- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 28 Jul 2021 Australia, Australia, Germany, Switzerland, Finland, France, United Kingdom, France, United Kingdom, France, United Kingdom, Czech Republic, France, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAREC| MONOSTARKurt Nicolussi; Vladimir S. Myglan; Markus Stoffel; Bao Yang; Bao Yang; Kristina Seftigen; Kristina Seftigen; Paul J. Krusic; Paul J. Krusic; Josef Ludescher; Jan Esper; Jianglin Wang; Jianglin Wang; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Ulf Büntgen; Guobao Xu; Guobao Xu; Matthew W. Salzer; Étienne Boucher; Étienne Boucher; Philipp Hochreuther; Samuli Helama; Ernesto Tejedor; Frederick Reinig; Clive Oppenheimer; Clive Oppenheimer; Fabio Gennaretti; Achim Bräuning; A. Stine; Christophe Corona; Sebastian Guillet; Peter Huybers; Wolfgang Jens-Henrik Meier; A. M. Trevino; Paolo Cherubini; Björn E. Gunnarson; Malcolm K. Hughes; Dominique Arseneault; Kevin J. Anchukaitis; Joel Guiot; Kathy Allen; Kathy Allen; Olga V. Churakova (Sidorova); Jussi Grießinger; Scott St. George; Rob Wilson; Rob Wilson; Snigdhansu Chatterjee; Valerie Trouet;doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
AbstractTree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.
Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:Springer Science and Business Media LLC Funded by:NSF | PIRE: Climate Research Ed..., EC | LASTJOURNEY, EC | ENERCOVERY +2 projectsNSF| PIRE: Climate Research Education in the Americas Using Tree-Ring and Cave Sediment Examples (PIRE-CREATE) ,EC| LASTJOURNEY ,EC| ENERCOVERY ,EC| ITHACA ,NSF| P2C2: High-resolution Reconstruction of the South American Monsoon History from Isotopic Proxies and Forward ModelingV. M. Ramirez; Francisco W. Cruz; Mathias Vuille; Valdir F. Novello; Nicolás M. Stríkis; Hai Cheng; Haiwei Zhang; Juan Pablo Bernal; Wei Du; Angela Ampuero; Michael W. Deininger; Cristiano M. Chiessi; Ernesto Tejedor; José Leandro Pereira Silveira Campos; Yassine Ait Brahim; R. Lawrence Edwards;handle: 10261/363832
AbstractA paradigm in paleoclimatology holds that shifts in the mean position of the Intertropical Convergence Zone were the dominant climatic mechanism controlling rainfall in the tropics during the last glacial period. We present a new paleo-rainfall reconstruction based on speleothem stable oxygen isotopes record from Colombia, which spans most of the last glacial cycle. The strength and positioning of the Intertropical Convergence Zone over northern South America were more strongly affected by summer insolation at high northern latitudes than by local insolation during the last glacial cycle, resulting in an antiphased relationship with climate in the Cariaco Basin. Our data also provide new insight into how orbital forcing amplified/dampened Intertropical Convergence Zone precipitation during millennial-scale events. During Greenland Stadial events, the Intertropical Convergence Zone was positioned close to the latitude of El Peñon, as expressed by more negative δ18O values. Greenland Interstadial events are marked by relatively high stable oxygen isotope values and reduced rainfall in the El Peñon record, suggesting a northward withdrawal of the Intertropical Convergence Zone. During some Heinrich Stadial events, and especially Heinrich Stadial 1, the Intertropical Convergence Zone must have been displaced away from its modern location near El Peñon, as conditions were very dry at both El Peñon and Cariaco.
Communications Earth... arrow_drop_down Communications Earth & EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACommunications Earth & EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-023-01124-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 32visibility views 32 download downloads 106 Powered bymore_vert Communications Earth... arrow_drop_down Communications Earth & EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACommunications Earth & EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-023-01124-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Wiley Funded by:EC | MONOSTAR, DFGEC| MONOSTAR ,DFGAuthors: Edurne Martinez del Castillo; Max C. A. Torbenson; Frederick Reinig; Ernesto Tejedor; +2 AuthorsEdurne Martinez del Castillo; Max C. A. Torbenson; Frederick Reinig; Ernesto Tejedor; Martín de Luis; Jan Esper;doi: 10.1111/gcb.17580
pmid: 39548695
ABSTRACTForests are essential to climate change mitigation through carbon sequestration, transpiration, and turnover. However, the quantification of climate change impacts on forest growth is uncertain and even contradictory in some regions, which is the result of spatially constrained studies. Here, we use an unprecedented network of 1.5 million tree growth records from 493 Picea abies and Pinus sylvestris stands across Europe to predict species‐specific tree growth variability from 1950 to 2016 (R2 > 0.82) and develop 21st‐century gridded projections considering different climate change scenarios. The approach demonstrates overall positive effects of warming temperatures leading to 25% projected conifer growth increases under the SPP370 scenario, but these additional carbon gains are spatially inhomogeneous and associated with geographic climate gradients. Maximum gains are projected for pines in Scandinavia, where growth trajectories indicate 50% increases by 2071–2100. Smaller but significant growth reductions are projected in Mediterranean Europe, where conifer growth shrinks by 25% in response to warmer temperatures. Our results reveal potential mitigating effects via forest carbon sequestration increases in response to global warming and stress the importance of effective forest management.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/147685Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/147685Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Embargo end date: 17 Jul 2020 Spain, United Kingdom, GermanyPublisher:MDPI AG Funded by:NSF | Collaborative Research: P..., NSF | PIRE: Climate Research Ed..., DFGNSF| Collaborative Research: P2C2--Reconstructing South American Monsoon Sensitivity to Internal and External Forcing: Reconciling Models and Tree-ring Proxies in the Central Andes ,NSF| PIRE: Climate Research Education in the Americas Using Tree-Ring and Cave Sediment Examples (PIRE-CREATE) ,DFGJan Esper; Claudia Hartl; Ernesto Tejedor; Martin de Luis; Björn Günther; Ulf Büntgen;handle: 20.500.12030/5122
The presence of an ancient, high-elevation pine forest in the Natural Park of Sierras de Cazorla in southern Spain, including some trees reaching >700 years, stimulated efforts to develop high-resolution temperature reconstructions in an otherwise drought-dominated region. Here, we present a reconstruction of spring and fall temperature variability derived from black pine tree ring maximum densities reaching back to 1350 Coefficient of Efficiency (CE). The reconstruction is accompanied by large uncertainties resulting from low interseries correlations among the single trees and a limited number of reliable instrumental stations in the study region. The reconstructed temperature history reveals warm conditions during the early 16th and 19th centuries that were of similar magnitude to the warm temperatures recorded since the late 20th century. A sharp transition from cold conditions in the late 18th century (t1781–1810 = −1.15 °C ± 0.64 °C) to warm conditions in the early 19th century (t1818–1847 = −0.06 °C ± 0.49 °C) is centered around the 1815 Tambora eruption (t1816 = −2.1 °C ± 0.55 °C). The new reconstruction from southern Spain correlates significantly with high-resolution temperature histories from the Pyrenees located ~600 km north of the Cazorla Natural Park, an association that is temporally stable over the past 650 years (r1350–2005 > 0.3, p < 0.0001) and particularly strong in the high-frequency domain (rHF > 0.4). Yet, only a few of the reconstructed cold extremes (1453, 1601, 1816) coincide with large volcanic eruptions, suggesting that the severe cooling events in southern Spain are controlled by internal dynamics rather than external (volcanic) forcing.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/7/748/pdfData sources: Multidisciplinary Digital Publishing InstituteGutenberg Open Science (Open-Science-Repository of the Johannes Gutenberg-University Mainz)Article . 2020License: CC BYFull-Text: http://doi.org/10.25358/openscience-5118Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2020License: CC BYData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11070748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/7/748/pdfData sources: Multidisciplinary Digital Publishing InstituteGutenberg Open Science (Open-Science-Repository of the Johannes Gutenberg-University Mainz)Article . 2020License: CC BYFull-Text: http://doi.org/10.25358/openscience-5118Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2020License: CC BYData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11070748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 04 Feb 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAR, DFGEC| MONOSTAR ,DFGSophie Spelsberg; Ulf Büntgen; Inga K. Homfeld; Marcel Kunz; Edurne Martinez del Castillo; Ernesto Tejedor; Max Torbenson; Emanuele Ziaco; Jan Esper;Abstract Key message The temperature sensitivity of maximum latewood density measurements in pine trees from a high-elevation site in the Spanish Pyrenees increases with tree age. Detrending modulates the intensity of the effect. Abstract Tree-rings are the prime archive for high-resolution climate information over the past two millennia. However, the accuracy of annually resolved reconstructions from tree-rings can be constrained by what is known as climate signal age effects (CSAE), encompassing changes in the sensitivity of tree growth to climate over their lifespans. Here, we evaluate CSAE in Pinus uncinata from an upper tree line site in the Spanish central Pyrenees, Lake Gerber, which became a key location for reconstructing western Mediterranean summer temperatures at annual resolution. We use tree-ring width (TRW) and maximum latewood density (MXD) measurements from 50 pine trees with individual ages ranging from 7 to 406 years. For MXD, temperature sensitivity increases significantly (p < 0.01) with tree age from r = 0.31 in juvenile rings with a cambial age < 100 years to r = 0.49 in adult rings > 100 years. Similar CSAE are not detected in TRW, likely affected by the overall lower temperature signal (r TRW = 0.45 vs. r MXD = 0.81 from 1951 to 2020). The severity of CSAE is influenced by the approach used to remove ontogenetic trends, highlighting the need to assess and consider potential biases during tree-ring standardization. Our findings reveal CSAE to add uncertainty in MXD-based climate reconstructions in the Mediterranean. We recommend studying CSAE by sampling diverse age classes in dendroclimatic field campaigns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00468-024-02598-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00468-024-02598-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Funded by:EC | ITHACAEC| ITHACAAuthors: Gómez-García, Paula; Madrigal-González, Jaime; Arriaga, Francisco; Sánchez, José Carlos Robredo; +2 AuthorsGómez-García, Paula; Madrigal-González, Jaime; Arriaga, Francisco; Sánchez, José Carlos Robredo; Tejedor, Ernesto; Ballesteros-Cánovas, Juan Antonio;Mountain protection forests can prevent natural hazards by reducing their onset and propagation probabilities. In fact, individual trees act as natural barriers against hydrogeomorphic events. However, assessing the structural strength of trees against these hazards is challenging, especially in a context of climate change due to the intensification of extreme events and changes in forest dynamics. Here, we focus on the mechanical analyses of two of the most common tree species across the Pyrenees (Abies alba Mill. and Fagus sylvatica L.) growing in two different areas (Spain and France), and affected by recurrent snow avalanche and rockfall events. We first performed 53 pulling test on mature trees, where the root-plate stiffness and the modulus of elasticity of the stems were evaluated. To further analyse the impact of forest management and climate on protective forests, we yielded information on tree growth using dendroecology techniques. Then, we assessed structure and neighbourhood characteristics for each target tree to account for the surrounding forest structure. Finally, using linear and structured equation models we tested if the mechanical capacity of the trees is determined either by functional traits (e.g. species, tree growth, diameter and height) or forest structural traits (e.g. tree density, tree structure and slenderness) or both. Our results suggest that the forest neighbourhood influences tree mechanical capacity through two pathways, including both functional and structural traits. The individual stiffness parameter of trees is influenced by their functional traits, while their structural traits are more closely related with changes in the modulus of elasticity. Both species exhibit varying levels of dominance in different locations, which is related to their resilience to the diverse natural hazards they confront. Our findings provide relevant insights to anticipating management strategies for forests that serve as a protective barrier against natural hazards in the context of a changing climate.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.174359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 44visibility views 44 download downloads 198 Powered bymore_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.174359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 SpainPublisher:Springer Science and Business Media LLC Funded by:NSF | PIRE: Climate Research Ed..., EC | ITHACA, NSF | High Spatial Resolution A...NSF| PIRE: Climate Research Education in the Americas Using Tree-Ring and Cave Sediment Examples (PIRE-CREATE) ,EC| ITHACA ,NSF| High Spatial Resolution Assessment of the Speleothem Magnetization ProxyAuthors: Nicolás M. Stríkis; Plácido Fabrício Silva Melo Buarque; Francisco W. Cruz; Juan Pablo Bernal; +18 AuthorsNicolás M. Stríkis; Plácido Fabrício Silva Melo Buarque; Francisco W. Cruz; Juan Pablo Bernal; Mathias Vuille; Ernesto Tejedor; Matheus Simões Santos; M. H. Shimizu; Angela Ampuero; Wenjing Du; Gilvan Sampaio; Hamilton dos Reis Sales; José Leandro Pereira Silveira Campos; Mary Toshie Kayano; James Apaéstegui; Roger Fu; Hai Cheng; R. Lawrence Edwards; Víctor C. Mayta; Danielle da Silva Francischini; Marco Aurélio Zezzi Arruda; Valdir F. Novello;AbstractA better understanding of the relative roles of internal climate variability and external contributions, from both natural (solar, volcanic) and anthropogenic greenhouse gas forcing, is important to better project future hydrologic changes. Changes in the evaporative demand play a central role in this context, particularly in tropical areas characterized by high precipitation seasonality, such as the tropical savannah and semi-desertic biomes. Here we present a set of geochemical proxies in speleothems from a well-ventilated cave located in central-eastern Brazil which shows that the evaporative demand is no longer being met by precipitation, leading to a hydrological deficit. A marked change in the hydrologic balance in central-eastern Brazil, caused by a severe warming trend, can be identified, starting in the 1970s. Our findings show that the current aridity has no analog over the last 720 years. A detection and attribution study indicates that this trend is mostly driven by anthropogenic forcing and cannot be explained by natural factors alone. These results reinforce the premise of a severe long-term drought in the subtropics of eastern South America that will likely be further exacerbated in the future given its apparent connection to increased greenhouse gas emissions.
Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45469-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 39visibility views 39 download downloads 101 Powered bymore_vert Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45469-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 28 Jul 2021 Australia, Australia, Germany, Switzerland, Finland, France, United Kingdom, France, United Kingdom, France, United Kingdom, Czech Republic, France, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAREC| MONOSTARKurt Nicolussi; Vladimir S. Myglan; Markus Stoffel; Bao Yang; Bao Yang; Kristina Seftigen; Kristina Seftigen; Paul J. Krusic; Paul J. Krusic; Josef Ludescher; Jan Esper; Jianglin Wang; Jianglin Wang; Alexander V. Kirdyanov; Alexander V. Kirdyanov; Ulf Büntgen; Guobao Xu; Guobao Xu; Matthew W. Salzer; Étienne Boucher; Étienne Boucher; Philipp Hochreuther; Samuli Helama; Ernesto Tejedor; Frederick Reinig; Clive Oppenheimer; Clive Oppenheimer; Fabio Gennaretti; Achim Bräuning; A. Stine; Christophe Corona; Sebastian Guillet; Peter Huybers; Wolfgang Jens-Henrik Meier; A. M. Trevino; Paolo Cherubini; Björn E. Gunnarson; Malcolm K. Hughes; Dominique Arseneault; Kevin J. Anchukaitis; Joel Guiot; Kathy Allen; Kathy Allen; Olga V. Churakova (Sidorova); Jussi Grießinger; Scott St. George; Rob Wilson; Rob Wilson; Snigdhansu Chatterjee; Valerie Trouet;doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
doi: 10.1038/s41467-021-23627-6 , 10.17863/cam.72964 , 10.17863/cam.73538 , 10.17863/cam.70956 , 10.13016/m2vnjq-1qm5
pmid: 34099683
pmc: PMC8184857
handle: 10023/23399 , 11343/304767
AbstractTree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.
Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/304767Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/23399Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03252710Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Univerzitní repozitář Masarykovy univerzityArticle . 2021Data sources: Univerzitní repozitář Masarykovy univerzityUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23627-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:Springer Science and Business Media LLC Funded by:NSF | PIRE: Climate Research Ed..., EC | LASTJOURNEY, EC | ENERCOVERY +2 projectsNSF| PIRE: Climate Research Education in the Americas Using Tree-Ring and Cave Sediment Examples (PIRE-CREATE) ,EC| LASTJOURNEY ,EC| ENERCOVERY ,EC| ITHACA ,NSF| P2C2: High-resolution Reconstruction of the South American Monsoon History from Isotopic Proxies and Forward ModelingV. M. Ramirez; Francisco W. Cruz; Mathias Vuille; Valdir F. Novello; Nicolás M. Stríkis; Hai Cheng; Haiwei Zhang; Juan Pablo Bernal; Wei Du; Angela Ampuero; Michael W. Deininger; Cristiano M. Chiessi; Ernesto Tejedor; José Leandro Pereira Silveira Campos; Yassine Ait Brahim; R. Lawrence Edwards;handle: 10261/363832
AbstractA paradigm in paleoclimatology holds that shifts in the mean position of the Intertropical Convergence Zone were the dominant climatic mechanism controlling rainfall in the tropics during the last glacial period. We present a new paleo-rainfall reconstruction based on speleothem stable oxygen isotopes record from Colombia, which spans most of the last glacial cycle. The strength and positioning of the Intertropical Convergence Zone over northern South America were more strongly affected by summer insolation at high northern latitudes than by local insolation during the last glacial cycle, resulting in an antiphased relationship with climate in the Cariaco Basin. Our data also provide new insight into how orbital forcing amplified/dampened Intertropical Convergence Zone precipitation during millennial-scale events. During Greenland Stadial events, the Intertropical Convergence Zone was positioned close to the latitude of El Peñon, as expressed by more negative δ18O values. Greenland Interstadial events are marked by relatively high stable oxygen isotope values and reduced rainfall in the El Peñon record, suggesting a northward withdrawal of the Intertropical Convergence Zone. During some Heinrich Stadial events, and especially Heinrich Stadial 1, the Intertropical Convergence Zone must have been displaced away from its modern location near El Peñon, as conditions were very dry at both El Peñon and Cariaco.
Communications Earth... arrow_drop_down Communications Earth & EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACommunications Earth & EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-023-01124-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 32visibility views 32 download downloads 106 Powered bymore_vert Communications Earth... arrow_drop_down Communications Earth & EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACommunications Earth & EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-023-01124-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Wiley Funded by:EC | MONOSTAR, DFGEC| MONOSTAR ,DFGAuthors: Edurne Martinez del Castillo; Max C. A. Torbenson; Frederick Reinig; Ernesto Tejedor; +2 AuthorsEdurne Martinez del Castillo; Max C. A. Torbenson; Frederick Reinig; Ernesto Tejedor; Martín de Luis; Jan Esper;doi: 10.1111/gcb.17580
pmid: 39548695
ABSTRACTForests are essential to climate change mitigation through carbon sequestration, transpiration, and turnover. However, the quantification of climate change impacts on forest growth is uncertain and even contradictory in some regions, which is the result of spatially constrained studies. Here, we use an unprecedented network of 1.5 million tree growth records from 493 Picea abies and Pinus sylvestris stands across Europe to predict species‐specific tree growth variability from 1950 to 2016 (R2 > 0.82) and develop 21st‐century gridded projections considering different climate change scenarios. The approach demonstrates overall positive effects of warming temperatures leading to 25% projected conifer growth increases under the SPP370 scenario, but these additional carbon gains are spatially inhomogeneous and associated with geographic climate gradients. Maximum gains are projected for pines in Scandinavia, where growth trajectories indicate 50% increases by 2071–2100. Smaller but significant growth reductions are projected in Mediterranean Europe, where conifer growth shrinks by 25% in response to warmer temperatures. Our results reveal potential mitigating effects via forest carbon sequestration increases in response to global warming and stress the importance of effective forest management.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/147685Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/147685Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Embargo end date: 17 Jul 2020 Spain, United Kingdom, GermanyPublisher:MDPI AG Funded by:NSF | Collaborative Research: P..., NSF | PIRE: Climate Research Ed..., DFGNSF| Collaborative Research: P2C2--Reconstructing South American Monsoon Sensitivity to Internal and External Forcing: Reconciling Models and Tree-ring Proxies in the Central Andes ,NSF| PIRE: Climate Research Education in the Americas Using Tree-Ring and Cave Sediment Examples (PIRE-CREATE) ,DFGJan Esper; Claudia Hartl; Ernesto Tejedor; Martin de Luis; Björn Günther; Ulf Büntgen;handle: 20.500.12030/5122
The presence of an ancient, high-elevation pine forest in the Natural Park of Sierras de Cazorla in southern Spain, including some trees reaching >700 years, stimulated efforts to develop high-resolution temperature reconstructions in an otherwise drought-dominated region. Here, we present a reconstruction of spring and fall temperature variability derived from black pine tree ring maximum densities reaching back to 1350 Coefficient of Efficiency (CE). The reconstruction is accompanied by large uncertainties resulting from low interseries correlations among the single trees and a limited number of reliable instrumental stations in the study region. The reconstructed temperature history reveals warm conditions during the early 16th and 19th centuries that were of similar magnitude to the warm temperatures recorded since the late 20th century. A sharp transition from cold conditions in the late 18th century (t1781–1810 = −1.15 °C ± 0.64 °C) to warm conditions in the early 19th century (t1818–1847 = −0.06 °C ± 0.49 °C) is centered around the 1815 Tambora eruption (t1816 = −2.1 °C ± 0.55 °C). The new reconstruction from southern Spain correlates significantly with high-resolution temperature histories from the Pyrenees located ~600 km north of the Cazorla Natural Park, an association that is temporally stable over the past 650 years (r1350–2005 > 0.3, p < 0.0001) and particularly strong in the high-frequency domain (rHF > 0.4). Yet, only a few of the reconstructed cold extremes (1453, 1601, 1816) coincide with large volcanic eruptions, suggesting that the severe cooling events in southern Spain are controlled by internal dynamics rather than external (volcanic) forcing.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/7/748/pdfData sources: Multidisciplinary Digital Publishing InstituteGutenberg Open Science (Open-Science-Repository of the Johannes Gutenberg-University Mainz)Article . 2020License: CC BYFull-Text: http://doi.org/10.25358/openscience-5118Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2020License: CC BYData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11070748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4433/11/7/748/pdfData sources: Multidisciplinary Digital Publishing InstituteGutenberg Open Science (Open-Science-Repository of the Johannes Gutenberg-University Mainz)Article . 2020License: CC BYFull-Text: http://doi.org/10.25358/openscience-5118Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of ZaragozaArticle . 2020License: CC BYData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos11070748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 04 Feb 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | MONOSTAR, DFGEC| MONOSTAR ,DFGSophie Spelsberg; Ulf Büntgen; Inga K. Homfeld; Marcel Kunz; Edurne Martinez del Castillo; Ernesto Tejedor; Max Torbenson; Emanuele Ziaco; Jan Esper;Abstract Key message The temperature sensitivity of maximum latewood density measurements in pine trees from a high-elevation site in the Spanish Pyrenees increases with tree age. Detrending modulates the intensity of the effect. Abstract Tree-rings are the prime archive for high-resolution climate information over the past two millennia. However, the accuracy of annually resolved reconstructions from tree-rings can be constrained by what is known as climate signal age effects (CSAE), encompassing changes in the sensitivity of tree growth to climate over their lifespans. Here, we evaluate CSAE in Pinus uncinata from an upper tree line site in the Spanish central Pyrenees, Lake Gerber, which became a key location for reconstructing western Mediterranean summer temperatures at annual resolution. We use tree-ring width (TRW) and maximum latewood density (MXD) measurements from 50 pine trees with individual ages ranging from 7 to 406 years. For MXD, temperature sensitivity increases significantly (p < 0.01) with tree age from r = 0.31 in juvenile rings with a cambial age < 100 years to r = 0.49 in adult rings > 100 years. Similar CSAE are not detected in TRW, likely affected by the overall lower temperature signal (r TRW = 0.45 vs. r MXD = 0.81 from 1951 to 2020). The severity of CSAE is influenced by the approach used to remove ontogenetic trends, highlighting the need to assess and consider potential biases during tree-ring standardization. Our findings reveal CSAE to add uncertainty in MXD-based climate reconstructions in the Mediterranean. We recommend studying CSAE by sampling diverse age classes in dendroclimatic field campaigns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00468-024-02598-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00468-024-02598-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Funded by:EC | ITHACAEC| ITHACAAuthors: Gómez-García, Paula; Madrigal-González, Jaime; Arriaga, Francisco; Sánchez, José Carlos Robredo; +2 AuthorsGómez-García, Paula; Madrigal-González, Jaime; Arriaga, Francisco; Sánchez, José Carlos Robredo; Tejedor, Ernesto; Ballesteros-Cánovas, Juan Antonio;Mountain protection forests can prevent natural hazards by reducing their onset and propagation probabilities. In fact, individual trees act as natural barriers against hydrogeomorphic events. However, assessing the structural strength of trees against these hazards is challenging, especially in a context of climate change due to the intensification of extreme events and changes in forest dynamics. Here, we focus on the mechanical analyses of two of the most common tree species across the Pyrenees (Abies alba Mill. and Fagus sylvatica L.) growing in two different areas (Spain and France), and affected by recurrent snow avalanche and rockfall events. We first performed 53 pulling test on mature trees, where the root-plate stiffness and the modulus of elasticity of the stems were evaluated. To further analyse the impact of forest management and climate on protective forests, we yielded information on tree growth using dendroecology techniques. Then, we assessed structure and neighbourhood characteristics for each target tree to account for the surrounding forest structure. Finally, using linear and structured equation models we tested if the mechanical capacity of the trees is determined either by functional traits (e.g. species, tree growth, diameter and height) or forest structural traits (e.g. tree density, tree structure and slenderness) or both. Our results suggest that the forest neighbourhood influences tree mechanical capacity through two pathways, including both functional and structural traits. The individual stiffness parameter of trees is influenced by their functional traits, while their structural traits are more closely related with changes in the modulus of elasticity. Both species exhibit varying levels of dominance in different locations, which is related to their resilience to the diverse natural hazards they confront. Our findings provide relevant insights to anticipating management strategies for forests that serve as a protective barrier against natural hazards in the context of a changing climate.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.174359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 44visibility views 44 download downloads 198 Powered bymore_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.174359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 SpainPublisher:Springer Science and Business Media LLC Funded by:NSF | PIRE: Climate Research Ed..., EC | ITHACA, NSF | High Spatial Resolution A...NSF| PIRE: Climate Research Education in the Americas Using Tree-Ring and Cave Sediment Examples (PIRE-CREATE) ,EC| ITHACA ,NSF| High Spatial Resolution Assessment of the Speleothem Magnetization ProxyAuthors: Nicolás M. Stríkis; Plácido Fabrício Silva Melo Buarque; Francisco W. Cruz; Juan Pablo Bernal; +18 AuthorsNicolás M. Stríkis; Plácido Fabrício Silva Melo Buarque; Francisco W. Cruz; Juan Pablo Bernal; Mathias Vuille; Ernesto Tejedor; Matheus Simões Santos; M. H. Shimizu; Angela Ampuero; Wenjing Du; Gilvan Sampaio; Hamilton dos Reis Sales; José Leandro Pereira Silveira Campos; Mary Toshie Kayano; James Apaéstegui; Roger Fu; Hai Cheng; R. Lawrence Edwards; Víctor C. Mayta; Danielle da Silva Francischini; Marco Aurélio Zezzi Arruda; Valdir F. Novello;AbstractA better understanding of the relative roles of internal climate variability and external contributions, from both natural (solar, volcanic) and anthropogenic greenhouse gas forcing, is important to better project future hydrologic changes. Changes in the evaporative demand play a central role in this context, particularly in tropical areas characterized by high precipitation seasonality, such as the tropical savannah and semi-desertic biomes. Here we present a set of geochemical proxies in speleothems from a well-ventilated cave located in central-eastern Brazil which shows that the evaporative demand is no longer being met by precipitation, leading to a hydrological deficit. A marked change in the hydrologic balance in central-eastern Brazil, caused by a severe warming trend, can be identified, starting in the 1970s. Our findings show that the current aridity has no analog over the last 720 years. A detection and attribution study indicates that this trend is mostly driven by anthropogenic forcing and cannot be explained by natural factors alone. These results reinforce the premise of a severe long-term drought in the subtropics of eastern South America that will likely be further exacerbated in the future given its apparent connection to increased greenhouse gas emissions.
Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45469-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 39visibility views 39 download downloads 101 Powered bymore_vert Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45469-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu