- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:MDPI AG Authors: Wang, Q; Niu, S;doi: 10.3390/en8088069
handle: 10397/43495
Electric machines play an important role in modern energy conversion systems. This paper presents a novel brushless fault-tolerant flux-modulated memory (FTFM) machine, which incorporates the merits of a flux-modulated permanent magnet machine and multi-phase memory machine and is very suitable for applications that require wide speed ranges of constant-power operation. Due to the magnetic modulation effect, the FTFM machine can produce a large torque at relatively low speeds. Due to the usage of aluminum-nickel-cobalt (AlNiCo) magnets, this machine can readily achieve a flexible air-gap flux controllability with temporary DC current pulses. Consequently, the constant-power region is effectively expanded, and the machine\'s efficiency during constant-power operation is increased. Due to the multi-phase armature winding design, the FTFM machine enables lower torque ripple, increased fault tolerance ability and a higher possibility of splitting the machine power through a higher number of phases, thus the per-phase converter rating can be reduced. The design methodology and working principle of this kind of machine are discussed. The electromagnetic performances of the proposed machine are analyzed using the time-stepping finite element method (TS-FEM).
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/8069/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/10397/43495Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8088069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/8069/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/10397/43495Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8088069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Hong Kong, China (People's Republic of), China (People's Republic of)Publisher:MDPI AG Authors: Ziqi Huang; Xing Zhao; Weiyu Wang; Shuangxia Niu;doi: 10.3390/en15228384
handle: 10397/103818
The reluctance machine is a potential candidate for electrical vehicle propulsion because of its reliable structure, low cost, flexible flux regulation ability, and wide speed range. However, the torque density is unsatisfactory because of the poor excitation ability and low stator core utilization factor. To solve this problem, in this paper, a novel hybrid reluctance machine (HRM) with the skewed permanent magnet (PM) and the zero-sequence current is proposed for electric vehicles. The skewed PM has two magnetomotive force (MMF) components with different functions. The radial MMF component provides extra torque by the flux modulation effect. The tangential MMF component can generate a constant biased field in the stator core to relieve the saturation caused by the zero-sequence current and thus improve the utilization factor of the stator core. Therefore, torque improvement and the relief of stator core saturation can be simultaneously achieved by the skewed PM. In this paper, the machine structure and principle of the proposed machine are introduced. And ultimately, the machine’s electromagnetic performances are evaluated under different PM magnetization directions and zero-sequence current angles by using finite element analysis (FEA).
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8384/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/103818Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8384/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/103818Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:MDPI AG Authors: Mingyuan Jiang; Shuangxia Niu;doi: 10.3390/app13042689
handle: 10397/98673
In this paper, a novel mechanical flux-weakening design of a spoke-type permanent magnet generator for a stand-alone power supply is proposed. By controlling the position of the adjustable modulator ring mechanically, the total induced voltage, i.e., the amplitude of the back EMF vector sum can be effectively adjusted accordingly by the modulation effect. Consequently, the variable-speed constant-amplitude voltage control (VSCAVC) with a large speed range can be achieved. Compared to the electrical flux-weakening method, the mechanical flux-weakening method is easier to operate without the risk of PM demagnetization. The analytical model is presented, and the operation principles are illustrated. To analyze the performance of different combinations of stator/rotor pole pairs, four cases are optimized and analyzed using the finite element method for comparison. The characteristics of VSCAVC are analyzed.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/4/2689/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/98673Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13042689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/4/2689/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/98673Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13042689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Xing Zhao; Sigao Wang; Shuangxia Niu; Weinong Fu; Xiaodong Zhang;Vernier reluctance machine with DC field coils in stator is a competitive rare-earth-free design for variable-speed industrial applications due to its robust structure and controllable excitation, while its torque density is relatively disadvantageous. To address this issue, this paper proposes a new armature winding design method for VRM with DC field coils across two stator teeth. The key is to break the traditional winding design principle based on the flux modulation effect of fundamental DC field harmonic, and instead, reconstruct a novel harmonic winding to enhance the utilization factor of the modulated high-order DC field harmonics. By this means, the torque density can be improved by 75.6% compared to the existing poor counterpart. In this paper, the machine structure and operation principle are introduced, with emphasis on the high-order DC field harmonics distribution rule and its influence on the armature winding design. By finite element design and optimization, a comparative study is performed to evaluate the machine performance using two different winding configurations with variable slot pole combinations. A prototype is fabricated and tested, and the results agree well with finite element analysis, which verifies the feasibility and advantages of the proposed winding design method.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Industrial ElectronicsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tie.2021.3104589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Industrial ElectronicsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tie.2021.3104589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Hong Kong, China (People's Republic of), China (People's Republic of)Publisher:MDPI AG Songyan Niu; Qingyu Zhao; Haibiao Chen; Hang Yu; Shuangxia Niu; Linni Jian;doi: 10.3390/en15249529
handle: 10397/105261
Wireless charging systems (WCSs) are considered very appropriate to recharge underwater surface vehicles (USVs) due to their safe, flexible, and cost-effective characteristics. The small depth of immersion of USVs allows a WCS operated at an mm-level distance using a dock. Resultant tight coupling between the transmitter and receiver is conducive to high power, yet faces a challenge to alleviating misalignment sensitivity. In addition, considering USVs’ endurance, the weight of a WCS should be strictly limited. In this paper, a 6.0 kW underwater WCS is analyzed, designed, and optimized, which achieves a good balance of power capacity, misalignment tolerance, and onboard weight. A multi-receiving-coil structure is employed, which is crucial to large misalignment tolerance. On this basis, two types of coils adapting the hull shape of USV, viz., curved and quasi-curved coils, are devised and compared in case the hydrodynamic performance of USV is degraded. Finally, the weight of receiver is effectively reduced using bar-shaped ferrite without sacrificing the power capacity of WCSs. The results indicate a merely 8.73% drop in coupling coefficient with misalignment ranging from 0 to 100 mm. Moreover, ferrite use is reduced by 40.48 kg compared to a ferrite sheet, which accounts for 50.28% weight of the receiver.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9529/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/105261Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9529/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/105261Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:MDPI AG Authors: Wang, Y; Niu, S; Fu, W;doi: 10.3390/en81212407
handle: 10397/43497
Two novel structures of permanent magnet (PM) machine, namely a hybrid excitation flux modulation machine (HEFMM) and a variable flux memory machine (VFMM), which have excellent field-weakening capability, are presented in this paper. The HEFMM incorporates the advantages of parallel hybrid excitation structure and flux modulation structure, so as to increase the torque density as well as increase the constant-power speed range. Inspired by the HEFMM, aiming to further improve the efficiency of machine, the VFMM with aluminum-nickel-cobalt (AlNiCo) PMs in the inner stator which can be magnetized by the current pulse of the direct current (DC) windings is developed. With double-stator structure, flux modulation effect in both machines can be employed to realize the hybrid excitation and regulate the air-gap flux density readily. The operation principle is illustrated and the static and steady performances of the machines are analyzed and compared with time stepping finite element analysis, which validates the effectiveness of the proposed designs.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/12/12407/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/12/13971/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/10397/43497Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/12/12407/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/12/13971/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/10397/43497Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 China (People's Republic of), China (People's Republic of), Hong KongPublisher:MDPI AG Authors: Yuanxi Chen; Weinong Fu; Shuangxia Niu; Sigao Wang;doi: 10.3390/su15065077
handle: 10397/99940
Magnetic gear and magnetic-geared machine (MGM) are the potential solutions in electric vehicles (EVs) powertrains for inherent high efficiency and mechanical simplification. However, the torque density issue of the MGM greatly limits its industrial application. To enhance the torque performance of the MGM, a torque-enhanced magnetic-geared machine with dual-series-winding and its design approach are proposed. The key merits of the proposed design are to achieve a high space utilization with a dual-winding design, with no additional control topologies and power converters required. The auxiliary winding is supplemented and integrated with modulation rings. The relative position of the stator and armature winding are designed and rotated compared to the modulation rings with auxiliary winding, to ensure the auxiliary winding shares the excitation with the armature winding. Accordingly, simplifying the external control topologies. With the proposed design, the torque of the MGM can be significantly enhanced with a single three-phase driving. Theoretical analysis, parameters optimization and electromagnetic verification are given, demonstrating that the proposed machine can achieve an efficiency of 93.2%, generate a torque of 107.2 N·m, and reach a torque density of 10.81 N·m/kg.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5077/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99940Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5077/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99940Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xing Zhao; Shuangxia Niu; Weinong Fu;This article proposes a new hybrid-excited dual-permanent-magnet generator with the relieving-dc-saturation (RDCS) structure for stand-alone wind power generation. The proposed generator integrates the stator dc source and rotor permanent-magnet (PM) source in a single brushless structure, which enables coordinated power generation and flexible power adjustment. Moreover, considering the parasitic saturation effect in the stator core caused by the dc field source, a constant PM bias is introduced at the stator side to construct an RDCS structure, so that the core utilization ratio is improved as well as the generator power density. In this article, the generator structure and the operation principle are introduced. Some leading design parameters are determined based on the sensitivity analysis. A finite element and genetic algorithm combined method is further adopted to realize a multi-objective design optimization, and the optimal design of the proposed topology is verified to be a potential generator candidate for stand-alone wind power generation.
IEEE Transactions on... arrow_drop_down IEEE Transactions on MagneticsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tmag.2019.2951078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on MagneticsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tmag.2019.2951078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Yanding Bi; Weinong Fu; Shuangxia Niu; Jiahui Huang;doi: 10.3390/en16186650
Recently, the interest in consequent-pole flux-switching permanent magnet (CP-FSPM) machines has been increasing because of the flux-focusing PM arrangements and the removal of the flux-barrier effect. A simple and rigid outer-rotor salient pole rotor structure can be adopted in CP-FSPM machines, making them applicable for in-wheel direct-drive applications. In this study, three CP-FSPM machines with II-shaped (II-PM), V-shaped (V-PM), and straight U-shaped PM (SU-PM) arrays are analyzed and compared. Moreover, a CP-FSPM machine with inclined U-shaped PM (IU-PM) arrays is proposed to improve the flux-focusing effect and stator slot utilization. The working principles of CP-FSPM machines are analyzed by adopting a semi-analytical model. Combining the finite element analysis (FEA) results of air gap flux density and the analytical model of phase back electromotive force (EMF), the contributions of multiple working harmonics to the back EMF are quantitatively analyzed. Additionally, 6/16 and 6/17 CP-FSPM machines with different PM arrangements are globally optimized. Both the no-load and on-load performance of the optimized machines are included in the performance comparison. The results illustrate that the 6/16 and 6/17 machines exhibit their respective merits, and the IU-PM machine shows the best torque production ability in these CP-FSPM machines with the same design criteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Mingyuan Jiang; Kangshuo Zhao; Weiyu Wang; Shuangxia Niu;doi: 10.3390/su151813924
A novel compound-excited brushless DC motor with polygonal circular winding is proposed in this paper. The key is that DC excitation is effectively coupled with PM excitation, significantly improving the torque density per PM volume and improving the machine flux weakening performance in the proposed design. This proposed design provides simplified control characteristics similar to a compound-excited DC motor. Further, the flux weakening of the proposed machine can be smoothly achieved using polygonal closed-loop circular winding and a lagging slot winding shifting method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:MDPI AG Authors: Wang, Q; Niu, S;doi: 10.3390/en8088069
handle: 10397/43495
Electric machines play an important role in modern energy conversion systems. This paper presents a novel brushless fault-tolerant flux-modulated memory (FTFM) machine, which incorporates the merits of a flux-modulated permanent magnet machine and multi-phase memory machine and is very suitable for applications that require wide speed ranges of constant-power operation. Due to the magnetic modulation effect, the FTFM machine can produce a large torque at relatively low speeds. Due to the usage of aluminum-nickel-cobalt (AlNiCo) magnets, this machine can readily achieve a flexible air-gap flux controllability with temporary DC current pulses. Consequently, the constant-power region is effectively expanded, and the machine\'s efficiency during constant-power operation is increased. Due to the multi-phase armature winding design, the FTFM machine enables lower torque ripple, increased fault tolerance ability and a higher possibility of splitting the machine power through a higher number of phases, thus the per-phase converter rating can be reduced. The design methodology and working principle of this kind of machine are discussed. The electromagnetic performances of the proposed machine are analyzed using the time-stepping finite element method (TS-FEM).
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/8069/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/10397/43495Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8088069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/8069/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/10397/43495Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8088069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Hong Kong, China (People's Republic of), China (People's Republic of)Publisher:MDPI AG Authors: Ziqi Huang; Xing Zhao; Weiyu Wang; Shuangxia Niu;doi: 10.3390/en15228384
handle: 10397/103818
The reluctance machine is a potential candidate for electrical vehicle propulsion because of its reliable structure, low cost, flexible flux regulation ability, and wide speed range. However, the torque density is unsatisfactory because of the poor excitation ability and low stator core utilization factor. To solve this problem, in this paper, a novel hybrid reluctance machine (HRM) with the skewed permanent magnet (PM) and the zero-sequence current is proposed for electric vehicles. The skewed PM has two magnetomotive force (MMF) components with different functions. The radial MMF component provides extra torque by the flux modulation effect. The tangential MMF component can generate a constant biased field in the stator core to relieve the saturation caused by the zero-sequence current and thus improve the utilization factor of the stator core. Therefore, torque improvement and the relief of stator core saturation can be simultaneously achieved by the skewed PM. In this paper, the machine structure and principle of the proposed machine are introduced. And ultimately, the machine’s electromagnetic performances are evaluated under different PM magnetization directions and zero-sequence current angles by using finite element analysis (FEA).
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8384/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/103818Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8384/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/103818Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:MDPI AG Authors: Mingyuan Jiang; Shuangxia Niu;doi: 10.3390/app13042689
handle: 10397/98673
In this paper, a novel mechanical flux-weakening design of a spoke-type permanent magnet generator for a stand-alone power supply is proposed. By controlling the position of the adjustable modulator ring mechanically, the total induced voltage, i.e., the amplitude of the back EMF vector sum can be effectively adjusted accordingly by the modulation effect. Consequently, the variable-speed constant-amplitude voltage control (VSCAVC) with a large speed range can be achieved. Compared to the electrical flux-weakening method, the mechanical flux-weakening method is easier to operate without the risk of PM demagnetization. The analytical model is presented, and the operation principles are illustrated. To analyze the performance of different combinations of stator/rotor pole pairs, four cases are optimized and analyzed using the finite element method for comparison. The characteristics of VSCAVC are analyzed.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/4/2689/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/98673Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13042689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/4/2689/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/98673Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13042689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Xing Zhao; Sigao Wang; Shuangxia Niu; Weinong Fu; Xiaodong Zhang;Vernier reluctance machine with DC field coils in stator is a competitive rare-earth-free design for variable-speed industrial applications due to its robust structure and controllable excitation, while its torque density is relatively disadvantageous. To address this issue, this paper proposes a new armature winding design method for VRM with DC field coils across two stator teeth. The key is to break the traditional winding design principle based on the flux modulation effect of fundamental DC field harmonic, and instead, reconstruct a novel harmonic winding to enhance the utilization factor of the modulated high-order DC field harmonics. By this means, the torque density can be improved by 75.6% compared to the existing poor counterpart. In this paper, the machine structure and operation principle are introduced, with emphasis on the high-order DC field harmonics distribution rule and its influence on the armature winding design. By finite element design and optimization, a comparative study is performed to evaluate the machine performance using two different winding configurations with variable slot pole combinations. A prototype is fabricated and tested, and the results agree well with finite element analysis, which verifies the feasibility and advantages of the proposed winding design method.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Industrial ElectronicsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tie.2021.3104589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Industrial ElectronicsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tie.2021.3104589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Hong Kong, China (People's Republic of), China (People's Republic of)Publisher:MDPI AG Songyan Niu; Qingyu Zhao; Haibiao Chen; Hang Yu; Shuangxia Niu; Linni Jian;doi: 10.3390/en15249529
handle: 10397/105261
Wireless charging systems (WCSs) are considered very appropriate to recharge underwater surface vehicles (USVs) due to their safe, flexible, and cost-effective characteristics. The small depth of immersion of USVs allows a WCS operated at an mm-level distance using a dock. Resultant tight coupling between the transmitter and receiver is conducive to high power, yet faces a challenge to alleviating misalignment sensitivity. In addition, considering USVs’ endurance, the weight of a WCS should be strictly limited. In this paper, a 6.0 kW underwater WCS is analyzed, designed, and optimized, which achieves a good balance of power capacity, misalignment tolerance, and onboard weight. A multi-receiving-coil structure is employed, which is crucial to large misalignment tolerance. On this basis, two types of coils adapting the hull shape of USV, viz., curved and quasi-curved coils, are devised and compared in case the hydrodynamic performance of USV is degraded. Finally, the weight of receiver is effectively reduced using bar-shaped ferrite without sacrificing the power capacity of WCSs. The results indicate a merely 8.73% drop in coupling coefficient with misalignment ranging from 0 to 100 mm. Moreover, ferrite use is reduced by 40.48 kg compared to a ferrite sheet, which accounts for 50.28% weight of the receiver.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9529/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/105261Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9529/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2024License: CC BYFull-Text: http://hdl.handle.net/10397/105261Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:MDPI AG Authors: Wang, Y; Niu, S; Fu, W;doi: 10.3390/en81212407
handle: 10397/43497
Two novel structures of permanent magnet (PM) machine, namely a hybrid excitation flux modulation machine (HEFMM) and a variable flux memory machine (VFMM), which have excellent field-weakening capability, are presented in this paper. The HEFMM incorporates the advantages of parallel hybrid excitation structure and flux modulation structure, so as to increase the torque density as well as increase the constant-power speed range. Inspired by the HEFMM, aiming to further improve the efficiency of machine, the VFMM with aluminum-nickel-cobalt (AlNiCo) PMs in the inner stator which can be magnetized by the current pulse of the direct current (DC) windings is developed. With double-stator structure, flux modulation effect in both machines can be employed to realize the hybrid excitation and regulate the air-gap flux density readily. The operation principle is illustrated and the static and steady performances of the machines are analyzed and compared with time stepping finite element analysis, which validates the effectiveness of the proposed designs.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/12/12407/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/12/13971/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/10397/43497Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/12/12407/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/12/13971/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/10397/43497Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 China (People's Republic of), China (People's Republic of), Hong KongPublisher:MDPI AG Authors: Yuanxi Chen; Weinong Fu; Shuangxia Niu; Sigao Wang;doi: 10.3390/su15065077
handle: 10397/99940
Magnetic gear and magnetic-geared machine (MGM) are the potential solutions in electric vehicles (EVs) powertrains for inherent high efficiency and mechanical simplification. However, the torque density issue of the MGM greatly limits its industrial application. To enhance the torque performance of the MGM, a torque-enhanced magnetic-geared machine with dual-series-winding and its design approach are proposed. The key merits of the proposed design are to achieve a high space utilization with a dual-winding design, with no additional control topologies and power converters required. The auxiliary winding is supplemented and integrated with modulation rings. The relative position of the stator and armature winding are designed and rotated compared to the modulation rings with auxiliary winding, to ensure the auxiliary winding shares the excitation with the armature winding. Accordingly, simplifying the external control topologies. With the proposed design, the torque of the MGM can be significantly enhanced with a single three-phase driving. Theoretical analysis, parameters optimization and electromagnetic verification are given, demonstrating that the proposed machine can achieve an efficiency of 93.2%, generate a torque of 107.2 N·m, and reach a torque density of 10.81 N·m/kg.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5077/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99940Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5077/pdfData sources: Multidisciplinary Digital Publishing InstituteHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BYFull-Text: http://hdl.handle.net/10397/99940Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xing Zhao; Shuangxia Niu; Weinong Fu;This article proposes a new hybrid-excited dual-permanent-magnet generator with the relieving-dc-saturation (RDCS) structure for stand-alone wind power generation. The proposed generator integrates the stator dc source and rotor permanent-magnet (PM) source in a single brushless structure, which enables coordinated power generation and flexible power adjustment. Moreover, considering the parasitic saturation effect in the stator core caused by the dc field source, a constant PM bias is introduced at the stator side to construct an RDCS structure, so that the core utilization ratio is improved as well as the generator power density. In this article, the generator structure and the operation principle are introduced. Some leading design parameters are determined based on the sensitivity analysis. A finite element and genetic algorithm combined method is further adopted to realize a multi-objective design optimization, and the optimal design of the proposed topology is verified to be a potential generator candidate for stand-alone wind power generation.
IEEE Transactions on... arrow_drop_down IEEE Transactions on MagneticsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tmag.2019.2951078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on MagneticsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tmag.2019.2951078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Yanding Bi; Weinong Fu; Shuangxia Niu; Jiahui Huang;doi: 10.3390/en16186650
Recently, the interest in consequent-pole flux-switching permanent magnet (CP-FSPM) machines has been increasing because of the flux-focusing PM arrangements and the removal of the flux-barrier effect. A simple and rigid outer-rotor salient pole rotor structure can be adopted in CP-FSPM machines, making them applicable for in-wheel direct-drive applications. In this study, three CP-FSPM machines with II-shaped (II-PM), V-shaped (V-PM), and straight U-shaped PM (SU-PM) arrays are analyzed and compared. Moreover, a CP-FSPM machine with inclined U-shaped PM (IU-PM) arrays is proposed to improve the flux-focusing effect and stator slot utilization. The working principles of CP-FSPM machines are analyzed by adopting a semi-analytical model. Combining the finite element analysis (FEA) results of air gap flux density and the analytical model of phase back electromotive force (EMF), the contributions of multiple working harmonics to the back EMF are quantitatively analyzed. Additionally, 6/16 and 6/17 CP-FSPM machines with different PM arrangements are globally optimized. Both the no-load and on-load performance of the optimized machines are included in the performance comparison. The results illustrate that the 6/16 and 6/17 machines exhibit their respective merits, and the IU-PM machine shows the best torque production ability in these CP-FSPM machines with the same design criteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Mingyuan Jiang; Kangshuo Zhao; Weiyu Wang; Shuangxia Niu;doi: 10.3390/su151813924
A novel compound-excited brushless DC motor with polygonal circular winding is proposed in this paper. The key is that DC excitation is effectively coupled with PM excitation, significantly improving the torque density per PM volume and improving the machine flux weakening performance in the proposed design. This proposed design provides simplified control characteristics similar to a compound-excited DC motor. Further, the flux weakening of the proposed machine can be smoothly achieved using polygonal closed-loop circular winding and a lagging slot winding shifting method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151813924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu