- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Alexandra Zygogianni;C. Pagkoura;
C. Pagkoura
C. Pagkoura in OpenAIREGeorge Karagiannakis;
Souzana Lorentzou; +1 AuthorsGeorge Karagiannakis
George Karagiannakis in OpenAIREAlexandra Zygogianni;C. Pagkoura;
C. Pagkoura
C. Pagkoura in OpenAIREGeorge Karagiannakis;
Souzana Lorentzou; Athanasios G. Konstandopoulos;George Karagiannakis
George Karagiannakis in OpenAIREAbstractWithin the framework of the recent trend to identify efficient ways of producing solar syngas (CO/H2), the two-step redox based solar thermochemical water dissociation cycle, already employed at a semi-pilot scale for the renewable production of H2, can be modified to include CO2 and/or combined CO2/H2O splitting. The present work relates to Ni-ferrite, as candidate redox material to be employed in Concentrated Solar Power (CSP)-aided thermochemical processes for CO2 and CO2/H2O splitting for the renewable production of CO and syngas respectively. The mixed oxide was synthesized via the Self-propagating High temperature Synthesis (SHS) method and subsequently calcined under air at 1400oC for 1h. Upon calcination, the material obtained the single phase spinel structure. The material was tested, in the form of powder and as a small cylinder-shaped porous structured body, in a lab-scale fixed bed reactor. The experimental protocol involved a thermal activation step of the material for 1h at 1400oC under N2 flow, the CO2 or CO2/H2O splitting step at 1100oC for 30min, which resulted in the production of CO or CO/H2 respectively and the thermal reduction step under N2 at 1400oC for 30min. The effect of CO2 concentration in the feed gas (4%-100%) was investigated in two-cycle experimental runs. In addition, a preliminary durability test was conducted under pure CO2 flow for 8 consecutive splitting and thermal reduction steps. Co-feeding of H2O and CO2 was also conducted for two different compositions; 8%H2O/4% CO2/N2 and 16%H2O/8% CO2/N2). The porous structured body showed somewhat lower yield, in terms of CO2 splitting, compared to the powder.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Alexandra Zygogianni;C. Pagkoura;
C. Pagkoura
C. Pagkoura in OpenAIREGeorge Karagiannakis;
Souzana Lorentzou; +1 AuthorsGeorge Karagiannakis
George Karagiannakis in OpenAIREAlexandra Zygogianni;C. Pagkoura;
C. Pagkoura
C. Pagkoura in OpenAIREGeorge Karagiannakis;
Souzana Lorentzou; Athanasios G. Konstandopoulos;George Karagiannakis
George Karagiannakis in OpenAIREAbstractWithin the framework of the recent trend to identify efficient ways of producing solar syngas (CO/H2), the two-step redox based solar thermochemical water dissociation cycle, already employed at a semi-pilot scale for the renewable production of H2, can be modified to include CO2 and/or combined CO2/H2O splitting. The present work relates to Ni-ferrite, as candidate redox material to be employed in Concentrated Solar Power (CSP)-aided thermochemical processes for CO2 and CO2/H2O splitting for the renewable production of CO and syngas respectively. The mixed oxide was synthesized via the Self-propagating High temperature Synthesis (SHS) method and subsequently calcined under air at 1400oC for 1h. Upon calcination, the material obtained the single phase spinel structure. The material was tested, in the form of powder and as a small cylinder-shaped porous structured body, in a lab-scale fixed bed reactor. The experimental protocol involved a thermal activation step of the material for 1h at 1400oC under N2 flow, the CO2 or CO2/H2O splitting step at 1100oC for 30min, which resulted in the production of CO or CO/H2 respectively and the thermal reduction step under N2 at 1400oC for 30min. The effect of CO2 concentration in the feed gas (4%-100%) was investigated in two-cycle experimental runs. In addition, a preliminary durability test was conducted under pure CO2 flow for 8 consecutive splitting and thermal reduction steps. Co-feeding of H2O and CO2 was also conducted for two different compositions; 8%H2O/4% CO2/N2 and 16%H2O/8% CO2/N2). The porous structured body showed somewhat lower yield, in terms of CO2 splitting, compared to the powder.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2015 GermanyPublisher:Elsevier BV Funded by:EC | RESTRUCTUREEC| RESTRUCTUREAuthors: Tescari, Stefania; Breuer, Stefan;Roeb, Martin;
Roeb, Martin
Roeb, Martin in OpenAIRESattler, Christian;
+5 AuthorsSattler, Christian
Sattler, Christian in OpenAIRETescari, Stefania; Breuer, Stefan;Roeb, Martin;
Roeb, Martin
Roeb, Martin in OpenAIRESattler, Christian;
Flucht, Ferdinand; Schmücker, Martin;Sattler, Christian
Sattler, Christian in OpenAIREKaragiannakis, George;
Pagkoura, Chrysoula; Konstandopoulos, Athanasios G.;Karagiannakis, George
Karagiannakis, George in OpenAIREAbstractThe present study deals with the mechanical properties of structured reactors/heat exchangers, for high temperature heat storage via the cobalt oxide cyclic redox scheme. Two different structures (i.e. honeycomb and perforated block) and two different compositions (i.e. 100% cobalt oxide and 90 wt% cobalt oxide – 10 wt% aluminium oxide) were evaluated. During thermal cycling in the range of 800-1000oC, different loads were applied to the sampleswhile monitoring their length variation. The integrity of the samples was assessed after every cycle. It was found that mechanical strength was substantially improvedupon addition of 10 wt% aluminium oxide. The cobalt oxide/alumina composite presented lower maximal expansion during cycling and exhibited higher integrity, already after one thermal cycle.Another important result is that, for both the honeycomb and the perforated block, the load decreases the over-all sample net expansion. Moreover, the perforated block exhibited lower expansion and better mechanical strength as compared to the honeycomb. Due to the better chemical performance expected to be achieved by the honeycomb structure, a compromise between these two structureshas to be chosen (e.g. honeycomb structure with thicker walls). The results are used for building a thermochemical storage system prototype, implemented for the first time in an existing concentrated solar power facility (STJ).
DLR publication serv... arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert DLR publication serv... arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2015 GermanyPublisher:Elsevier BV Funded by:EC | RESTRUCTUREEC| RESTRUCTUREAuthors: Tescari, Stefania; Breuer, Stefan;Roeb, Martin;
Roeb, Martin
Roeb, Martin in OpenAIRESattler, Christian;
+5 AuthorsSattler, Christian
Sattler, Christian in OpenAIRETescari, Stefania; Breuer, Stefan;Roeb, Martin;
Roeb, Martin
Roeb, Martin in OpenAIRESattler, Christian;
Flucht, Ferdinand; Schmücker, Martin;Sattler, Christian
Sattler, Christian in OpenAIREKaragiannakis, George;
Pagkoura, Chrysoula; Konstandopoulos, Athanasios G.;Karagiannakis, George
Karagiannakis, George in OpenAIREAbstractThe present study deals with the mechanical properties of structured reactors/heat exchangers, for high temperature heat storage via the cobalt oxide cyclic redox scheme. Two different structures (i.e. honeycomb and perforated block) and two different compositions (i.e. 100% cobalt oxide and 90 wt% cobalt oxide – 10 wt% aluminium oxide) were evaluated. During thermal cycling in the range of 800-1000oC, different loads were applied to the sampleswhile monitoring their length variation. The integrity of the samples was assessed after every cycle. It was found that mechanical strength was substantially improvedupon addition of 10 wt% aluminium oxide. The cobalt oxide/alumina composite presented lower maximal expansion during cycling and exhibited higher integrity, already after one thermal cycle.Another important result is that, for both the honeycomb and the perforated block, the load decreases the over-all sample net expansion. Moreover, the perforated block exhibited lower expansion and better mechanical strength as compared to the honeycomb. Due to the better chemical performance expected to be achieved by the honeycomb structure, a compromise between these two structureshas to be chosen (e.g. honeycomb structure with thicker walls). The results are used for building a thermochemical storage system prototype, implemented for the first time in an existing concentrated solar power facility (STJ).
DLR publication serv... arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert DLR publication serv... arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, ItalyPublisher:MDPI AG Funded by:EC | CERESiSEC| CERESiSAuthors:Dimitrios Koutsonikolas;
Dimitrios Koutsonikolas
Dimitrios Koutsonikolas in OpenAIREGeorge Karagiannakis;
George Karagiannakis
George Karagiannakis in OpenAIREKonstantinos Plakas;
Konstantinos Plakas
Konstantinos Plakas in OpenAIREVasileios Chatzis;
+6 AuthorsVasileios Chatzis
Vasileios Chatzis in OpenAIREDimitrios Koutsonikolas;
Dimitrios Koutsonikolas
Dimitrios Koutsonikolas in OpenAIREGeorge Karagiannakis;
George Karagiannakis
George Karagiannakis in OpenAIREKonstantinos Plakas;
Konstantinos Plakas
Konstantinos Plakas in OpenAIREVasileios Chatzis;
Vasileios Chatzis
Vasileios Chatzis in OpenAIREGeorge Skevis;
George Skevis
George Skevis in OpenAIREPaola Giudicianni;
Paola Giudicianni
Paola Giudicianni in OpenAIREDavide Amato;
Davide Amato
Davide Amato in OpenAIREPino Sabia;
Nikolaos Boukis; Katharina Stoll;Pino Sabia
Pino Sabia in OpenAIREhandle: 20.500.14243/415330
Phytoremediation is an emerging concept for contaminated soil restoration via the use of resilient plants that can absorb soil contaminants. The harvested contaminated biomass can be thermochemically converted to energy carriers/chemicals, linking soil decontamination with biomass-to-energy and aligning with circular economy principles. Two thermochemical conversion steps of contaminated biomass, both used for contaminated biomass treatment/exploitation, are considered: Supercritical Water Gasification and Fast Pyrolysis. For the former, the vast majority of contaminants are transferred into liquid and gaseous effluents, and thus the application of purification steps is necessary prior to further processing. In Fast Pyrolysis, contaminants are mainly retained in the solid phase, but a part appears in the liquid phase due to fine solids entrainment. Contaminants include heavy metals, particulate matter, and hydrogen sulfide. The purified streams allow the in-process re-use of water for the Super Critical Water Gasification, the sulfur-free catalytic conversion of the fuel-rich gaseous stream of the same process into liquid fuels and recovery of an exploitable bio-oil rich stream from the Fast Pyrolysis. Considering the fundamental importance of purification/decontamination to exploit the aforementioned streams in an integrated context, a review of available such technologies is conducted, and options are shortlisted. Technologies of choice include polymeric-based membrane gas absorption for desulfurization, electrooxidation/electrocoagulation for the liquid product of Supercritical Water Gasification and microfiltration via ceramic membranes for fine solids removal from the Fast Pyrolysis bio-oil. Challenges, risks, and suitable strategies to implement these options in the context of biomass-to-energy conversion are discussed and recommendations are made.
IRIS Cnr arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/7/2683/pdfData sources: SygmaKITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/7/2683/pdfData sources: SygmaKITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, ItalyPublisher:MDPI AG Funded by:EC | CERESiSEC| CERESiSAuthors:Dimitrios Koutsonikolas;
Dimitrios Koutsonikolas
Dimitrios Koutsonikolas in OpenAIREGeorge Karagiannakis;
George Karagiannakis
George Karagiannakis in OpenAIREKonstantinos Plakas;
Konstantinos Plakas
Konstantinos Plakas in OpenAIREVasileios Chatzis;
+6 AuthorsVasileios Chatzis
Vasileios Chatzis in OpenAIREDimitrios Koutsonikolas;
Dimitrios Koutsonikolas
Dimitrios Koutsonikolas in OpenAIREGeorge Karagiannakis;
George Karagiannakis
George Karagiannakis in OpenAIREKonstantinos Plakas;
Konstantinos Plakas
Konstantinos Plakas in OpenAIREVasileios Chatzis;
Vasileios Chatzis
Vasileios Chatzis in OpenAIREGeorge Skevis;
George Skevis
George Skevis in OpenAIREPaola Giudicianni;
Paola Giudicianni
Paola Giudicianni in OpenAIREDavide Amato;
Davide Amato
Davide Amato in OpenAIREPino Sabia;
Nikolaos Boukis; Katharina Stoll;Pino Sabia
Pino Sabia in OpenAIREhandle: 20.500.14243/415330
Phytoremediation is an emerging concept for contaminated soil restoration via the use of resilient plants that can absorb soil contaminants. The harvested contaminated biomass can be thermochemically converted to energy carriers/chemicals, linking soil decontamination with biomass-to-energy and aligning with circular economy principles. Two thermochemical conversion steps of contaminated biomass, both used for contaminated biomass treatment/exploitation, are considered: Supercritical Water Gasification and Fast Pyrolysis. For the former, the vast majority of contaminants are transferred into liquid and gaseous effluents, and thus the application of purification steps is necessary prior to further processing. In Fast Pyrolysis, contaminants are mainly retained in the solid phase, but a part appears in the liquid phase due to fine solids entrainment. Contaminants include heavy metals, particulate matter, and hydrogen sulfide. The purified streams allow the in-process re-use of water for the Super Critical Water Gasification, the sulfur-free catalytic conversion of the fuel-rich gaseous stream of the same process into liquid fuels and recovery of an exploitable bio-oil rich stream from the Fast Pyrolysis. Considering the fundamental importance of purification/decontamination to exploit the aforementioned streams in an integrated context, a review of available such technologies is conducted, and options are shortlisted. Technologies of choice include polymeric-based membrane gas absorption for desulfurization, electrooxidation/electrocoagulation for the liquid product of Supercritical Water Gasification and microfiltration via ceramic membranes for fine solids removal from the Fast Pyrolysis bio-oil. Challenges, risks, and suitable strategies to implement these options in the context of biomass-to-energy conversion are discussed and recommendations are made.
IRIS Cnr arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/7/2683/pdfData sources: SygmaKITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down EnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/7/2683/pdfData sources: SygmaKITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:Elsevier BV Funded by:EC | RESTRUCTUREEC| RESTRUCTUREAuthors:George Karagiannakis;
George Karagiannakis
George Karagiannakis in OpenAIREMargaritis Kostoglou;
Alexandra Zygogianni; Michael Rattenburry; +4 AuthorsMargaritis Kostoglou
Margaritis Kostoglou in OpenAIREGeorge Karagiannakis;
George Karagiannakis
George Karagiannakis in OpenAIREMargaritis Kostoglou;
Alexandra Zygogianni; Michael Rattenburry; James W. Woodhead; Chrysoula Pagkoura; Athanasios G. Konstandopoulos; Souzana Lorentzou;Margaritis Kostoglou
Margaritis Kostoglou in OpenAIREAbstract The present work is an investigation of the redox performance of several cobalt oxide based compositions, as candidate materials for energy storage in future concentrated solar power plants. To this respect, various commercial and in-house synthesized grades were evaluated in the form of small structured perforated monolithic bodies (flow-through pellets) and assessed in terms of their capability to perform reversible cyclic reduction–oxidation reactions under air flow in the temperature range of 800–1000 °C. The compositions studied involved pure cobalt oxide as well as composites of cobalt oxide with ceria, zirconia, alumina, iron oxide, silicon carbide and manganese oxide. The main criterion for the evaluation of compositions considered was a combination of high redox reaction extent with good thermo-mechanical stability of fabricated structured bodies. Among the materials studied and based on this criterion, the most promising ones were the cobalt oxide–alumina and cobalt oxide–iron oxide composites. Although pure cobalt oxide, and especially one grade synthesized in the lab, exhibited the highest redox performance, the respective shaped structures did not manage to retain their macro-structural integrity in the course of 10 redox cycles. Moreover, it was found that, under certain conditions, the addition of ceria improved redox reaction kinetics, while total performance of cobalt oxide was not affected. However, the structural stability of cobalt oxide–ceria pellets was also problematic. It was also demonstrated that by varying the second oxide, the start-of-reduction/oxidation temperatures of cobalt oxide can be significantly altered. A preliminary simplified kinetic model was developed and its good agreement with pure cobalt oxide redox experimental data was also demonstrated. Post-characterization of used structured bodies confirmed the experimental findings of redox performance measurements and, to some extent, provided explanations regarding the main phenomena involved upon cyclic operation of different compositions employed.
Solar Energy arrow_drop_down http://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy arrow_drop_down http://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:Elsevier BV Funded by:EC | RESTRUCTUREEC| RESTRUCTUREAuthors:George Karagiannakis;
George Karagiannakis
George Karagiannakis in OpenAIREMargaritis Kostoglou;
Alexandra Zygogianni; Michael Rattenburry; +4 AuthorsMargaritis Kostoglou
Margaritis Kostoglou in OpenAIREGeorge Karagiannakis;
George Karagiannakis
George Karagiannakis in OpenAIREMargaritis Kostoglou;
Alexandra Zygogianni; Michael Rattenburry; James W. Woodhead; Chrysoula Pagkoura; Athanasios G. Konstandopoulos; Souzana Lorentzou;Margaritis Kostoglou
Margaritis Kostoglou in OpenAIREAbstract The present work is an investigation of the redox performance of several cobalt oxide based compositions, as candidate materials for energy storage in future concentrated solar power plants. To this respect, various commercial and in-house synthesized grades were evaluated in the form of small structured perforated monolithic bodies (flow-through pellets) and assessed in terms of their capability to perform reversible cyclic reduction–oxidation reactions under air flow in the temperature range of 800–1000 °C. The compositions studied involved pure cobalt oxide as well as composites of cobalt oxide with ceria, zirconia, alumina, iron oxide, silicon carbide and manganese oxide. The main criterion for the evaluation of compositions considered was a combination of high redox reaction extent with good thermo-mechanical stability of fabricated structured bodies. Among the materials studied and based on this criterion, the most promising ones were the cobalt oxide–alumina and cobalt oxide–iron oxide composites. Although pure cobalt oxide, and especially one grade synthesized in the lab, exhibited the highest redox performance, the respective shaped structures did not manage to retain their macro-structural integrity in the course of 10 redox cycles. Moreover, it was found that, under certain conditions, the addition of ceria improved redox reaction kinetics, while total performance of cobalt oxide was not affected. However, the structural stability of cobalt oxide–ceria pellets was also problematic. It was also demonstrated that by varying the second oxide, the start-of-reduction/oxidation temperatures of cobalt oxide can be significantly altered. A preliminary simplified kinetic model was developed and its good agreement with pure cobalt oxide redox experimental data was also demonstrated. Post-characterization of used structured bodies confirmed the experimental findings of redox performance measurements and, to some extent, provided explanations regarding the main phenomena involved upon cyclic operation of different compositions employed.
Solar Energy arrow_drop_down http://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy arrow_drop_down http://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:Athanasios K. Stubos;
Athanasios K. Stubos
Athanasios K. Stubos in OpenAIRETheodore Steriotis;
Diana Baciu;Theodore Steriotis
Theodore Steriotis in OpenAIREGeorgia Charalambopoulou;
+7 AuthorsGeorgia Charalambopoulou
Georgia Charalambopoulou in OpenAIREAthanasios K. Stubos;
Athanasios K. Stubos
Athanasios K. Stubos in OpenAIRETheodore Steriotis;
Diana Baciu;Theodore Steriotis
Theodore Steriotis in OpenAIREGeorgia Charalambopoulou;
Athanasios G. Konstandopoulos; Jonas Obermeier;Georgia Charalambopoulou
Georgia Charalambopoulou in OpenAIRENikolaos I. Tsongidis;
Kyriaki G. Sakellariou;Nikolaos I. Tsongidis
Nikolaos I. Tsongidis in OpenAIREKarsten Müller;
Wolfgang Arlt;Karsten Müller
Karsten Müller in OpenAIREGeorge Karagiannakis;
George Karagiannakis
George Karagiannakis in OpenAIREThe cyclic carbonation/calcination reaction of CaO is discussed as a thermochemical energy storage system. Especially the high reaction temperature enables high theoretical energetic efficiencies. A severe issue is the strong cycle-to-cycle degradation of the material due to sintering. In order to overcome this, two different approaches are studied in this work: (1) Intermediate hydration of natural CaO to regenerate the sorbent. (2) Preparation of pure CaO and CaO/Al2O3 composites with different Ca/Al molar ratios. All materials prepared are structurally and morphologically characterized and for the evaluation of the sorbents, the CO2 uptake capacity during carbonation reaction is measured over multiple cycles. Besides the successful proof of an optimized cyclic stability, the energetic efficiency and storage density of the synthesized samples is calculated and compared to the benchmark material, natural CaO. In case of storage density, values of up to 3.5 times and in case of energetic efficiency, a factor of 1.2 referred to natural CaO are obtained within the 20th cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:Athanasios K. Stubos;
Athanasios K. Stubos
Athanasios K. Stubos in OpenAIRETheodore Steriotis;
Diana Baciu;Theodore Steriotis
Theodore Steriotis in OpenAIREGeorgia Charalambopoulou;
+7 AuthorsGeorgia Charalambopoulou
Georgia Charalambopoulou in OpenAIREAthanasios K. Stubos;
Athanasios K. Stubos
Athanasios K. Stubos in OpenAIRETheodore Steriotis;
Diana Baciu;Theodore Steriotis
Theodore Steriotis in OpenAIREGeorgia Charalambopoulou;
Athanasios G. Konstandopoulos; Jonas Obermeier;Georgia Charalambopoulou
Georgia Charalambopoulou in OpenAIRENikolaos I. Tsongidis;
Kyriaki G. Sakellariou;Nikolaos I. Tsongidis
Nikolaos I. Tsongidis in OpenAIREKarsten Müller;
Wolfgang Arlt;Karsten Müller
Karsten Müller in OpenAIREGeorge Karagiannakis;
George Karagiannakis
George Karagiannakis in OpenAIREThe cyclic carbonation/calcination reaction of CaO is discussed as a thermochemical energy storage system. Especially the high reaction temperature enables high theoretical energetic efficiencies. A severe issue is the strong cycle-to-cycle degradation of the material due to sintering. In order to overcome this, two different approaches are studied in this work: (1) Intermediate hydration of natural CaO to regenerate the sorbent. (2) Preparation of pure CaO and CaO/Al2O3 composites with different Ca/Al molar ratios. All materials prepared are structurally and morphologically characterized and for the evaluation of the sorbents, the CO2 uptake capacity during carbonation reaction is measured over multiple cycles. Besides the successful proof of an optimized cyclic stability, the energetic efficiency and storage density of the synthesized samples is calculated and compared to the benchmark material, natural CaO. In case of storage density, values of up to 3.5 times and in case of energetic efficiency, a factor of 1.2 referred to natural CaO are obtained within the 20th cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:Elsevier BV Funded by:EC | ARMOS, EC | HYDROSOL-PLANTEC| ARMOS ,EC| HYDROSOL-PLANTAuthors: Lorentzou, Souzana;Dimitrakis, Dimitrios;
Zygogianni, Alexandra;Dimitrakis, Dimitrios
Dimitrakis, Dimitrios in OpenAIREKaragiannakis, George;
+1 AuthorsKaragiannakis, George
Karagiannakis, George in OpenAIRELorentzou, Souzana;Dimitrakis, Dimitrios;
Zygogianni, Alexandra;Dimitrakis, Dimitrios
Dimitrakis, Dimitrios in OpenAIREKaragiannakis, George;
Karagiannakis, George
Karagiannakis, George in OpenAIREKonstandopoulos, Athanasios;
Konstandopoulos, Athanasios
Konstandopoulos, Athanasios in OpenAIREAbstract A high flux solar simulator allows the lab-scale assessment of solar reactor concepts by irradiating a target with high flux thermal energy, similarly to reactors installed in concentrated solar radiation facilities such as central towers with a heliostat field. In the current study, the design and construction of a high flux solar simulator facility for near realistic solar experiments is presented. A simple, cavity-tubular thermochemical reactor is employed for the evaluation of the redox activity of structured monolithic bodies (foams and honeycombs) consisting entirely of NiFe2O4 w.r.t·H2O splitting, CO2 splitting and combined H2O-CO2 splitting reactions. Experiments under realistic conditions, i.e. a solar reactor under irradiation, were conducted to assess the solar fuels production capability, which was examined at the structure level and the reactor level. The best performing structure was the NiFe2O4 foam. Further multilevel research (structure, reactor as well as redox material), will improve product yield and reactor efficiency.
Solar Energy arrow_drop_down http://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 21 Powered bymore_vert Solar Energy arrow_drop_down http://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:Elsevier BV Funded by:EC | ARMOS, EC | HYDROSOL-PLANTEC| ARMOS ,EC| HYDROSOL-PLANTAuthors: Lorentzou, Souzana;Dimitrakis, Dimitrios;
Zygogianni, Alexandra;Dimitrakis, Dimitrios
Dimitrakis, Dimitrios in OpenAIREKaragiannakis, George;
+1 AuthorsKaragiannakis, George
Karagiannakis, George in OpenAIRELorentzou, Souzana;Dimitrakis, Dimitrios;
Zygogianni, Alexandra;Dimitrakis, Dimitrios
Dimitrakis, Dimitrios in OpenAIREKaragiannakis, George;
Karagiannakis, George
Karagiannakis, George in OpenAIREKonstandopoulos, Athanasios;
Konstandopoulos, Athanasios
Konstandopoulos, Athanasios in OpenAIREAbstract A high flux solar simulator allows the lab-scale assessment of solar reactor concepts by irradiating a target with high flux thermal energy, similarly to reactors installed in concentrated solar radiation facilities such as central towers with a heliostat field. In the current study, the design and construction of a high flux solar simulator facility for near realistic solar experiments is presented. A simple, cavity-tubular thermochemical reactor is employed for the evaluation of the redox activity of structured monolithic bodies (foams and honeycombs) consisting entirely of NiFe2O4 w.r.t·H2O splitting, CO2 splitting and combined H2O-CO2 splitting reactions. Experiments under realistic conditions, i.e. a solar reactor under irradiation, were conducted to assess the solar fuels production capability, which was examined at the structure level and the reactor level. The best performing structure was the NiFe2O4 foam. Further multilevel research (structure, reactor as well as redox material), will improve product yield and reactor efficiency.
Solar Energy arrow_drop_down http://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 21 Powered bymore_vert Solar Energy arrow_drop_down http://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2016Publisher:Author(s) Authors: Athanasios G. Konstandopoulos;Athanasios K. Stubos;
Athanasios K. Stubos
Athanasios K. Stubos in OpenAIREGeorgia Charalambopoulou;
Georgia Charalambopoulou
Georgia Charalambopoulou in OpenAIREGeorge Karagiannakis;
+5 AuthorsGeorge Karagiannakis
George Karagiannakis in OpenAIREAthanasios G. Konstandopoulos;Athanasios K. Stubos;
Athanasios K. Stubos
Athanasios K. Stubos in OpenAIREGeorgia Charalambopoulou;
Georgia Charalambopoulou
Georgia Charalambopoulou in OpenAIREGeorge Karagiannakis;
Kyriaki G. Sakellariou;George Karagiannakis
George Karagiannakis in OpenAIRENikolaos I. Tsongidis;
Diana Baciu;Nikolaos I. Tsongidis
Nikolaos I. Tsongidis in OpenAIRETheodore Steriotis;
Wolfgang Arlt;Theodore Steriotis
Theodore Steriotis in OpenAIREdoi: 10.1063/1.4949138
The current work relates to the development of synthetic calcium oxide (CaO) based compositions as candidate materials for energy storage under a cyclic carbonation/decarbonation reaction scheme. Although under such a cyclic scheme the energy density of natural lime based CaO is high (∼ 3MJ/kg), the particular materials suffer from notable cycle-to-cycle deactivation. To this direction, pure CaO and CaO/Al2O3 composites have been prepared and preliminarily evaluated under the suggested cyclic carbonation/decarbonation scheme in the temperature range of 600-800°C. For the composite materials, Ca/Al molar ratios were in the range between 95/5 and 52/48 and upon calcination the formation of mixed Ca/Al phases was verified. The preliminary evaluation of materials studied was conducted under 3 carbonation/decarbonation cycles and the loss of activity for the case of natural CaO was obvious. Synthetic materials with superior stability/capture c.f. natural CaO were further subjected to multi-cyclic carbonation/decarbonation, via which the positive effect of alumina addition was made evident. Selected compositions exhibited adequately high CO2 capture capacity and stable performance during multi-cyclic operation. Moreover, this study contains preliminary experiments referring to proof-of-principle validation of a concept based on the utilization of a CaO-based honeycomb reactor/heat exchanger preliminary design. In particular, cordierite monolithic structures were coated with natural CaO and in total 11 cycles were conducted. Upon operation, clear signs of heat dissipation by the imposed flow in the duration of the exothermic reaction step were identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4949138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4949138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2016Publisher:Author(s) Authors: Athanasios G. Konstandopoulos;Athanasios K. Stubos;
Athanasios K. Stubos
Athanasios K. Stubos in OpenAIREGeorgia Charalambopoulou;
Georgia Charalambopoulou
Georgia Charalambopoulou in OpenAIREGeorge Karagiannakis;
+5 AuthorsGeorge Karagiannakis
George Karagiannakis in OpenAIREAthanasios G. Konstandopoulos;Athanasios K. Stubos;
Athanasios K. Stubos
Athanasios K. Stubos in OpenAIREGeorgia Charalambopoulou;
Georgia Charalambopoulou
Georgia Charalambopoulou in OpenAIREGeorge Karagiannakis;
Kyriaki G. Sakellariou;George Karagiannakis
George Karagiannakis in OpenAIRENikolaos I. Tsongidis;
Diana Baciu;Nikolaos I. Tsongidis
Nikolaos I. Tsongidis in OpenAIRETheodore Steriotis;
Wolfgang Arlt;Theodore Steriotis
Theodore Steriotis in OpenAIREdoi: 10.1063/1.4949138
The current work relates to the development of synthetic calcium oxide (CaO) based compositions as candidate materials for energy storage under a cyclic carbonation/decarbonation reaction scheme. Although under such a cyclic scheme the energy density of natural lime based CaO is high (∼ 3MJ/kg), the particular materials suffer from notable cycle-to-cycle deactivation. To this direction, pure CaO and CaO/Al2O3 composites have been prepared and preliminarily evaluated under the suggested cyclic carbonation/decarbonation scheme in the temperature range of 600-800°C. For the composite materials, Ca/Al molar ratios were in the range between 95/5 and 52/48 and upon calcination the formation of mixed Ca/Al phases was verified. The preliminary evaluation of materials studied was conducted under 3 carbonation/decarbonation cycles and the loss of activity for the case of natural CaO was obvious. Synthetic materials with superior stability/capture c.f. natural CaO were further subjected to multi-cyclic carbonation/decarbonation, via which the positive effect of alumina addition was made evident. Selected compositions exhibited adequately high CO2 capture capacity and stable performance during multi-cyclic operation. Moreover, this study contains preliminary experiments referring to proof-of-principle validation of a concept based on the utilization of a CaO-based honeycomb reactor/heat exchanger preliminary design. In particular, cordierite monolithic structures were coated with natural CaO and in total 11 cycles were conducted. Upon operation, clear signs of heat dissipation by the imposed flow in the duration of the exothermic reaction step were identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4949138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4949138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Elsevier BV Funded by:EC | RESTRUCTUREEC| RESTRUCTUREAuthors:George Karagiannakis;
Chrysoula Pagkoura;George Karagiannakis
George Karagiannakis in OpenAIREEleftherios Halevas;
Penelope Baltzopoulou; +1 AuthorsEleftherios Halevas
Eleftherios Halevas in OpenAIREGeorge Karagiannakis;
Chrysoula Pagkoura;George Karagiannakis
George Karagiannakis in OpenAIREEleftherios Halevas;
Penelope Baltzopoulou; Athanasios G. Konstandopoulos;Eleftherios Halevas
Eleftherios Halevas in OpenAIREAbstract The present study relates to the preparation and evaluation of small-scale honeycomb structures as compact reactors/heat exchangers via exploitation of the cobalt/cobaltous oxide (Co3O4/CoO) cyclic reduction–oxidation (redox) heat storage scheme. The structures considered included in-house extruded monoliths (pure cobalt oxide and cobalt oxide/alumina composites) and commercial cordierite substrates coated with Co3O4. The samples were subjected to multi-cyclic redox operation under air flow, in the temperature range of 700–1000 °C. Reduction occurred during heating up to 1000 °C, while oxidation took place during cooling. Redox performance was evaluated on the basis of on-line oxygen release/consumption measurements, while continuous monitoring of imposed air flow reactor inlet/outlet temperatures facilitated the preliminary estimation of heat dissipation in the duration and after completion of the exothermic reaction (oxidation). For all samples, redox performance remained stable in the course of multi-cyclic exposure. In terms of heat transfer, there is strong indication that both composition and the geometry of the honeycomb are important. The pure Co3O4 extruded honeycomb exhibited the highest heat dissipation efficiency but suffered from severe deformation upon multi-cyclic operation. The addition of a small amount of alumina in the aforementioned composition (10% on the basis of total initial mass of oxides), particularly when combined with an increase of the honeycomb wall thickness, substantially improved macro-structural stability upon thermal/redox cycling. The Co3O4-coated cordierite monoliths showed essentially the same normalised redox performance with the pure Co3O4 extruded honeycomb, however the overall heat dissipation achieved was lower. Regarding the effect of redox cycling on the structural stability of studied formulations, pure Co3O4 samples exhibited notable swelling. In the case of the extruded body, this resulted to structural collapse while for the coated cordierite honeycomb, expansion of the coating layer led to partial channels blocking. Based on relevant morphological and structural post-analysis, it was concluded that formation of cobalt aluminate largely reduced swelling intensity.
Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.04.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.04.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Elsevier BV Funded by:EC | RESTRUCTUREEC| RESTRUCTUREAuthors:George Karagiannakis;
Chrysoula Pagkoura;George Karagiannakis
George Karagiannakis in OpenAIREEleftherios Halevas;
Penelope Baltzopoulou; +1 AuthorsEleftherios Halevas
Eleftherios Halevas in OpenAIREGeorge Karagiannakis;
Chrysoula Pagkoura;George Karagiannakis
George Karagiannakis in OpenAIREEleftherios Halevas;
Penelope Baltzopoulou; Athanasios G. Konstandopoulos;Eleftherios Halevas
Eleftherios Halevas in OpenAIREAbstract The present study relates to the preparation and evaluation of small-scale honeycomb structures as compact reactors/heat exchangers via exploitation of the cobalt/cobaltous oxide (Co3O4/CoO) cyclic reduction–oxidation (redox) heat storage scheme. The structures considered included in-house extruded monoliths (pure cobalt oxide and cobalt oxide/alumina composites) and commercial cordierite substrates coated with Co3O4. The samples were subjected to multi-cyclic redox operation under air flow, in the temperature range of 700–1000 °C. Reduction occurred during heating up to 1000 °C, while oxidation took place during cooling. Redox performance was evaluated on the basis of on-line oxygen release/consumption measurements, while continuous monitoring of imposed air flow reactor inlet/outlet temperatures facilitated the preliminary estimation of heat dissipation in the duration and after completion of the exothermic reaction (oxidation). For all samples, redox performance remained stable in the course of multi-cyclic exposure. In terms of heat transfer, there is strong indication that both composition and the geometry of the honeycomb are important. The pure Co3O4 extruded honeycomb exhibited the highest heat dissipation efficiency but suffered from severe deformation upon multi-cyclic operation. The addition of a small amount of alumina in the aforementioned composition (10% on the basis of total initial mass of oxides), particularly when combined with an increase of the honeycomb wall thickness, substantially improved macro-structural stability upon thermal/redox cycling. The Co3O4-coated cordierite monoliths showed essentially the same normalised redox performance with the pure Co3O4 extruded honeycomb, however the overall heat dissipation achieved was lower. Regarding the effect of redox cycling on the structural stability of studied formulations, pure Co3O4 samples exhibited notable swelling. In the case of the extruded body, this resulted to structural collapse while for the coated cordierite honeycomb, expansion of the coating layer led to partial channels blocking. Based on relevant morphological and structural post-analysis, it was concluded that formation of cobalt aluminate largely reduced swelling intensity.
Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.04.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.04.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:Elsevier BV Funded by:EC | RESTRUCTUREEC| RESTRUCTUREAuthors:G. Karagiannakis;
G. Karagiannakis
G. Karagiannakis in OpenAIREC. Pagkoura;
A. Zygogianni; S. Lorentzou; +1 AuthorsC. Pagkoura
C. Pagkoura in OpenAIREG. Karagiannakis;
G. Karagiannakis
G. Karagiannakis in OpenAIREC. Pagkoura;
A. Zygogianni; S. Lorentzou; A.G. Konstandopoulos;C. Pagkoura
C. Pagkoura in OpenAIREAbstractThe present work relates to the investigation of cobalt and manganese oxide based compositions as candidate materials for the storage of surplus energy, available in the form of heat, generated from high temperature concentrated solar power plants (e.g. solar tower, solar dish) via a two-step thermochemical cyclic redox process under air flow. Emphasis is given on the utilization of small structured monolithic bodies (flow-through pellets) made entirely from the two aforementioned oxides. As compared to the respective powders, and in addition to the natural advantage of substantially lower pressure drop that monolithic structures can offer, this study demonstrated that structured bodies can also improve redox kinetics to a measurable extent. Cobalt oxide was found to be superior to manganese oxide both from an estimated energy density and from a redox reactions kinetics point-of-view. Among the redox conditions studied, the optimum reduction-oxidation operating window for the former oxide was determined to be in the range of 1000-800°C, while for the latter material no clear conclusion was drawn with reduction reaching its maximum extent at 1000°C and oxidation occurring in the range of 500-650°C. In both cases, no significant degradation of redox performance was observed upon cyclic operation (up to 10 cycles), however manganese oxide showed notably slower oxidation kinetics.
Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 78 citations 78 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:Elsevier BV Funded by:EC | RESTRUCTUREEC| RESTRUCTUREAuthors:G. Karagiannakis;
G. Karagiannakis
G. Karagiannakis in OpenAIREC. Pagkoura;
A. Zygogianni; S. Lorentzou; +1 AuthorsC. Pagkoura
C. Pagkoura in OpenAIREG. Karagiannakis;
G. Karagiannakis
G. Karagiannakis in OpenAIREC. Pagkoura;
A. Zygogianni; S. Lorentzou; A.G. Konstandopoulos;C. Pagkoura
C. Pagkoura in OpenAIREAbstractThe present work relates to the investigation of cobalt and manganese oxide based compositions as candidate materials for the storage of surplus energy, available in the form of heat, generated from high temperature concentrated solar power plants (e.g. solar tower, solar dish) via a two-step thermochemical cyclic redox process under air flow. Emphasis is given on the utilization of small structured monolithic bodies (flow-through pellets) made entirely from the two aforementioned oxides. As compared to the respective powders, and in addition to the natural advantage of substantially lower pressure drop that monolithic structures can offer, this study demonstrated that structured bodies can also improve redox kinetics to a measurable extent. Cobalt oxide was found to be superior to manganese oxide both from an estimated energy density and from a redox reactions kinetics point-of-view. Among the redox conditions studied, the optimum reduction-oxidation operating window for the former oxide was determined to be in the range of 1000-800°C, while for the latter material no clear conclusion was drawn with reduction reaching its maximum extent at 1000°C and oxidation occurring in the range of 500-650°C. In both cases, no significant degradation of redox performance was observed upon cyclic operation (up to 10 cycles), however manganese oxide showed notably slower oxidation kinetics.
Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 78 citations 78 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:American Chemical Society (ACS) Funded by:EC | COMETNANOEC| COMETNANOAuthors: Mandilas C;Karagiannakis G;
Konstandopoulos AG;Karagiannakis G
Karagiannakis G in OpenAIREBeatrice C;
+5 AuthorsBeatrice C
Beatrice C in OpenAIREMandilas C;Karagiannakis G;
Konstandopoulos AG;Karagiannakis G
Karagiannakis G in OpenAIREBeatrice C;
Beatrice C
Beatrice C in OpenAIRELazzaro M;
Lazzaro M
Lazzaro M in OpenAIREDi Blasio G;
Di Blasio G
Di Blasio G in OpenAIREMolina S;
Pastor JV; Gil A;Molina S
Molina S in OpenAIREhandle: 20.500.14243/318247
[EN] The present work includes findings from proof-of-principle feasibility studies on iron nanopowder combustion under idealized, enginelike, and real engine conditions. The study was conducted under the scope of recent interest in metallic nanoparticles as alternative fuels for internal combustion engines. More specifically, Fe nanoparticles with different morphologies and average primary particle sizes ranging from 25 to 85 nm were studied with respect to their oxidation characteristics via thermogravimetric analysis as well as in customized shock tube, constant-volume vessel, and compression-ignition (CI) engine configurations. Combusted powder samples were in all cases examined via in situ and ex situ techniques for the identification of combustion products and their morphologies. The findings facilitated the determination of the main phenomena involved during oxidation. The results verified that combustion of Fe nanoparticles in a slightly modified CI engine is feasible, albeit with various technological challenges related to ignition and scavenging that inhibit combustion quality. The authors thank the European Commission for partial funding of this work through the Project “COMETNANO” (FP7-NMP4-SL-2009-229063).
Energy & Fuels arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.6b00121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 178 Powered bymore_vert Energy & Fuels arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.6b00121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:American Chemical Society (ACS) Funded by:EC | COMETNANOEC| COMETNANOAuthors: Mandilas C;Karagiannakis G;
Konstandopoulos AG;Karagiannakis G
Karagiannakis G in OpenAIREBeatrice C;
+5 AuthorsBeatrice C
Beatrice C in OpenAIREMandilas C;Karagiannakis G;
Konstandopoulos AG;Karagiannakis G
Karagiannakis G in OpenAIREBeatrice C;
Beatrice C
Beatrice C in OpenAIRELazzaro M;
Lazzaro M
Lazzaro M in OpenAIREDi Blasio G;
Di Blasio G
Di Blasio G in OpenAIREMolina S;
Pastor JV; Gil A;Molina S
Molina S in OpenAIREhandle: 20.500.14243/318247
[EN] The present work includes findings from proof-of-principle feasibility studies on iron nanopowder combustion under idealized, enginelike, and real engine conditions. The study was conducted under the scope of recent interest in metallic nanoparticles as alternative fuels for internal combustion engines. More specifically, Fe nanoparticles with different morphologies and average primary particle sizes ranging from 25 to 85 nm were studied with respect to their oxidation characteristics via thermogravimetric analysis as well as in customized shock tube, constant-volume vessel, and compression-ignition (CI) engine configurations. Combusted powder samples were in all cases examined via in situ and ex situ techniques for the identification of combustion products and their morphologies. The findings facilitated the determination of the main phenomena involved during oxidation. The results verified that combustion of Fe nanoparticles in a slightly modified CI engine is feasible, albeit with various technological challenges related to ignition and scavenging that inhibit combustion quality. The authors thank the European Commission for partial funding of this work through the Project “COMETNANO” (FP7-NMP4-SL-2009-229063).
Energy & Fuels arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.6b00121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 178 Powered bymore_vert Energy & Fuels arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.6b00121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu