- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Authors: Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China ( host institution ); He, Wentian ( author ); Yang, J.Y. ( author ); Drury, C.F. ( author ); +6 AuthorsKey Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China ( host institution ); He, Wentian ( author ); Yang, J.Y. ( author ); Drury, C.F. ( author ); Smith, W.N. ( author ); Grant, B.B. ( author ); He, Ping ( author ); Qian, B. ( author ); Zhou, Wei ( author ); Hoogenboom, G. ( UF author );Abstract Accurately predicting the impacts of higher temperatures, different precipitation rates and elevated CO2 concentrations on crop yields and GHG emissions is required in order to develop adaptation strategies. The objectives of this study were to calibrate and evaluate a regionalized denitrification-decomposition (DNDC) model using measured crop yield, soil temperature, moisture and N2O emissions, and to explore the impacts of climate change scenarios (Representative Concentration Pathways (RCP) 4.5 and RCP 8.5) on crop yields and N2O emissions in Southwestern Ontario, Canada. This simulation study was based on a winter wheat-maize-soybean rotation under conventional tillage (CT) and no tillage (NT) practices at Woodslee, Ontario, Canada. The model was calibrated using various statistics including the d index (0.85–0.99), NSE (Nash-Sutcliffe efficiency, NSE > 0) and nRMSE (normalized root mean square error, nRMSE
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00590972/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00590972/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:IOP Publishing Budong Qian; Xuebin Zhang; Ward Smith; Brian Grant; Qi Jing; Alex J Cannon; Denise Neilsen; Brian McConkey; Guilong Li; Barrie Bonsal; Hui Wan; Li Xue; Jun Zhao;Abstract Science-based assessments of climate change impacts on cropping systems under different levels of global warming are essential for informing stakeholders which global climate targets and potential adaptation strategies may be effective. A comprehensive evaluation of climate change impacts on Canada’s crop production under different levels of global warming is currently lacking. The DayCent, DNDC and DSSAT models were employed to estimate changes in crop yield and production for three prominent crops including spring wheat, canola and maize in current agricultural regions of Canada. Four warming scenarios with global mean temperature changes of 1.5 °C, 2.0 °C, 2.5 °C and 3.0 °C above the pre-industrial level were investigated. Climate scenarios from 20 Global Climate Models, included in the Coupled Model Intercomparison Project Phase 5 and downscaled with a multivariate quantile mapping bias correction method, were used to drive the crop simulation models. Simulated yield changes demonstrate a potentially positive impact on spring wheat and canola yields at all four temperature levels, particularly when shifting planting date is considered in the simulations. There was less consensus for the currently utilized short-season maize cultivars, as yields were only projected to increase by DNDC compared to a slight decrease by DayCent and a slight increase up to 2.5 °C followed by a decrease at 3.0 °C by DSSAT. These findings indicate that climate at the global warming levels up to 3.0 °C above the pre-industrial level could be beneficial for crop production of small grains in Canada. However, these benefits declined after warming reached 2.5 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab17fb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab17fb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 SwedenPublisher:Informa UK Limited Nilsson, Johan; Tidåker, Pernilla; Sundberg, Cecilia; Henryson, Kajsa; Grant, Brian; Smith, Ward; Hansson, Per-Anders;In this study, Life Cycle Assessment (LCA) methodology was combined with the agro-ecosystem model DNDC to assess the climate and eutrophication impacts of perennial grass cultivation at five different sites in Sweden. The system was evaluated for two fertilisation rates, 140 and 200 kg N ha−1. The climate impact showed large variation between the investigated sites. The largest contribution to the climate impact was through soil N2O emissions and emissions associated with mineral fertiliser manufacturing. The highest climate impact was predicted for the site with the highest clay and initial organic carbon content, while lower impacts were predicted for the sandy loam soils, due to low N2O emissions, and for the silty clay loam, due to high carbon sequestration rate. The highest eutrophication potential was estimated for the sandy loam soils, while the sites with finer soil texture had lower eutrophication potential. According to the results, soil properties and weather conditions were more important than fertilisation rate for the climate impact of the system assessed. It was concluded that agro-ecosystem models can add a spatial and temporal dimension to environmental impact assessment in agricultural LCA studies. The results could be used to assist policymakers in optimising use of agricultural land.
SLU publication data... arrow_drop_down Acta Agriculturae Scandinavica Section B - Soil & Plant ScienceArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefActa Agriculturae Scandinavica Section B - Soil & Plant ScienceArticleLicense: CC BY NC NDData sources: UnpayWallActa Agriculturae Scandinavica Section B - Soil & Plant ScienceJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09064710.2020.1822436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down Acta Agriculturae Scandinavica Section B - Soil & Plant ScienceArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefActa Agriculturae Scandinavica Section B - Soil & Plant ScienceArticleLicense: CC BY NC NDData sources: UnpayWallActa Agriculturae Scandinavica Section B - Soil & Plant ScienceJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09064710.2020.1822436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, France, France, United Kingdom, France, France, Italy, Australia, France, France, Switzerland, Germany, AustraliaPublisher:Wiley Funded by:EC | FACCE CSA, SNSF | Robust models for assessi...EC| FACCE CSA ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures)Renáta Sándor; Paul C. D. Newton; Ward Smith; Nuala Fitton; Brian Grant; Jean-François Soussana; Joël Léonard; Katja Klumpp; Lutz Merbold; Lutz Merbold; Stephanie K. Jones; Raia Silvia Massad; Luca Doro; Andrew D. Moore; Elizabeth A. Meier; Fiona Ehrhardt; Vasileios Myrgiotis; Russel McAuliffe; Bruno Basso; Sandro José Giacomini; Sylvie Recous; Matthew T. Harrison; Peter Grace; Massimiliano De Antoni Migliorati; Gianni Bellocchi; Patricia Laville; Raphaël Martin; Val Snow; Miko U. F. Kirschbaum; Arti Bhatia; Pete Smith; Lianhai Wu; Qing Zhang; Mark Lieffering; Joanna Sharp; Elizabeth Pattey; Lorenzo Brilli; Mark A. Liebig; Christopher D. Dorich; Jordi Doltra; Susanne Rolinski;AbstractSimulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi‐species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi‐model ensembles to predict productivity and nitrous oxide (N2O) emissions for wheat, maize, rice and temperate grasslands. Using a multi‐stage modelling protocol, from blind simulations (stage 1) to partial (stages 2–4) and full calibration (stage 5), 24 process‐based biogeochemical models were assessed individually or as an ensemble against long‐term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N2O emissions. Results showed that across sites and crop/grassland types, 23%–40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N2O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N2O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2–4) markedly reduced prediction errors of the full model ensemble E‐median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N2O emissions. Yield‐scaled N2O emissions (N2O emissions divided by crop yields) were ranked accurately by three‐model ensembles across crop species and field sites. The potential of using process‐based model ensembles to predict jointly productivity and N2O emissions at field scale is discussed.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Australia, Australia, Hungary, Spain, HungaryPublisher:American Chemical Society (ACS) Funded by:UKRI | Dynamic monitoring, repor...UKRI| Dynamic monitoring, reporting and verification for implementing negative emission strategies in managed ecosystems (RETINA)Fabrizio Albanito; David McBey; Matthew Tom Harrison; Pete Smith; Fiona Ehrhardt; Arti Bhatia; Gianni Bellocchi; Lorenzo Brilli; Marco Carozzi; KM Christie; Jordi Doltra; Chris Dorich; Luca Doro; Peter Grace; Brian Grant; Joël Léonard; Mark A. Liebig; Cameron I. Ludemann; Raphaël Martin; Elizabeth A. Meier; Rachelle Meyer; Massimiliano De Antoni Migliorati; Vasileios Myrgiotis; Sylvie Recous; Renata Sándor; Val Snow; Jean‐François Soussana; Ward Smith; Nuala Fitton;On se rend de plus en plus compte que la complexité des études d'ensembles de modèles dépend non seulement des modèles utilisés, mais aussi de l'expérience et de l'approche utilisées par les modélisateurs pour calibrer et valider les résultats, qui restent une source d'incertitude. Ici, nous avons appliqué une méthode de prise de décision multicritères pour étudier la justification appliquée par les modélisateurs dans une étude d'ensemble de modèles où 12 types de modèles biogéochimiques différents basés sur des processus ont été comparés à travers cinq étapes d'étalonnage successives. Les modélisateurs partageaient un niveau d'accord commun sur l'importance des variables utilisées pour initialiser leurs modèles pour l'étalonnage. Cependant, nous avons constaté une incohérence entre les modélisateurs lors de l'évaluation de l'importance des variables d'entrée à travers différentes étapes d'étalonnage. Le niveau de pondération subjective attribué par les modélisateurs aux données d'étalonnage a diminué séquentiellement à mesure que l'étendue et le nombre de variables fournies augmentaient. Dans ce contexte, l'importance perçue attribuée à des variables telles que le taux de fertilisation, le régime d'irrigation, la texture du sol, le pH et les niveaux initiaux des stocks de carbone organique et d'azote du sol était statistiquement différente lorsqu'elle était classée selon les types de modèles. L'importance attribuée aux variables d'entrée telles que la durée expérimentale, la production primaire brute et l'échange net d'écosystèmes variait considérablement en fonction de la durée de l'expérience du modélisateur. Nous soutenons que l'accès progressif aux données d'entrée à travers les cinq étapes d'étalonnage a influencé négativement la cohérence des interprétations faites par les modélisateurs, avec un biais cognitif dans les routines d'étalonnage « essais et erreurs ». Notre étude souligne qu'il est essentiel de négliger les attributs humains et sociaux dans les résultats des études de modélisation et de comparaison des modèles. Bien que la complexité des processus capturés dans les algorithmes et le paramétrage du modèle soit importante, nous soutenons que (1) les hypothèses du modélisateur sur la mesure dans laquelle les paramètres doivent être modifiés et (2) les perceptions du modélisateur de l'importance des paramètres du modèle sont tout aussi essentielles pour obtenir un étalonnage du modèle de qualité que les détails numériques ou analytiques. Existe una creciente conciencia de que la complejidad de los estudios de conjuntos de modelos depende no solo de los modelos utilizados, sino también de la experiencia y el enfoque utilizados por los modeladores para calibrar y validar los resultados, que siguen siendo una fuente de incertidumbre. Aquí, aplicamos un método de toma de decisiones multicriterio para investigar la justificación aplicada por los modeladores en un estudio de conjunto de modelos donde se compararon 12 tipos de modelos biogeoquímicos diferentes basados en procesos en cinco etapas de calibración sucesivas. Los modeladores compartieron un nivel común de acuerdo sobre la importancia de las variables utilizadas para inicializar sus modelos para la calibración. Sin embargo, encontramos inconsistencia entre los modeladores al juzgar la importancia de las variables de entrada en diferentes etapas de calibración. El nivel de ponderación subjetiva atribuido por los modeladores a los datos de calibración disminuyó secuencialmente a medida que aumentaba el alcance y el número de variables proporcionadas. En este contexto, la importancia percibida atribuida a variables como la tasa de fertilización, el régimen de riego, la textura del suelo, el pH y los niveles iniciales de las reservas orgánicas de carbono y nitrógeno del suelo fue estadísticamente diferente cuando se clasificaron según los tipos de modelos. La importancia atribuida a variables de entrada como la duración experimental, la producción primaria bruta y el intercambio neto de ecosistemas varió significativamente según la duración de la experiencia del modelador. Argumentamos que el acceso gradual a los datos de entrada en las cinco etapas de calibración influyó negativamente en la consistencia de las interpretaciones realizadas por los modeladores, con sesgo cognitivo en las rutinas de calibración de "ensayo y error". Nuestro estudio destaca que pasar por alto los atributos humanos y sociales es fundamental en los resultados del modelado y los estudios de intercomparación de modelos. Si bien la complejidad de los procesos capturados en los algoritmos y la parametrización del modelo es importante, sostenemos que (1) las suposiciones del modelador sobre la medida en que se deben alterar los parámetros y (2) las percepciones del modelador sobre la importancia de los parámetros del modelo son tan críticas para obtener una calibración del modelo de calidad como los detalles numéricos o analíticos. There is a growing realization that the complexity of model ensemble studies depends not only on the models used but also on the experience and approach used by modelers to calibrate and validate results, which remain a source of uncertainty. Here, we applied a multi-criteria decision-making method to investigate the rationale applied by modelers in a model ensemble study where 12 process-based different biogeochemical model types were compared across five successive calibration stages. The modelers shared a common level of agreement about the importance of the variables used to initialize their models for calibration. However, we found inconsistency among modelers when judging the importance of input variables across different calibration stages. The level of subjective weighting attributed by modelers to calibration data decreased sequentially as the extent and number of variables provided increased. In this context, the perceived importance attributed to variables such as the fertilization rate, irrigation regime, soil texture, pH, and initial levels of soil organic carbon and nitrogen stocks was statistically different when classified according to model types. The importance attributed to input variables such as experimental duration, gross primary production, and net ecosystem exchange varied significantly according to the length of the modeler's experience. We argue that the gradual access to input data across the five calibration stages negatively influenced the consistency of the interpretations made by the modelers, with cognitive bias in "trial-and-error" calibration routines. Our study highlights that overlooking human and social attributes is critical in the outcomes of modeling and model intercomparison studies. While complexity of the processes captured in the model algorithms and parameterization is important, we contend that (1) the modeler's assumptions on the extent to which parameters should be altered and (2) modeler perceptions of the importance of model parameters are just as critical in obtaining a quality model calibration as numerical or analytical details. هناك إدراك متزايد بأن تعقيد دراسات مجموعة النماذج لا يعتمد فقط على النماذج المستخدمة ولكن أيضًا على الخبرة والنهج اللذين يستخدمهما المصممون لمعايرة النتائج والتحقق من صحتها، والتي لا تزال مصدرًا لعدم اليقين. هنا، طبقنا طريقة صنع قرار متعددة المعايير للتحقيق في الأساس المنطقي الذي طبقه مصممو النماذج في دراسة جماعية نموذجية حيث تمت مقارنة 12 نوعًا مختلفًا من النماذج البيوكيميائية القائمة على العمليات عبر خمس مراحل معايرة متتالية. شارك مصممو النماذج مستوى مشتركًا من الاتفاق حول أهمية المتغيرات المستخدمة لتهيئة نماذجهم للمعايرة. ومع ذلك، وجدنا عدم اتساق بين صانعي النماذج عند الحكم على أهمية متغيرات المدخلات عبر مراحل المعايرة المختلفة. انخفض مستوى الترجيح الذاتي الذي يعزوه صانعو النماذج إلى بيانات المعايرة بالتتابع مع زيادة مدى وعدد المتغيرات المقدمة. في هذا السياق، كانت الأهمية المتصورة المنسوبة إلى متغيرات مثل معدل التسميد ونظام الري وقوام التربة ودرجة الحموضة والمستويات الأولية لمخزونات الكربون العضوي والنيتروجين في التربة مختلفة إحصائيًا عند تصنيفها وفقًا لأنواع النماذج. اختلفت الأهمية المنسوبة إلى متغيرات المدخلات مثل المدة التجريبية، والإنتاج الأولي الإجمالي، وصافي تبادل النظام الإيكولوجي اختلافًا كبيرًا وفقًا لطول تجربة صانع النموذج. نحن نجادل بأن الوصول التدريجي إلى بيانات الإدخال عبر مراحل المعايرة الخمس أثر سلبًا على اتساق التفسيرات التي قدمها صانعو النماذج، مع التحيز المعرفي في إجراءات معايرة "التجربة والخطأ". تسلط دراستنا الضوء على أن التغاضي عن السمات البشرية والاجتماعية أمر بالغ الأهمية في نتائج النمذجة ودراسات المقارنة بين النماذج. في حين أن تعقيد العمليات التي تم التقاطها في خوارزميات النموذج ووضع المعلمات أمر مهم، فإننا نؤكد أن (1) افتراضات صانع النموذج حول مدى ضرورة تغيير المعلمات و (2) تصورات صانع النموذج لأهمية معلمات النموذج لا تقل أهمية في الحصول على معايرة نموذج الجودة عن التفاصيل العددية أو التحليلية.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Xiaoyu Feng; Ward Smith; Andrew C. VanderZaag;Technologies that separate manure or digestate into fractions with different solids and nutrient contents present interesting options to mitigate manure storage emissions (by reducing the quantity of carbon stored anaerobically) and to improve nutrient distribution (by reducing the quantity of water transported with nutrients). In this study, the dairy farm model, DairyCrop-Syst, was used to simulate storage emissions of methane (CH4), nitrous oxide (N2O), and ammonia (NH3), and to simulate nutrient distribution for a case-study farm in Canada. The farm used several types of manure processing, including: anaerobic digestion (AD), solid-liquid separation (SLS), and nutrient recovery (NR). Simulations were done with combinations of the above technologies, i.e., a baseline with only AD that produced a single (unseparated) effluent, compared to AD+SLS, and AD+SLS+NR that produced two separate fractions. With AD+SLS+NR, the processing system isolated a solid fraction with a high concentration of N and P, and a liquid fraction containing less nutrients. Compared to the baseline system, the addition of solid liquid separation and nutrient recovery (i.e. SLS+NR) reduced CH4 emissions from outdoor liquid digestate storage by 87%, with only a small offset from higher N2O and NH3 emissions from storing the solid fraction. The solid fraction was simulated to be transported to fields at least 30 km away from the dairy barns, while the liquid fraction was transported by dragline to fields adjacent to the barn. The advanced nutrient separation system resulted in much lower transport costs for manure nutrients and the ability to transport N and P to greater distances.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fanim.2023.1134817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fanim.2023.1134817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, France, Canada, Finland, India, France, France, India, Canada, South AfricaPublisher:Wiley Falconnier, Gatien N.; Corbeels, Marc; Boote, Kenneth J.; Affholder, François; Adam, Myriam; MacCarthy, Dilys S.; Ruane, Alex C.; Nendel, Claas; Whitbread, Anthony M.; Justes, Éric; Ahuja, Lajpat R.; Akinseye, Folorunso M.; Alou, Isaac N.; Amouzou, Kokou A.; Anapalli, Saseendran S.; Baron, Christian; Basso, Bruno; Baudron, Frédéric; Bertuzzi, Patrick; Challinor, Andrew J.; Chen, Yi; Deryng, Delphine; Elsayed, Maha L.; Faye, Babacar; Gaiser, Thomas; Galdos, Marcelo; Gayler, Sebastian; Gerardeaux, Edward; Giner, Michel; Grant, Brian; Hoogenboom, Gerrit; Ibrahim, Esther S.; Kamali, Bahareh; Kersebaum, Kurt Christian; Kim, Soo‐Hyung; Laan, Michael; Leroux, Louise; Lizaso, Jon I.; Maestrini, Bernardo; Meier, Elizabeth A.; Mequanint, Fasil; Ndoli, Alain; Porter, Cheryl H.; Priesack, Eckart; Ripoche, Dominique; Sida, Tesfaye S.; Singh, Upendra; Smith, Ward N.; Srivastava, Amit; Sinha, Sumit; Tao, Fulu; Thorburn, Peter J.; Timlin, Dennis; Traore, Bouba; Twine, Tracy; Webber; Heidi;AbstractSmallholder farmers in sub‐Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low‐input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi‐arid Rwanda, hot subhumid Ghana and hot semi‐arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in‐season soil water content from 2‐year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low‐input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 South Africa, Germany, FrancePublisher:Elsevier BV Kritika Kothari; Rafael Battisti; Kenneth J. Boote; Sotirios Archontoulis; Adriana Confalone; Julie Constantin; Santiago Vianna Cuadra; Philippe Debaeke; Babacar Faye; Brian Grant; Gerrit Hoogenboom; Qi Jing; Michael van der Laan; Fernando Antônio Macena da Silva; Fábio Ricardo Marin; Alireza Nehbandani; Claas Nendel; Larry C. Purcell; Budong Qian; Alex C. Ruane; Céline Schoving; Evandro Henrique Figueiredo Moura da Silva; Ward Smith; Afshin Soltani; Amit Kumar Srivastava; Nilson Aparecido Vieira; Stacey Slone; Montserrat Salmerón;Une estimation précise du rendement des cultures dans les scénarios de changement climatique est essentielle pour quantifier notre capacité à nourrir une population croissante et à développer des adaptations agronomiques pour répondre à la demande alimentaire future. Une évaluation coordonnée des simulations de rendement à partir de modèles écophysiologiques basés sur les processus pour l'évaluation de l'impact du changement climatique fait toujours défaut pour le soja, la légumineuse à grains la plus cultivée et la principale source de protéines dans notre chaîne alimentaire. Dans cette première étude multimodèle sur le soja, nous avons utilisé dix modèles de premier plan capables de simuler le rendement du soja sous différentes températures et concentrations atmosphériques de CO2 [CO2] pour quantifier l'incertitude dans les simulations de rendement du soja en réponse à ces facteurs. Les modèles ont d'abord été paramétrés avec des données mesurées de haute qualité provenant de cinq environnements contrastés. Nous avons trouvé une variabilité considérable entre les modèles dans les réponses de rendement simulées à l'augmentation de la température et du [CO2]. Par exemple, en cas d'augmentation de la température de + 3 °C dans notre endroit le plus frais en Argentine, certains modèles ont simulé que le rendement diminuerait jusqu'à 24 %, tandis que d'autres simulaient une augmentation du rendement allant jusqu'à 29 %. Dans notre emplacement le plus chaud au Brésil, les modèles ont simulé une réduction du rendement allant d'une diminution de 38 % sous + 3 °C à une augmentation de la température sans effet sur le rendement. De même, en augmentant le [CO2] de 360 à 540 ppm, les modèles ont simulé une augmentation du rendement allant de 6% à 31%. L'étalonnage du modèle n'a pas réduit la variabilité entre les modèles, mais a eu un effet inattendu sur la modification des réponses du rendement à la température pour certains des modèles. La forte incertitude dans les réponses des modèles indique l'applicabilité limitée des modèles individuels pour les projections alimentaires du changement climatique. Cependant, la moyenne d'ensemble des simulations à travers les modèles était un outil efficace pour réduire la forte incertitude dans les simulations de rendement du soja associées aux modèles individuels et à leur paramétrage. Les réponses du rendement moyen de l'ensemble à la température et au [CO2] étaient similaires à celles rapportées dans la littérature. Notre étude est la première démonstration des avantages obtenus en utilisant un ensemble de modèles de légumineuses à grains pour les projections alimentaires du changement climatique, et souligne qu'un développement plus poussé du modèle du soja avec des expériences sous des [CO2] et des températures élevées est nécessaire pour réduire l'incertitude des modèles individuels. Una estimación precisa del rendimiento de los cultivos en escenarios de cambio climático es esencial para cuantificar nuestra capacidad para alimentar a una población en crecimiento y desarrollar adaptaciones agronómicas para satisfacer la demanda futura de alimentos. Todavía falta una evaluación coordinada de las simulaciones de rendimiento a partir de modelos ecofisiológicos basados en procesos para la evaluación del impacto del cambio climático para la soja, la leguminosa de grano más cultivada y la principal fuente de proteínas en nuestra cadena alimentaria. En este primer estudio multimodelo de soja, utilizamos diez modelos prominentes capaces de simular el rendimiento de la soja a diferentes temperaturas y concentraciones de CO2 atmosférico [CO2] para cuantificar la incertidumbre en las simulaciones de rendimiento de soja en respuesta a estos factores. Los modelos se parametrizaron por primera vez con datos medidos de alta calidad de cinco entornos contrastantes. Encontramos una variabilidad considerable entre los modelos en las respuestas de rendimiento simuladas al aumento de la temperatura y [CO2]. Por ejemplo, bajo un aumento de temperatura de + 3 ° C en nuestra ubicación más fresca en Argentina, algunos modelos simularon que el rendimiento se reduciría hasta un 24%, mientras que otros simularon aumentos de rendimiento de hasta un 29%. En nuestra ubicación más cálida en Brasil, los modelos simularon una reducción del rendimiento que va desde una disminución del 38% con un aumento de temperatura de + 3 ° C hasta ningún efecto en el rendimiento. Del mismo modo, al aumentar [CO2] de 360 a 540 ppm, los modelos simularon un aumento del rendimiento que osciló entre el 6% y el 31%. La calibración del modelo no redujo la variabilidad entre los modelos, pero tuvo un efecto inesperado en la modificación de las respuestas de rendimiento a la temperatura para algunos de los modelos. La alta incertidumbre en las respuestas de los modelos indica la aplicabilidad limitada de los modelos individuales para las proyecciones alimentarias del cambio climático. Sin embargo, la media del conjunto de simulaciones entre modelos fue una herramienta efectiva para reducir la alta incertidumbre en las simulaciones de rendimiento de soja asociadas con modelos individuales y su parametrización. Las respuestas de rendimiento medio del conjunto a la temperatura y [CO2] fueron similares a las informadas en la literatura. Nuestro estudio es la primera demostración de los beneficios logrados al utilizar un conjunto de modelos de leguminosas de grano para las proyecciones de alimentos del cambio climático, y destaca que se necesita un mayor desarrollo del modelo de soja con experimentos bajo [CO2] y temperatura elevadas para reducir la incertidumbre de los modelos individuales. An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 °C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24%, while others simulated yield increases up to 29%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38% decrease under + 3 °C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6% to 31%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models. يعد التقدير الدقيق لمحصول المحاصيل في ظل سيناريوهات تغير المناخ أمرًا ضروريًا لتحديد قدرتنا على إطعام عدد متزايد من السكان وتطوير التكيفات الزراعية لتلبية الطلب على الغذاء في المستقبل. لا يزال التقييم المنسق لمحاكاة الغلة من النماذج الفسيولوجية البيئية القائمة على العمليات لتقييم تأثير تغير المناخ مفقودًا بالنسبة لفول الصويا، وهو بقول الحبوب الأكثر زراعة على نطاق واسع والمصدر الرئيسي للبروتين في سلسلتنا الغذائية. في هذه الدراسة الأولى متعددة النماذج لفول الصويا، استخدمنا عشرة نماذج بارزة قادرة على محاكاة محصول فول الصويا تحت درجات حرارة متفاوتة وتركيز ثاني أكسيد الكربون في الغلاف الجوي [CO2] لقياس عدم اليقين في محاكاة محصول فول الصويا استجابة لهذه العوامل. تم قياس النماذج أولاً ببيانات مقاسة عالية الجودة من خمس بيئات متباينة. وجدنا تباينًا كبيرًا بين النماذج في استجابات العائد المحاكاة لزيادة درجة الحرارة و [CO2]. على سبيل المثال، في ظل ارتفاع درجة الحرارة بمقدار + 3 درجات مئوية في أروع موقع لنا في الأرجنتين، قامت بعض النماذج بمحاكاة أن العائد سيقلل بنسبة تصل إلى 24 ٪، بينما يزيد العائد المحاكى الآخر بنسبة تصل إلى 29 ٪. في موقعنا الأكثر دفئًا في البرازيل، قامت النماذج بمحاكاة انخفاض العائد الذي يتراوح بين انخفاض بنسبة 38 ٪ تحت + ارتفاع درجة حرارة 3 درجات مئوية إلى عدم التأثير على العائد. وبالمثل، عند زيادة [ثاني أكسيد الكربون] من 360 إلى 540 جزء في المليون، قامت النماذج بمحاكاة زيادة العائد التي تراوحت من 6 ٪ إلى 31 ٪. لم تقلل معايرة النموذج من التباين عبر النماذج ولكن كان لها تأثير غير متوقع على تعديل استجابات الخضوع لدرجة الحرارة لبعض النماذج. يشير عدم اليقين الشديد في الاستجابات النموذجية إلى التطبيق المحدود للنماذج الفردية للتوقعات الغذائية لتغير المناخ. ومع ذلك، كان المتوسط الجماعي للمحاكاة عبر النماذج أداة فعالة للحد من عدم اليقين العالي في محاكاة غلة فول الصويا المرتبطة بالنماذج الفردية ومعلماتها. كانت استجابات متوسط العائد على درجة الحرارة و [CO2] متشابهة مع تلك الواردة في الأدبيات. دراستنا هي أول عرض توضيحي للفوائد التي تحققت من استخدام مجموعة من نماذج البقوليات لتوقعات تغير المناخ الغذائية، وتسلط الضوء على الحاجة إلى مزيد من تطوير نموذج فول الصويا مع التجارب تحت [CO2] ودرجة الحرارة المرتفعة لتقليل عدم اليقين من النماذج الفردية.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Goglio P.; Smith W. N.; Grant B. B.; Desjardins R. L.; McConkey B. G.; Campbell C. A.; Nemecek T.;handle: 11391/1552681
Soil carbon sequestration, a climate change mitigation option for agriculture, can either increase or decrease as a result of land management change (LMC) and land use change (LUC). To estimate all greenhouse gas (GHG) exchanges associated with various agricultural systems, life cycle assessments (LCAs) are frequently undertaken. To date LCA practitioners have not had a well-defined procedure to account for soil C in their assessments and as a consequence it is often not included. In this study, various methods used to estimate soil C changes due to (i) LMC and (ii) LUC are examined to assess soil C accounting methodologies in the life cycle inventory (LCI) of agricultural LCAs. A compromise between accuracy and completeness in LCA methods is necessary. A ranking of the preference of soil C accounting methods is suggested based on user expertise and data quality. For large scale assessment, the timing of soil CO2 emissions should be taken into account. If indirect LUC is relevant, a sensitivity analysis of assessment methods should be conducted because the methods highly affect assessment results. A common soil C accounting method that can be easily applied in agricultural LCA needs to be established and an agreement on indirect LUC methods will facilitate the assessment of LMC and LUC within agricultural LCAs.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.05.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu148 citations 148 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.05.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Goglio P; Grant B; Smith W; Desjardins R; Worth D; Zentner R; Malhi S;Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.05.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.05.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Authors: Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China ( host institution ); He, Wentian ( author ); Yang, J.Y. ( author ); Drury, C.F. ( author ); +6 AuthorsKey Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China ( host institution ); He, Wentian ( author ); Yang, J.Y. ( author ); Drury, C.F. ( author ); Smith, W.N. ( author ); Grant, B.B. ( author ); He, Ping ( author ); Qian, B. ( author ); Zhou, Wei ( author ); Hoogenboom, G. ( UF author );Abstract Accurately predicting the impacts of higher temperatures, different precipitation rates and elevated CO2 concentrations on crop yields and GHG emissions is required in order to develop adaptation strategies. The objectives of this study were to calibrate and evaluate a regionalized denitrification-decomposition (DNDC) model using measured crop yield, soil temperature, moisture and N2O emissions, and to explore the impacts of climate change scenarios (Representative Concentration Pathways (RCP) 4.5 and RCP 8.5) on crop yields and N2O emissions in Southwestern Ontario, Canada. This simulation study was based on a winter wheat-maize-soybean rotation under conventional tillage (CT) and no tillage (NT) practices at Woodslee, Ontario, Canada. The model was calibrated using various statistics including the d index (0.85–0.99), NSE (Nash-Sutcliffe efficiency, NSE > 0) and nRMSE (normalized root mean square error, nRMSE
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00590972/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00590972/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:IOP Publishing Budong Qian; Xuebin Zhang; Ward Smith; Brian Grant; Qi Jing; Alex J Cannon; Denise Neilsen; Brian McConkey; Guilong Li; Barrie Bonsal; Hui Wan; Li Xue; Jun Zhao;Abstract Science-based assessments of climate change impacts on cropping systems under different levels of global warming are essential for informing stakeholders which global climate targets and potential adaptation strategies may be effective. A comprehensive evaluation of climate change impacts on Canada’s crop production under different levels of global warming is currently lacking. The DayCent, DNDC and DSSAT models were employed to estimate changes in crop yield and production for three prominent crops including spring wheat, canola and maize in current agricultural regions of Canada. Four warming scenarios with global mean temperature changes of 1.5 °C, 2.0 °C, 2.5 °C and 3.0 °C above the pre-industrial level were investigated. Climate scenarios from 20 Global Climate Models, included in the Coupled Model Intercomparison Project Phase 5 and downscaled with a multivariate quantile mapping bias correction method, were used to drive the crop simulation models. Simulated yield changes demonstrate a potentially positive impact on spring wheat and canola yields at all four temperature levels, particularly when shifting planting date is considered in the simulations. There was less consensus for the currently utilized short-season maize cultivars, as yields were only projected to increase by DNDC compared to a slight decrease by DayCent and a slight increase up to 2.5 °C followed by a decrease at 3.0 °C by DSSAT. These findings indicate that climate at the global warming levels up to 3.0 °C above the pre-industrial level could be beneficial for crop production of small grains in Canada. However, these benefits declined after warming reached 2.5 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab17fb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab17fb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 SwedenPublisher:Informa UK Limited Nilsson, Johan; Tidåker, Pernilla; Sundberg, Cecilia; Henryson, Kajsa; Grant, Brian; Smith, Ward; Hansson, Per-Anders;In this study, Life Cycle Assessment (LCA) methodology was combined with the agro-ecosystem model DNDC to assess the climate and eutrophication impacts of perennial grass cultivation at five different sites in Sweden. The system was evaluated for two fertilisation rates, 140 and 200 kg N ha−1. The climate impact showed large variation between the investigated sites. The largest contribution to the climate impact was through soil N2O emissions and emissions associated with mineral fertiliser manufacturing. The highest climate impact was predicted for the site with the highest clay and initial organic carbon content, while lower impacts were predicted for the sandy loam soils, due to low N2O emissions, and for the silty clay loam, due to high carbon sequestration rate. The highest eutrophication potential was estimated for the sandy loam soils, while the sites with finer soil texture had lower eutrophication potential. According to the results, soil properties and weather conditions were more important than fertilisation rate for the climate impact of the system assessed. It was concluded that agro-ecosystem models can add a spatial and temporal dimension to environmental impact assessment in agricultural LCA studies. The results could be used to assist policymakers in optimising use of agricultural land.
SLU publication data... arrow_drop_down Acta Agriculturae Scandinavica Section B - Soil & Plant ScienceArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefActa Agriculturae Scandinavica Section B - Soil & Plant ScienceArticleLicense: CC BY NC NDData sources: UnpayWallActa Agriculturae Scandinavica Section B - Soil & Plant ScienceJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09064710.2020.1822436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down Acta Agriculturae Scandinavica Section B - Soil & Plant ScienceArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefActa Agriculturae Scandinavica Section B - Soil & Plant ScienceArticleLicense: CC BY NC NDData sources: UnpayWallActa Agriculturae Scandinavica Section B - Soil & Plant ScienceJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09064710.2020.1822436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, France, France, United Kingdom, France, France, Italy, Australia, France, France, Switzerland, Germany, AustraliaPublisher:Wiley Funded by:EC | FACCE CSA, SNSF | Robust models for assessi...EC| FACCE CSA ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures)Renáta Sándor; Paul C. D. Newton; Ward Smith; Nuala Fitton; Brian Grant; Jean-François Soussana; Joël Léonard; Katja Klumpp; Lutz Merbold; Lutz Merbold; Stephanie K. Jones; Raia Silvia Massad; Luca Doro; Andrew D. Moore; Elizabeth A. Meier; Fiona Ehrhardt; Vasileios Myrgiotis; Russel McAuliffe; Bruno Basso; Sandro José Giacomini; Sylvie Recous; Matthew T. Harrison; Peter Grace; Massimiliano De Antoni Migliorati; Gianni Bellocchi; Patricia Laville; Raphaël Martin; Val Snow; Miko U. F. Kirschbaum; Arti Bhatia; Pete Smith; Lianhai Wu; Qing Zhang; Mark Lieffering; Joanna Sharp; Elizabeth Pattey; Lorenzo Brilli; Mark A. Liebig; Christopher D. Dorich; Jordi Doltra; Susanne Rolinski;AbstractSimulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi‐species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi‐model ensembles to predict productivity and nitrous oxide (N2O) emissions for wheat, maize, rice and temperate grasslands. Using a multi‐stage modelling protocol, from blind simulations (stage 1) to partial (stages 2–4) and full calibration (stage 5), 24 process‐based biogeochemical models were assessed individually or as an ensemble against long‐term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N2O emissions. Results showed that across sites and crop/grassland types, 23%–40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N2O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N2O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2–4) markedly reduced prediction errors of the full model ensemble E‐median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N2O emissions. Yield‐scaled N2O emissions (N2O emissions divided by crop yields) were ranked accurately by three‐model ensembles across crop species and field sites. The potential of using process‐based model ensembles to predict jointly productivity and N2O emissions at field scale is discussed.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Australia, Australia, Hungary, Spain, HungaryPublisher:American Chemical Society (ACS) Funded by:UKRI | Dynamic monitoring, repor...UKRI| Dynamic monitoring, reporting and verification for implementing negative emission strategies in managed ecosystems (RETINA)Fabrizio Albanito; David McBey; Matthew Tom Harrison; Pete Smith; Fiona Ehrhardt; Arti Bhatia; Gianni Bellocchi; Lorenzo Brilli; Marco Carozzi; KM Christie; Jordi Doltra; Chris Dorich; Luca Doro; Peter Grace; Brian Grant; Joël Léonard; Mark A. Liebig; Cameron I. Ludemann; Raphaël Martin; Elizabeth A. Meier; Rachelle Meyer; Massimiliano De Antoni Migliorati; Vasileios Myrgiotis; Sylvie Recous; Renata Sándor; Val Snow; Jean‐François Soussana; Ward Smith; Nuala Fitton;On se rend de plus en plus compte que la complexité des études d'ensembles de modèles dépend non seulement des modèles utilisés, mais aussi de l'expérience et de l'approche utilisées par les modélisateurs pour calibrer et valider les résultats, qui restent une source d'incertitude. Ici, nous avons appliqué une méthode de prise de décision multicritères pour étudier la justification appliquée par les modélisateurs dans une étude d'ensemble de modèles où 12 types de modèles biogéochimiques différents basés sur des processus ont été comparés à travers cinq étapes d'étalonnage successives. Les modélisateurs partageaient un niveau d'accord commun sur l'importance des variables utilisées pour initialiser leurs modèles pour l'étalonnage. Cependant, nous avons constaté une incohérence entre les modélisateurs lors de l'évaluation de l'importance des variables d'entrée à travers différentes étapes d'étalonnage. Le niveau de pondération subjective attribué par les modélisateurs aux données d'étalonnage a diminué séquentiellement à mesure que l'étendue et le nombre de variables fournies augmentaient. Dans ce contexte, l'importance perçue attribuée à des variables telles que le taux de fertilisation, le régime d'irrigation, la texture du sol, le pH et les niveaux initiaux des stocks de carbone organique et d'azote du sol était statistiquement différente lorsqu'elle était classée selon les types de modèles. L'importance attribuée aux variables d'entrée telles que la durée expérimentale, la production primaire brute et l'échange net d'écosystèmes variait considérablement en fonction de la durée de l'expérience du modélisateur. Nous soutenons que l'accès progressif aux données d'entrée à travers les cinq étapes d'étalonnage a influencé négativement la cohérence des interprétations faites par les modélisateurs, avec un biais cognitif dans les routines d'étalonnage « essais et erreurs ». Notre étude souligne qu'il est essentiel de négliger les attributs humains et sociaux dans les résultats des études de modélisation et de comparaison des modèles. Bien que la complexité des processus capturés dans les algorithmes et le paramétrage du modèle soit importante, nous soutenons que (1) les hypothèses du modélisateur sur la mesure dans laquelle les paramètres doivent être modifiés et (2) les perceptions du modélisateur de l'importance des paramètres du modèle sont tout aussi essentielles pour obtenir un étalonnage du modèle de qualité que les détails numériques ou analytiques. Existe una creciente conciencia de que la complejidad de los estudios de conjuntos de modelos depende no solo de los modelos utilizados, sino también de la experiencia y el enfoque utilizados por los modeladores para calibrar y validar los resultados, que siguen siendo una fuente de incertidumbre. Aquí, aplicamos un método de toma de decisiones multicriterio para investigar la justificación aplicada por los modeladores en un estudio de conjunto de modelos donde se compararon 12 tipos de modelos biogeoquímicos diferentes basados en procesos en cinco etapas de calibración sucesivas. Los modeladores compartieron un nivel común de acuerdo sobre la importancia de las variables utilizadas para inicializar sus modelos para la calibración. Sin embargo, encontramos inconsistencia entre los modeladores al juzgar la importancia de las variables de entrada en diferentes etapas de calibración. El nivel de ponderación subjetiva atribuido por los modeladores a los datos de calibración disminuyó secuencialmente a medida que aumentaba el alcance y el número de variables proporcionadas. En este contexto, la importancia percibida atribuida a variables como la tasa de fertilización, el régimen de riego, la textura del suelo, el pH y los niveles iniciales de las reservas orgánicas de carbono y nitrógeno del suelo fue estadísticamente diferente cuando se clasificaron según los tipos de modelos. La importancia atribuida a variables de entrada como la duración experimental, la producción primaria bruta y el intercambio neto de ecosistemas varió significativamente según la duración de la experiencia del modelador. Argumentamos que el acceso gradual a los datos de entrada en las cinco etapas de calibración influyó negativamente en la consistencia de las interpretaciones realizadas por los modeladores, con sesgo cognitivo en las rutinas de calibración de "ensayo y error". Nuestro estudio destaca que pasar por alto los atributos humanos y sociales es fundamental en los resultados del modelado y los estudios de intercomparación de modelos. Si bien la complejidad de los procesos capturados en los algoritmos y la parametrización del modelo es importante, sostenemos que (1) las suposiciones del modelador sobre la medida en que se deben alterar los parámetros y (2) las percepciones del modelador sobre la importancia de los parámetros del modelo son tan críticas para obtener una calibración del modelo de calidad como los detalles numéricos o analíticos. There is a growing realization that the complexity of model ensemble studies depends not only on the models used but also on the experience and approach used by modelers to calibrate and validate results, which remain a source of uncertainty. Here, we applied a multi-criteria decision-making method to investigate the rationale applied by modelers in a model ensemble study where 12 process-based different biogeochemical model types were compared across five successive calibration stages. The modelers shared a common level of agreement about the importance of the variables used to initialize their models for calibration. However, we found inconsistency among modelers when judging the importance of input variables across different calibration stages. The level of subjective weighting attributed by modelers to calibration data decreased sequentially as the extent and number of variables provided increased. In this context, the perceived importance attributed to variables such as the fertilization rate, irrigation regime, soil texture, pH, and initial levels of soil organic carbon and nitrogen stocks was statistically different when classified according to model types. The importance attributed to input variables such as experimental duration, gross primary production, and net ecosystem exchange varied significantly according to the length of the modeler's experience. We argue that the gradual access to input data across the five calibration stages negatively influenced the consistency of the interpretations made by the modelers, with cognitive bias in "trial-and-error" calibration routines. Our study highlights that overlooking human and social attributes is critical in the outcomes of modeling and model intercomparison studies. While complexity of the processes captured in the model algorithms and parameterization is important, we contend that (1) the modeler's assumptions on the extent to which parameters should be altered and (2) modeler perceptions of the importance of model parameters are just as critical in obtaining a quality model calibration as numerical or analytical details. هناك إدراك متزايد بأن تعقيد دراسات مجموعة النماذج لا يعتمد فقط على النماذج المستخدمة ولكن أيضًا على الخبرة والنهج اللذين يستخدمهما المصممون لمعايرة النتائج والتحقق من صحتها، والتي لا تزال مصدرًا لعدم اليقين. هنا، طبقنا طريقة صنع قرار متعددة المعايير للتحقيق في الأساس المنطقي الذي طبقه مصممو النماذج في دراسة جماعية نموذجية حيث تمت مقارنة 12 نوعًا مختلفًا من النماذج البيوكيميائية القائمة على العمليات عبر خمس مراحل معايرة متتالية. شارك مصممو النماذج مستوى مشتركًا من الاتفاق حول أهمية المتغيرات المستخدمة لتهيئة نماذجهم للمعايرة. ومع ذلك، وجدنا عدم اتساق بين صانعي النماذج عند الحكم على أهمية متغيرات المدخلات عبر مراحل المعايرة المختلفة. انخفض مستوى الترجيح الذاتي الذي يعزوه صانعو النماذج إلى بيانات المعايرة بالتتابع مع زيادة مدى وعدد المتغيرات المقدمة. في هذا السياق، كانت الأهمية المتصورة المنسوبة إلى متغيرات مثل معدل التسميد ونظام الري وقوام التربة ودرجة الحموضة والمستويات الأولية لمخزونات الكربون العضوي والنيتروجين في التربة مختلفة إحصائيًا عند تصنيفها وفقًا لأنواع النماذج. اختلفت الأهمية المنسوبة إلى متغيرات المدخلات مثل المدة التجريبية، والإنتاج الأولي الإجمالي، وصافي تبادل النظام الإيكولوجي اختلافًا كبيرًا وفقًا لطول تجربة صانع النموذج. نحن نجادل بأن الوصول التدريجي إلى بيانات الإدخال عبر مراحل المعايرة الخمس أثر سلبًا على اتساق التفسيرات التي قدمها صانعو النماذج، مع التحيز المعرفي في إجراءات معايرة "التجربة والخطأ". تسلط دراستنا الضوء على أن التغاضي عن السمات البشرية والاجتماعية أمر بالغ الأهمية في نتائج النمذجة ودراسات المقارنة بين النماذج. في حين أن تعقيد العمليات التي تم التقاطها في خوارزميات النموذج ووضع المعلمات أمر مهم، فإننا نؤكد أن (1) افتراضات صانع النموذج حول مدى ضرورة تغيير المعلمات و (2) تصورات صانع النموذج لأهمية معلمات النموذج لا تقل أهمية في الحصول على معايرة نموذج الجودة عن التفاصيل العددية أو التحليلية.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Xiaoyu Feng; Ward Smith; Andrew C. VanderZaag;Technologies that separate manure or digestate into fractions with different solids and nutrient contents present interesting options to mitigate manure storage emissions (by reducing the quantity of carbon stored anaerobically) and to improve nutrient distribution (by reducing the quantity of water transported with nutrients). In this study, the dairy farm model, DairyCrop-Syst, was used to simulate storage emissions of methane (CH4), nitrous oxide (N2O), and ammonia (NH3), and to simulate nutrient distribution for a case-study farm in Canada. The farm used several types of manure processing, including: anaerobic digestion (AD), solid-liquid separation (SLS), and nutrient recovery (NR). Simulations were done with combinations of the above technologies, i.e., a baseline with only AD that produced a single (unseparated) effluent, compared to AD+SLS, and AD+SLS+NR that produced two separate fractions. With AD+SLS+NR, the processing system isolated a solid fraction with a high concentration of N and P, and a liquid fraction containing less nutrients. Compared to the baseline system, the addition of solid liquid separation and nutrient recovery (i.e. SLS+NR) reduced CH4 emissions from outdoor liquid digestate storage by 87%, with only a small offset from higher N2O and NH3 emissions from storing the solid fraction. The solid fraction was simulated to be transported to fields at least 30 km away from the dairy barns, while the liquid fraction was transported by dragline to fields adjacent to the barn. The advanced nutrient separation system resulted in much lower transport costs for manure nutrients and the ability to transport N and P to greater distances.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fanim.2023.1134817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fanim.2023.1134817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, France, Canada, Finland, India, France, France, India, Canada, South AfricaPublisher:Wiley Falconnier, Gatien N.; Corbeels, Marc; Boote, Kenneth J.; Affholder, François; Adam, Myriam; MacCarthy, Dilys S.; Ruane, Alex C.; Nendel, Claas; Whitbread, Anthony M.; Justes, Éric; Ahuja, Lajpat R.; Akinseye, Folorunso M.; Alou, Isaac N.; Amouzou, Kokou A.; Anapalli, Saseendran S.; Baron, Christian; Basso, Bruno; Baudron, Frédéric; Bertuzzi, Patrick; Challinor, Andrew J.; Chen, Yi; Deryng, Delphine; Elsayed, Maha L.; Faye, Babacar; Gaiser, Thomas; Galdos, Marcelo; Gayler, Sebastian; Gerardeaux, Edward; Giner, Michel; Grant, Brian; Hoogenboom, Gerrit; Ibrahim, Esther S.; Kamali, Bahareh; Kersebaum, Kurt Christian; Kim, Soo‐Hyung; Laan, Michael; Leroux, Louise; Lizaso, Jon I.; Maestrini, Bernardo; Meier, Elizabeth A.; Mequanint, Fasil; Ndoli, Alain; Porter, Cheryl H.; Priesack, Eckart; Ripoche, Dominique; Sida, Tesfaye S.; Singh, Upendra; Smith, Ward N.; Srivastava, Amit; Sinha, Sumit; Tao, Fulu; Thorburn, Peter J.; Timlin, Dennis; Traore, Bouba; Twine, Tracy; Webber; Heidi;AbstractSmallholder farmers in sub‐Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low‐input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi‐arid Rwanda, hot subhumid Ghana and hot semi‐arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in‐season soil water content from 2‐year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low‐input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 South Africa, Germany, FrancePublisher:Elsevier BV Kritika Kothari; Rafael Battisti; Kenneth J. Boote; Sotirios Archontoulis; Adriana Confalone; Julie Constantin; Santiago Vianna Cuadra; Philippe Debaeke; Babacar Faye; Brian Grant; Gerrit Hoogenboom; Qi Jing; Michael van der Laan; Fernando Antônio Macena da Silva; Fábio Ricardo Marin; Alireza Nehbandani; Claas Nendel; Larry C. Purcell; Budong Qian; Alex C. Ruane; Céline Schoving; Evandro Henrique Figueiredo Moura da Silva; Ward Smith; Afshin Soltani; Amit Kumar Srivastava; Nilson Aparecido Vieira; Stacey Slone; Montserrat Salmerón;Une estimation précise du rendement des cultures dans les scénarios de changement climatique est essentielle pour quantifier notre capacité à nourrir une population croissante et à développer des adaptations agronomiques pour répondre à la demande alimentaire future. Une évaluation coordonnée des simulations de rendement à partir de modèles écophysiologiques basés sur les processus pour l'évaluation de l'impact du changement climatique fait toujours défaut pour le soja, la légumineuse à grains la plus cultivée et la principale source de protéines dans notre chaîne alimentaire. Dans cette première étude multimodèle sur le soja, nous avons utilisé dix modèles de premier plan capables de simuler le rendement du soja sous différentes températures et concentrations atmosphériques de CO2 [CO2] pour quantifier l'incertitude dans les simulations de rendement du soja en réponse à ces facteurs. Les modèles ont d'abord été paramétrés avec des données mesurées de haute qualité provenant de cinq environnements contrastés. Nous avons trouvé une variabilité considérable entre les modèles dans les réponses de rendement simulées à l'augmentation de la température et du [CO2]. Par exemple, en cas d'augmentation de la température de + 3 °C dans notre endroit le plus frais en Argentine, certains modèles ont simulé que le rendement diminuerait jusqu'à 24 %, tandis que d'autres simulaient une augmentation du rendement allant jusqu'à 29 %. Dans notre emplacement le plus chaud au Brésil, les modèles ont simulé une réduction du rendement allant d'une diminution de 38 % sous + 3 °C à une augmentation de la température sans effet sur le rendement. De même, en augmentant le [CO2] de 360 à 540 ppm, les modèles ont simulé une augmentation du rendement allant de 6% à 31%. L'étalonnage du modèle n'a pas réduit la variabilité entre les modèles, mais a eu un effet inattendu sur la modification des réponses du rendement à la température pour certains des modèles. La forte incertitude dans les réponses des modèles indique l'applicabilité limitée des modèles individuels pour les projections alimentaires du changement climatique. Cependant, la moyenne d'ensemble des simulations à travers les modèles était un outil efficace pour réduire la forte incertitude dans les simulations de rendement du soja associées aux modèles individuels et à leur paramétrage. Les réponses du rendement moyen de l'ensemble à la température et au [CO2] étaient similaires à celles rapportées dans la littérature. Notre étude est la première démonstration des avantages obtenus en utilisant un ensemble de modèles de légumineuses à grains pour les projections alimentaires du changement climatique, et souligne qu'un développement plus poussé du modèle du soja avec des expériences sous des [CO2] et des températures élevées est nécessaire pour réduire l'incertitude des modèles individuels. Una estimación precisa del rendimiento de los cultivos en escenarios de cambio climático es esencial para cuantificar nuestra capacidad para alimentar a una población en crecimiento y desarrollar adaptaciones agronómicas para satisfacer la demanda futura de alimentos. Todavía falta una evaluación coordinada de las simulaciones de rendimiento a partir de modelos ecofisiológicos basados en procesos para la evaluación del impacto del cambio climático para la soja, la leguminosa de grano más cultivada y la principal fuente de proteínas en nuestra cadena alimentaria. En este primer estudio multimodelo de soja, utilizamos diez modelos prominentes capaces de simular el rendimiento de la soja a diferentes temperaturas y concentraciones de CO2 atmosférico [CO2] para cuantificar la incertidumbre en las simulaciones de rendimiento de soja en respuesta a estos factores. Los modelos se parametrizaron por primera vez con datos medidos de alta calidad de cinco entornos contrastantes. Encontramos una variabilidad considerable entre los modelos en las respuestas de rendimiento simuladas al aumento de la temperatura y [CO2]. Por ejemplo, bajo un aumento de temperatura de + 3 ° C en nuestra ubicación más fresca en Argentina, algunos modelos simularon que el rendimiento se reduciría hasta un 24%, mientras que otros simularon aumentos de rendimiento de hasta un 29%. En nuestra ubicación más cálida en Brasil, los modelos simularon una reducción del rendimiento que va desde una disminución del 38% con un aumento de temperatura de + 3 ° C hasta ningún efecto en el rendimiento. Del mismo modo, al aumentar [CO2] de 360 a 540 ppm, los modelos simularon un aumento del rendimiento que osciló entre el 6% y el 31%. La calibración del modelo no redujo la variabilidad entre los modelos, pero tuvo un efecto inesperado en la modificación de las respuestas de rendimiento a la temperatura para algunos de los modelos. La alta incertidumbre en las respuestas de los modelos indica la aplicabilidad limitada de los modelos individuales para las proyecciones alimentarias del cambio climático. Sin embargo, la media del conjunto de simulaciones entre modelos fue una herramienta efectiva para reducir la alta incertidumbre en las simulaciones de rendimiento de soja asociadas con modelos individuales y su parametrización. Las respuestas de rendimiento medio del conjunto a la temperatura y [CO2] fueron similares a las informadas en la literatura. Nuestro estudio es la primera demostración de los beneficios logrados al utilizar un conjunto de modelos de leguminosas de grano para las proyecciones de alimentos del cambio climático, y destaca que se necesita un mayor desarrollo del modelo de soja con experimentos bajo [CO2] y temperatura elevadas para reducir la incertidumbre de los modelos individuales. An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 °C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24%, while others simulated yield increases up to 29%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38% decrease under + 3 °C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6% to 31%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models. يعد التقدير الدقيق لمحصول المحاصيل في ظل سيناريوهات تغير المناخ أمرًا ضروريًا لتحديد قدرتنا على إطعام عدد متزايد من السكان وتطوير التكيفات الزراعية لتلبية الطلب على الغذاء في المستقبل. لا يزال التقييم المنسق لمحاكاة الغلة من النماذج الفسيولوجية البيئية القائمة على العمليات لتقييم تأثير تغير المناخ مفقودًا بالنسبة لفول الصويا، وهو بقول الحبوب الأكثر زراعة على نطاق واسع والمصدر الرئيسي للبروتين في سلسلتنا الغذائية. في هذه الدراسة الأولى متعددة النماذج لفول الصويا، استخدمنا عشرة نماذج بارزة قادرة على محاكاة محصول فول الصويا تحت درجات حرارة متفاوتة وتركيز ثاني أكسيد الكربون في الغلاف الجوي [CO2] لقياس عدم اليقين في محاكاة محصول فول الصويا استجابة لهذه العوامل. تم قياس النماذج أولاً ببيانات مقاسة عالية الجودة من خمس بيئات متباينة. وجدنا تباينًا كبيرًا بين النماذج في استجابات العائد المحاكاة لزيادة درجة الحرارة و [CO2]. على سبيل المثال، في ظل ارتفاع درجة الحرارة بمقدار + 3 درجات مئوية في أروع موقع لنا في الأرجنتين، قامت بعض النماذج بمحاكاة أن العائد سيقلل بنسبة تصل إلى 24 ٪، بينما يزيد العائد المحاكى الآخر بنسبة تصل إلى 29 ٪. في موقعنا الأكثر دفئًا في البرازيل، قامت النماذج بمحاكاة انخفاض العائد الذي يتراوح بين انخفاض بنسبة 38 ٪ تحت + ارتفاع درجة حرارة 3 درجات مئوية إلى عدم التأثير على العائد. وبالمثل، عند زيادة [ثاني أكسيد الكربون] من 360 إلى 540 جزء في المليون، قامت النماذج بمحاكاة زيادة العائد التي تراوحت من 6 ٪ إلى 31 ٪. لم تقلل معايرة النموذج من التباين عبر النماذج ولكن كان لها تأثير غير متوقع على تعديل استجابات الخضوع لدرجة الحرارة لبعض النماذج. يشير عدم اليقين الشديد في الاستجابات النموذجية إلى التطبيق المحدود للنماذج الفردية للتوقعات الغذائية لتغير المناخ. ومع ذلك، كان المتوسط الجماعي للمحاكاة عبر النماذج أداة فعالة للحد من عدم اليقين العالي في محاكاة غلة فول الصويا المرتبطة بالنماذج الفردية ومعلماتها. كانت استجابات متوسط العائد على درجة الحرارة و [CO2] متشابهة مع تلك الواردة في الأدبيات. دراستنا هي أول عرض توضيحي للفوائد التي تحققت من استخدام مجموعة من نماذج البقوليات لتوقعات تغير المناخ الغذائية، وتسلط الضوء على الحاجة إلى مزيد من تطوير نموذج فول الصويا مع التجارب تحت [CO2] ودرجة الحرارة المرتفعة لتقليل عدم اليقين من النماذج الفردية.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Goglio P.; Smith W. N.; Grant B. B.; Desjardins R. L.; McConkey B. G.; Campbell C. A.; Nemecek T.;handle: 11391/1552681
Soil carbon sequestration, a climate change mitigation option for agriculture, can either increase or decrease as a result of land management change (LMC) and land use change (LUC). To estimate all greenhouse gas (GHG) exchanges associated with various agricultural systems, life cycle assessments (LCAs) are frequently undertaken. To date LCA practitioners have not had a well-defined procedure to account for soil C in their assessments and as a consequence it is often not included. In this study, various methods used to estimate soil C changes due to (i) LMC and (ii) LUC are examined to assess soil C accounting methodologies in the life cycle inventory (LCI) of agricultural LCAs. A compromise between accuracy and completeness in LCA methods is necessary. A ranking of the preference of soil C accounting methods is suggested based on user expertise and data quality. For large scale assessment, the timing of soil CO2 emissions should be taken into account. If indirect LUC is relevant, a sensitivity analysis of assessment methods should be conducted because the methods highly affect assessment results. A common soil C accounting method that can be easily applied in agricultural LCA needs to be established and an agreement on indirect LUC methods will facilitate the assessment of LMC and LUC within agricultural LCAs.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.05.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu148 citations 148 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.05.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Goglio P; Grant B; Smith W; Desjardins R; Worth D; Zentner R; Malhi S;Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.05.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.05.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu