concepts, integrated use of novel materials and how fuel cells can be integrated in the chemical industry and in larger energy providing systems using renewables. In this paper we follow two lines of discussion. The first deals with the need for more efficient fuel cells by improving material and component properties and the second deals with integration of various technologies and functions in a full systems approach. The first approach is more relevant for low temperature fuel cells while the second is more suited for new developments in high temperature fuel cells.
CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu