- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Geophysical Union (AGU) Authors: A. Ceglar; M. Zampieri; A. Toreti; F. Dentener;doi: 10.1029/2019ef001178
This study focuses on the northward shift of homogeneous agro‐climate zones in Europe analyzed for the observed past and projected climate conditions for the next decades. Statistical cluster analysis is used to derive eight main agro‐climatic zones driven by two agro‐meteorological indicators, namely, active temperature sum and thermal growing season length. The northward shift of homogeneous agro‐climate zones and the corresponding change of crop growth suitability are analyzed together with the change of exposure of crops to temperature‐related climate extremes during the growing season. Gradual warming over Europe has contributed to a lengthening of the growing season and an increased active temperature accumulation, accompanied by more frequent occurrence of warm extreme climate events. Using a set of five high‐resolution regional climate scenarios, we calculate that a major part of Europe will be affected by further northward climate zone migration. In the next decades, the migration of agro‐climatic zones in Eastern Europe may reach twice the velocity observed during the period 1975–2016. Several regions of the Mediterranean may lose suitability to grow specific crops in favor of northern European regions. This indicator‐based assessment suggests that the potential advantages of the lengthening of the thermal growing season in northern and eastern Europe are often outbalanced by the risk of late frost and increased risk of early spring and summer heat waves.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 United Kingdom, Belgium, Spain, Netherlands, France, United Kingdom, NetherlandsPublisher:The Royal Society Publicly fundedFunded by:EC | ECLAIREEC| ECLAIRERaia Silvia Massad; R.F. Mitchell; Celia Milford; Tom Misselbrook; John T. Walker; Eiko Nemitz; Albert Bleeker; Stuart N. Riddick; Martin Van Damme; Lieven Clarisse; Chris Flechard; Massimo Vieno; Y. Sim Tang; Erwan Personne; David Fowler; Camilla Geels; Wim de Vries; Carsten Ambelas Skjøth; Mark R. Theobald; Mark A. Sutton; Pierre Cellier; Ulrike Dragosits; László Horváth; Yasmine Ngadi; Robert W. Pinder; T.D. Blackall; Cathy Clerbaux; David Simpson; David Simpson; Jesse O. Bash; Roy Wichink Kruit; Frank Dentener; Sarah Wanless; Benjamin Loubet; Stefan Reis; Pierre-François Coheur; Anthony J. Dore; Christine F. Braban; Francis Daunt; Ole Hertel;pmid: 23713128
pmc: PMC3682750
Existing descriptions of bi-directional ammonia (NH 3 ) land–atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH 3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH 3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH 3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH 3 emission–deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28–67%). Together with increased anthropogenic activity, global NH 3 emissions may increase from 65 (45–85) Tg N in 2008 to reach 132 (89–179) Tg by 2100.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-00844848Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00844848Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed Centralhttp://dx.doi.org/10.1098/rstb...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2013.0166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 343 citations 343 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-00844848Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00844848Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed Centralhttp://dx.doi.org/10.1098/rstb...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2013.0166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ArgentinaPublisher:American Geophysical Union (AGU) M. Zampieri; A. Ceglar; F. Dentener; A. Dosio; G. Naumann; M. van den Berg; A. Toreti;doi: 10.1029/2018ef000995
handle: 11336/113276
AbstractWe estimate the effects of climate anomalies (heat stress and drought) on annual maize production, variability, and trend from the country level to the global scale using a statistical model. Moderate climate anomalies and extremes are diagnosed with two indicators of heat stress and drought computed over maize growing regions during the most relevant period of maize growth. The calibrated model linearly combines these two indicators into a single Combined Stress Index. The Combined Stress Index explains 50% of the observed global production variability in the period 1980–2010. We apply the model on an ensemble of high‐resolution global climate model simulations. Global maize losses, due to extreme climate events with 10‐year return times during the period 1980–2010, will become the new normal already at 1.5 °C global warming levels (approximately 2020s). At 2 °C warming (late 2030s), maize areas will be affected by heat stress and drought never experienced before, affecting many major and minor production regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Geophysical Union (AGU) Authors: A. Ceglar; M. Zampieri; A. Toreti; F. Dentener;doi: 10.1029/2019ef001178
This study focuses on the northward shift of homogeneous agro‐climate zones in Europe analyzed for the observed past and projected climate conditions for the next decades. Statistical cluster analysis is used to derive eight main agro‐climatic zones driven by two agro‐meteorological indicators, namely, active temperature sum and thermal growing season length. The northward shift of homogeneous agro‐climate zones and the corresponding change of crop growth suitability are analyzed together with the change of exposure of crops to temperature‐related climate extremes during the growing season. Gradual warming over Europe has contributed to a lengthening of the growing season and an increased active temperature accumulation, accompanied by more frequent occurrence of warm extreme climate events. Using a set of five high‐resolution regional climate scenarios, we calculate that a major part of Europe will be affected by further northward climate zone migration. In the next decades, the migration of agro‐climatic zones in Eastern Europe may reach twice the velocity observed during the period 1975–2016. Several regions of the Mediterranean may lose suitability to grow specific crops in favor of northern European regions. This indicator‐based assessment suggests that the potential advantages of the lengthening of the thermal growing season in northern and eastern Europe are often outbalanced by the risk of late frost and increased risk of early spring and summer heat waves.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 United Kingdom, Belgium, Spain, Netherlands, France, United Kingdom, NetherlandsPublisher:The Royal Society Publicly fundedFunded by:EC | ECLAIREEC| ECLAIRERaia Silvia Massad; R.F. Mitchell; Celia Milford; Tom Misselbrook; John T. Walker; Eiko Nemitz; Albert Bleeker; Stuart N. Riddick; Martin Van Damme; Lieven Clarisse; Chris Flechard; Massimo Vieno; Y. Sim Tang; Erwan Personne; David Fowler; Camilla Geels; Wim de Vries; Carsten Ambelas Skjøth; Mark R. Theobald; Mark A. Sutton; Pierre Cellier; Ulrike Dragosits; László Horváth; Yasmine Ngadi; Robert W. Pinder; T.D. Blackall; Cathy Clerbaux; David Simpson; David Simpson; Jesse O. Bash; Roy Wichink Kruit; Frank Dentener; Sarah Wanless; Benjamin Loubet; Stefan Reis; Pierre-François Coheur; Anthony J. Dore; Christine F. Braban; Francis Daunt; Ole Hertel;pmid: 23713128
pmc: PMC3682750
Existing descriptions of bi-directional ammonia (NH 3 ) land–atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH 3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH 3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH 3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH 3 emission–deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28–67%). Together with increased anthropogenic activity, global NH 3 emissions may increase from 65 (45–85) Tg N in 2008 to reach 132 (89–179) Tg by 2100.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-00844848Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00844848Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed Centralhttp://dx.doi.org/10.1098/rstb...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2013.0166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 343 citations 343 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-00844848Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00844848Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed Centralhttp://dx.doi.org/10.1098/rstb...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2013.0166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ArgentinaPublisher:American Geophysical Union (AGU) M. Zampieri; A. Ceglar; F. Dentener; A. Dosio; G. Naumann; M. van den Berg; A. Toreti;doi: 10.1029/2018ef000995
handle: 11336/113276
AbstractWe estimate the effects of climate anomalies (heat stress and drought) on annual maize production, variability, and trend from the country level to the global scale using a statistical model. Moderate climate anomalies and extremes are diagnosed with two indicators of heat stress and drought computed over maize growing regions during the most relevant period of maize growth. The calibrated model linearly combines these two indicators into a single Combined Stress Index. The Combined Stress Index explains 50% of the observed global production variability in the period 1980–2010. We apply the model on an ensemble of high‐resolution global climate model simulations. Global maize losses, due to extreme climate events with 10‐year return times during the period 1980–2010, will become the new normal already at 1.5 °C global warming levels (approximately 2020s). At 2 °C warming (late 2030s), maize areas will be affected by heat stress and drought never experienced before, affecting many major and minor production regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu