- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 France, Netherlands, France, Belgium, United Kingdom, France, GermanyPublisher:Wiley Publicly fundedFunded by:EC | PASTFORWARDEC| PASTFORWARDLanduyt, Dries; Perring, Michael; Blondeel, Haben; de Lombaerde, Emiel; Depauw, Leen; Lorer, Eline; Maes, Sybryn; Baeten, Lander; Bergès, Laurent; Bernhardt-Römermann, Markus; Brūmelis, Guntis; Brunet, Jörg; Chudomelová, Markéta; Czerepko, Janusz; Decocq, Guillaume; den Ouden, Jan; de Frenne, Pieter; Dirnböck, Thomas; Durak, Tomasz; Fichtner, Andreas; Gawryś, Radosław; Härdtle, Werner; Hédl, Radim; Heinrichs, Steffi; Heinken, Thilo; Jaroszewicz, Bogdan; Kirby, Keith; Kopecký, Martin; Máliš, František; Macek, Martin; Mitchell, Fraser; Naaf, Tobias; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Swierkosz, Krzysztof; Smart, Simon; van Calster, Hans; Vild, Ondřej; Waller, Donald; Wulf, Monika; Verheyen, Kris;AbstractPlant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global‐change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Germany, Argentina, Belgium, Czech Republic, Czech Republic, ArgentinaPublisher:Wiley Funded by:EC | UnderSCORE, SNSF | How does forest microclim..., EC | FORMICA +1 projectsEC| UnderSCORE ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimateKamila Reczyńska; Martin Macek; Florian Zellweger; Jonathan Lenoir; Wolfgang Schmidt; Imre Berki; Thomas Dirnböck; Lander Baeten; Markus Bernhardt-Römermann; Krzysztof Świerkosz; Pieter De Frenne; Sandra Díaz; Sandra Díaz; Tomasz Durak; Remigiusz Pielech; Kris Verheyen; Jörg Brunet; Bogdan Jaroszewicz; Radim Hédl; Monika Wulf; Guillaume Decocq; Thilo Heinken; Petr Petřík; Martin Kopecký; Martin Kopecký; María Mercedes Carón; Marek Malicki; Marek Malicki; Balázs Teleki; Thomas A. Nagel; František Máliš; Michael P. Perring; Michael P. Perring;handle: 11336/157745 , 1854/LU-8746181
Abstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, Belgium, Germany, PolandPublisher:Wiley Funded by:EC | eLTER PLUS, UKRI | RootDetect: Remote Detect...EC| eLTER PLUS ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors: Josep Padullés Cubino; Jonathan Lenoir; Daijiang Li; Flavia A. Montaño‐Centellas; +30 AuthorsJosep Padullés Cubino; Jonathan Lenoir; Daijiang Li; Flavia A. Montaño‐Centellas; Javier Retana; Lander Baeten; Markus Bernhardt‐Römermann; Markéta Chudomelová; Déborah Closset; Guillaume Decocq; Pieter De Frenne; Martin Diekmann; Thomas Dirnböck; Tomasz Durak; Radim Hédl; Thilo Heinken; Bogdan Jaroszewicz; Martin Kopecký; Martin Macek; František Máliš; Tobias Naaf; Anna Orczewska; Petr Petřík; Remigiusz Pielech; Kamila Reczyńska; Wolfgang Schmidt; Tibor Standovár; Krzysztof Świerkosz; Balázs Teleki; Kris Verheyen; Ondřej Vild; Donald Waller; Monika Wulf; Milan Chytrý;Summary Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi‐permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.
New Phytologist arrow_drop_down Diposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABGhent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.19477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert New Phytologist arrow_drop_down Diposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABGhent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.19477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United Kingdom, France, Germany, Netherlands, France, Belgium, Czech Republic, France, Czech RepublicPublisher:Wiley Monika Wulf; Ilze Liepiņa; Kris Verheyen; Haben Blondeel; Simon M. Smart; Sybryn L. Maes; Radosław Gawryś; Thilo Heinken; Jörg Brunet; Werner Härdtle; Emiel De Lombaerde; Karol Ujházy; Guillaume Decocq; Michael P. Perring; Michael P. Perring; Steffi Heinrichs; Bogdan Jaroszewicz; Leen Depauw; František Máliš; Dries Landuyt; Wolfgang Schmidt; Radim Hédl; Jan den Ouden; Janusz Czerepko; Guntis Brūmelis; Déborah Closset-Kopp; Martin Macek; Martin Kopecký; Martin Kopecký;handle: 1854/LU-8639585
Abstract A central challenge of today's ecological research is predicting how ecosystems will develop under future global change. Accurate predictions are complicated by (a) simultaneous effects of different drivers, such as climate change, nitrogen deposition and management changes; and (b) legacy effects from previous land use. We tested whether herb layer biodiversity (i.e. richness, Shannon diversity and evenness) and functional (i.e. herb cover, specific leaf area [SLA] and plant height) responses to environmental change drivers depended on land‐use history. We used resurvey data from 192 plots across nineteen European temperate forest regions, with large spatial variability in environmental change factors. We tested for interactions between land‐use history, distinguishing ancient and recent (i.e. post‐agricultural) forests and four drivers: temperature, nitrogen deposition, and aridity at the regional scale and light dynamics at the plot‐scale. Land‐use history significantly modulated global change effects on the functional signature of the herb layer (i.e. cover, SLA and plant height). Light availability was the main environmental driver of change interacting with land‐use history. We found greater herb cover and plant height decreases and SLA increases with decreasing light availability in ancient than in recent forests. Furthermore, we found greater decreases in herb cover with increased nitrogen deposition in ancient forests, whereas warming had the strongest decreasing effect on the herb cover in recent forests. Interactive effects between land‐use history and global change on biodiversity were not found, but species evenness increased more in ancient than in recent forests. Synthesis. Our results demonstrate that land‐use history should not be overlooked when predicting forest herb layer responses to global change. Moreover, we found that herb layer composition in semi‐natural deciduous forests is mainly controlled by local canopy characteristics, regulating light levels at the forest floor, and much less by environmental changes at the regional scale (here: warming, nitrogen deposition and aridity). The observed disconnect between biodiversity and functional herb layer responses to environmental changes demonstrates the importance of assessing both types of responses to increase our understanding of the possible impact of global change on the herb layer.
Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Belgium, Czech Republic, Czech RepublicPublisher:Wiley Funded by:EC | MOVINGTREES, EC | FORMICAEC| MOVINGTREES ,EC| FORMICAOndřej Vild; Pieter Vangansbeke; Markéta Chudomelová; Pieter De Frenne; Monika Wulf; Ute Jahn; Francisco Rodríguez-Sánchez; Francisco Rodríguez-Sánchez; Radim Hédl; František Máliš; Erik Welk;doi: 10.1111/geb.13303
handle: 1854/LU-8708229
AbstractMotivationDetailed knowledge on the climatic tolerances of species is crucial to understand, quantify and predict the impact of climate change on biodiversity and ecosystem functions. However, quantitative data are limited; often, only expert‐based qualitative estimates are available. With the ClimPlant database, we capitalize on the link between species distribution ranges and macroclimate to infer the realized climatic niches of 968 European forest plant species.Main types of variables containedThe ClimPlant database contains information on the distribution of monthly, growing‐season and annual mean, minimum and maximum temperature and total precipitation within the distribution range of 968 European forest plants.Spatial location and grainEurope in 10 arc‐min grid cells; the study area has been cropped rectangularly at 15° W (Atlantic Ocean), 60° E (Ural Mountains), 25° N (Sahara) and 75° N (Arctic Ocean).Time period and grainThe distribution ranges of forest plant species are based on two renowned distribution atlases. The monthly mean, minimum and maximum temperature and precipitation between 1970 and 2000 were extracted from WorldClim v.2.Major taxa and level of measurementNine hundred and sixty‐eight vascular plant species of European forests, with taxonomy following the Euro+Med PlantBase nomenclature .Software formatData in 56 CSV files, with 1,000 values for monthly, growing season and annual observations of mean, minimum and maximum temperature and precipitation in the distribution range for every species. One summary CSV file with summary statistics (mean, median, fifth and 95th percentile), for every species, of each climatic variable, together with seven key geographical descriptors: area of the distribution range, latitude and longitude of the centroid, and northern, eastern, western and southern range limits within the study area.
Global Ecology and B... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 18 May 2020 Czech Republic, Belgium, United Kingdom, Slovenia, Czech Republic, GermanyPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | FORMICA, EC | PASTFORWARD, SNSF | How does forest microclim...EC| FORMICA ,EC| PASTFORWARD ,SNSF| How does forest microclimate affect biodiversity dynamics?Jonathan Lenoir; Bogdan Jaroszewicz; Tomasz Durak; Marek Malicki; Pieter Vangansbeke; Hans Van Calster; Thilo Heinken; Balázs Teleki; Krzysztof Świerkosz; Markéta Chudomelová; Wolfgang Schmidt; Monika Wulf; Pieter De Frenne; Radim Hédl; František Máliš; Adrienne Ortmann-Ajkai; Tibor Standovár; Guillaume Decocq; Florian Zellweger; Florian Zellweger; Remigiusz Pielech; Imre Berki; David A. Coomes; Lander Baeten; Martin Macek; Kris Verheyen; Ondřej Vild; Jörg Brunet; Thomas A. Nagel; Thomas Dirnböck; Petr Petřík; Tobias Naaf; Kamila Reczyńska; Martin Kopecký; Martin Kopecký; Markus Bernhardt-Römermann;pmid: 32409476
handle: 11104/0315476 , 20.500.12556/RUL-116516 , 1854/LU-8674965
Local factors restrain forest warming Microclimates are key to understanding how organisms and ecosystems respond to macroclimate change, yet they are frequently neglected when studying biotic responses to global change. Zellweger et al. provide a long-term, continental-scale assessment of the effects of micro- and macroclimate on the community composition of European forests (see the Perspective by Lembrechts and Nijs). They show that changes in forest canopy cover are fundamentally important for driving community responses to climate change. Closed canopies buffer against the effects of macroclimatic change through their cooling effect, slowing shifts in community composition, whereas open canopies tend to accelerate community change through local heating effects. Science , this issue p. 772 ; see also p. 711
Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aba6880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 489 citations 489 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aba6880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Netherlands, Czech Republic, Germany, Czech Republic, GermanyPublisher:Wiley Funded by:EC | PASTFORWARDEC| PASTFORWARDKris Verheyen; Sybryn L. Maes; Thilo Heinken; Jan den Ouden; Jan Van den Bulcke; Steffi Heinrichs; Monika Wulf; Radim Hédl; Margot Vanhellemont; Guillaume Decocq; Bogdan Jaroszewicz; Jörg Brunet; František Máliš; Werner Härdtle; Michael P. Perring; Michael P. Perring; Martin Kopecký; Martin Kopecký; Guntis Brūmelis; Leen Depauw;doi: 10.1111/gcb.14493
pmid: 30346104
AbstractForecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management forQuercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefitedFraxinus,but negatively affectedQuercus’growth, highlighting species‐specific interactive tree growth responses to combined drivers. ForFagus,a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures onQuercus’growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.
Global Change Biolog... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Repository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2018Data sources: Publikationsserver der Universität Potsdamhttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Repository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2018Data sources: Publikationsserver der Universität Potsdamhttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 Germany, Belgium, France, France, France, FrancePublisher:Springer Science and Business Media LLC Steffen Ehrmann; Jaan Liira; Stefanie Gärtner; Karin Hansen; Jörg Brunet; Sara A. O. Cousins; Marc Deconchat; Guillaume Decocq; Pieter De Frenne; Pallieter De Smedt; Martin Diekmann; Emilie Gallet-Moron; Annette Kolb; Jonathan Lenoir; Jessica Lindgren; Tobias Naaf; Taavi Paal; Alicia Valdés; Kris Verheyen; Monika Wulf; Michael Scherer-Lorenzen;The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers.Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers.Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the microhabitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and ecosystem management on I. ricinus abundance.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2017 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2017 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2017Full-Text: https://freidok.uni-freiburg.de/data/13698Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12898-017-0141-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 13 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2017 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2017 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2017Full-Text: https://freidok.uni-freiburg.de/data/13698Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12898-017-0141-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 France, Netherlands, France, Belgium, United Kingdom, France, GermanyPublisher:Wiley Publicly fundedFunded by:EC | PASTFORWARDEC| PASTFORWARDLanduyt, Dries; Perring, Michael; Blondeel, Haben; de Lombaerde, Emiel; Depauw, Leen; Lorer, Eline; Maes, Sybryn; Baeten, Lander; Bergès, Laurent; Bernhardt-Römermann, Markus; Brūmelis, Guntis; Brunet, Jörg; Chudomelová, Markéta; Czerepko, Janusz; Decocq, Guillaume; den Ouden, Jan; de Frenne, Pieter; Dirnböck, Thomas; Durak, Tomasz; Fichtner, Andreas; Gawryś, Radosław; Härdtle, Werner; Hédl, Radim; Heinrichs, Steffi; Heinken, Thilo; Jaroszewicz, Bogdan; Kirby, Keith; Kopecký, Martin; Máliš, František; Macek, Martin; Mitchell, Fraser; Naaf, Tobias; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Swierkosz, Krzysztof; Smart, Simon; van Calster, Hans; Vild, Ondřej; Waller, Donald; Wulf, Monika; Verheyen, Kris;AbstractPlant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global‐change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Germany, Argentina, Belgium, Czech Republic, Czech Republic, ArgentinaPublisher:Wiley Funded by:EC | UnderSCORE, SNSF | How does forest microclim..., EC | FORMICA +1 projectsEC| UnderSCORE ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimateKamila Reczyńska; Martin Macek; Florian Zellweger; Jonathan Lenoir; Wolfgang Schmidt; Imre Berki; Thomas Dirnböck; Lander Baeten; Markus Bernhardt-Römermann; Krzysztof Świerkosz; Pieter De Frenne; Sandra Díaz; Sandra Díaz; Tomasz Durak; Remigiusz Pielech; Kris Verheyen; Jörg Brunet; Bogdan Jaroszewicz; Radim Hédl; Monika Wulf; Guillaume Decocq; Thilo Heinken; Petr Petřík; Martin Kopecký; Martin Kopecký; María Mercedes Carón; Marek Malicki; Marek Malicki; Balázs Teleki; Thomas A. Nagel; František Máliš; Michael P. Perring; Michael P. Perring;handle: 11336/157745 , 1854/LU-8746181
Abstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, Belgium, Germany, PolandPublisher:Wiley Funded by:EC | eLTER PLUS, UKRI | RootDetect: Remote Detect...EC| eLTER PLUS ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors: Josep Padullés Cubino; Jonathan Lenoir; Daijiang Li; Flavia A. Montaño‐Centellas; +30 AuthorsJosep Padullés Cubino; Jonathan Lenoir; Daijiang Li; Flavia A. Montaño‐Centellas; Javier Retana; Lander Baeten; Markus Bernhardt‐Römermann; Markéta Chudomelová; Déborah Closset; Guillaume Decocq; Pieter De Frenne; Martin Diekmann; Thomas Dirnböck; Tomasz Durak; Radim Hédl; Thilo Heinken; Bogdan Jaroszewicz; Martin Kopecký; Martin Macek; František Máliš; Tobias Naaf; Anna Orczewska; Petr Petřík; Remigiusz Pielech; Kamila Reczyńska; Wolfgang Schmidt; Tibor Standovár; Krzysztof Świerkosz; Balázs Teleki; Kris Verheyen; Ondřej Vild; Donald Waller; Monika Wulf; Milan Chytrý;Summary Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi‐permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.
New Phytologist arrow_drop_down Diposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABGhent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.19477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert New Phytologist arrow_drop_down Diposit Digital de Documents de la UABArticle . 2024License: CC BY NC NDData sources: Diposit Digital de Documents de la UABGhent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.19477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United Kingdom, France, Germany, Netherlands, France, Belgium, Czech Republic, France, Czech RepublicPublisher:Wiley Monika Wulf; Ilze Liepiņa; Kris Verheyen; Haben Blondeel; Simon M. Smart; Sybryn L. Maes; Radosław Gawryś; Thilo Heinken; Jörg Brunet; Werner Härdtle; Emiel De Lombaerde; Karol Ujházy; Guillaume Decocq; Michael P. Perring; Michael P. Perring; Steffi Heinrichs; Bogdan Jaroszewicz; Leen Depauw; František Máliš; Dries Landuyt; Wolfgang Schmidt; Radim Hédl; Jan den Ouden; Janusz Czerepko; Guntis Brūmelis; Déborah Closset-Kopp; Martin Macek; Martin Kopecký; Martin Kopecký;handle: 1854/LU-8639585
Abstract A central challenge of today's ecological research is predicting how ecosystems will develop under future global change. Accurate predictions are complicated by (a) simultaneous effects of different drivers, such as climate change, nitrogen deposition and management changes; and (b) legacy effects from previous land use. We tested whether herb layer biodiversity (i.e. richness, Shannon diversity and evenness) and functional (i.e. herb cover, specific leaf area [SLA] and plant height) responses to environmental change drivers depended on land‐use history. We used resurvey data from 192 plots across nineteen European temperate forest regions, with large spatial variability in environmental change factors. We tested for interactions between land‐use history, distinguishing ancient and recent (i.e. post‐agricultural) forests and four drivers: temperature, nitrogen deposition, and aridity at the regional scale and light dynamics at the plot‐scale. Land‐use history significantly modulated global change effects on the functional signature of the herb layer (i.e. cover, SLA and plant height). Light availability was the main environmental driver of change interacting with land‐use history. We found greater herb cover and plant height decreases and SLA increases with decreasing light availability in ancient than in recent forests. Furthermore, we found greater decreases in herb cover with increased nitrogen deposition in ancient forests, whereas warming had the strongest decreasing effect on the herb cover in recent forests. Interactive effects between land‐use history and global change on biodiversity were not found, but species evenness increased more in ancient than in recent forests. Synthesis. Our results demonstrate that land‐use history should not be overlooked when predicting forest herb layer responses to global change. Moreover, we found that herb layer composition in semi‐natural deciduous forests is mainly controlled by local canopy characteristics, regulating light levels at the forest floor, and much less by environmental changes at the regional scale (here: warming, nitrogen deposition and aridity). The observed disconnect between biodiversity and functional herb layer responses to environmental changes demonstrates the importance of assessing both types of responses to increase our understanding of the possible impact of global change on the herb layer.
Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Belgium, Czech Republic, Czech RepublicPublisher:Wiley Funded by:EC | MOVINGTREES, EC | FORMICAEC| MOVINGTREES ,EC| FORMICAOndřej Vild; Pieter Vangansbeke; Markéta Chudomelová; Pieter De Frenne; Monika Wulf; Ute Jahn; Francisco Rodríguez-Sánchez; Francisco Rodríguez-Sánchez; Radim Hédl; František Máliš; Erik Welk;doi: 10.1111/geb.13303
handle: 1854/LU-8708229
AbstractMotivationDetailed knowledge on the climatic tolerances of species is crucial to understand, quantify and predict the impact of climate change on biodiversity and ecosystem functions. However, quantitative data are limited; often, only expert‐based qualitative estimates are available. With the ClimPlant database, we capitalize on the link between species distribution ranges and macroclimate to infer the realized climatic niches of 968 European forest plant species.Main types of variables containedThe ClimPlant database contains information on the distribution of monthly, growing‐season and annual mean, minimum and maximum temperature and total precipitation within the distribution range of 968 European forest plants.Spatial location and grainEurope in 10 arc‐min grid cells; the study area has been cropped rectangularly at 15° W (Atlantic Ocean), 60° E (Ural Mountains), 25° N (Sahara) and 75° N (Arctic Ocean).Time period and grainThe distribution ranges of forest plant species are based on two renowned distribution atlases. The monthly mean, minimum and maximum temperature and precipitation between 1970 and 2000 were extracted from WorldClim v.2.Major taxa and level of measurementNine hundred and sixty‐eight vascular plant species of European forests, with taxonomy following the Euro+Med PlantBase nomenclature .Software formatData in 56 CSV files, with 1,000 values for monthly, growing season and annual observations of mean, minimum and maximum temperature and precipitation in the distribution range for every species. One summary CSV file with summary statistics (mean, median, fifth and 95th percentile), for every species, of each climatic variable, together with seven key geographical descriptors: area of the distribution range, latitude and longitude of the centroid, and northern, eastern, western and southern range limits within the study area.
Global Ecology and B... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyGlobal Ecology and BiogeographyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 18 May 2020 Czech Republic, Belgium, United Kingdom, Slovenia, Czech Republic, GermanyPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | FORMICA, EC | PASTFORWARD, SNSF | How does forest microclim...EC| FORMICA ,EC| PASTFORWARD ,SNSF| How does forest microclimate affect biodiversity dynamics?Jonathan Lenoir; Bogdan Jaroszewicz; Tomasz Durak; Marek Malicki; Pieter Vangansbeke; Hans Van Calster; Thilo Heinken; Balázs Teleki; Krzysztof Świerkosz; Markéta Chudomelová; Wolfgang Schmidt; Monika Wulf; Pieter De Frenne; Radim Hédl; František Máliš; Adrienne Ortmann-Ajkai; Tibor Standovár; Guillaume Decocq; Florian Zellweger; Florian Zellweger; Remigiusz Pielech; Imre Berki; David A. Coomes; Lander Baeten; Martin Macek; Kris Verheyen; Ondřej Vild; Jörg Brunet; Thomas A. Nagel; Thomas Dirnböck; Petr Petřík; Tobias Naaf; Kamila Reczyńska; Martin Kopecký; Martin Kopecký; Markus Bernhardt-Römermann;pmid: 32409476
handle: 11104/0315476 , 20.500.12556/RUL-116516 , 1854/LU-8674965
Local factors restrain forest warming Microclimates are key to understanding how organisms and ecosystems respond to macroclimate change, yet they are frequently neglected when studying biotic responses to global change. Zellweger et al. provide a long-term, continental-scale assessment of the effects of micro- and macroclimate on the community composition of European forests (see the Perspective by Lembrechts and Nijs). They show that changes in forest canopy cover are fundamentally important for driving community responses to climate change. Closed canopies buffer against the effects of macroclimatic change through their cooling effect, slowing shifts in community composition, whereas open canopies tend to accelerate community change through local heating effects. Science , this issue p. 772 ; see also p. 711
Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aba6880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 489 citations 489 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of LjubljanaRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aba6880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Netherlands, Czech Republic, Germany, Czech Republic, GermanyPublisher:Wiley Funded by:EC | PASTFORWARDEC| PASTFORWARDKris Verheyen; Sybryn L. Maes; Thilo Heinken; Jan den Ouden; Jan Van den Bulcke; Steffi Heinrichs; Monika Wulf; Radim Hédl; Margot Vanhellemont; Guillaume Decocq; Bogdan Jaroszewicz; Jörg Brunet; František Máliš; Werner Härdtle; Michael P. Perring; Michael P. Perring; Martin Kopecký; Martin Kopecký; Guntis Brūmelis; Leen Depauw;doi: 10.1111/gcb.14493
pmid: 30346104
AbstractForecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management forQuercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefitedFraxinus,but negatively affectedQuercus’growth, highlighting species‐specific interactive tree growth responses to combined drivers. ForFagus,a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures onQuercus’growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.
Global Change Biolog... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Repository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2018Data sources: Publikationsserver der Universität Potsdamhttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Repository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2018Data sources: Publikationsserver der Universität Potsdamhttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 Germany, Belgium, France, France, France, FrancePublisher:Springer Science and Business Media LLC Steffen Ehrmann; Jaan Liira; Stefanie Gärtner; Karin Hansen; Jörg Brunet; Sara A. O. Cousins; Marc Deconchat; Guillaume Decocq; Pieter De Frenne; Pallieter De Smedt; Martin Diekmann; Emilie Gallet-Moron; Annette Kolb; Jonathan Lenoir; Jessica Lindgren; Tobias Naaf; Taavi Paal; Alicia Valdés; Kris Verheyen; Monika Wulf; Michael Scherer-Lorenzen;The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers.Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers.Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the microhabitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and ecosystem management on I. ricinus abundance.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2017 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2017 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2017Full-Text: https://freidok.uni-freiburg.de/data/13698Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12898-017-0141-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 13 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2017 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2017 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2017Full-Text: https://freidok.uni-freiburg.de/data/13698Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12898-017-0141-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu