- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Jürgen Hüpkes; Karsten Bittkau; Rahul Dewan; Vladislav Jovanov; Dietmar Knipp; Shailesh Shrestha;Abstract A simple method is developed to determine the light trapping properties of arbitrarily textured solar cells with high accuracy. The method allows for determining the quantum efficiency and short circuit current density of thin film solar cells prepared on randomly nanotextured surfaces. The light trapping of the randomly textured solar cell is described by the area weighted superposition of periodically textured solar cells. The necessary input parameters for the calculations are determined by analyzing the randomly textured surfaces of the solar cells using atomic force microscopy and image processing. The analysis of the atomic force microscope images and the calculation of the quantum efficiency and short circuit current can be determined from current maps, without complex and time-consuming calculations. The calculated solar cell parameters exhibit excellent agreement with experimentally measured quantum efficiencies and short circuit current densities for amorphous and microcrystalline silicon thin film solar cells prepared on randomly textured substrates. Finally, the work contributes to a comparison of random and periodic light trapping structures.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV F. Fenske; E. Conrad; Tobias Hanel; M. Berginski; B. Rau; Stefan Gall; Jürgen Hüpkes; Florian Ruske; T. Weber; K.Y. Lee; B. Gorka; Christiane Becker; Pinar Dogan; Bernd Rech;Abstract The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 Ω after 22 h annealing at 600 °C and only slightly increases for a 200 s heat treatment at 900 °C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 °C.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.09.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.09.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV R. Clemente de Lima; T. Merdzhanova; B. Turan; J. Kirchhoff; J. Hüpkes; C. Zahren; O. Astakhov;Abstract Multijunction solar cells, proven technological route for achievements of highest PV conversion efficiencies, require accurate tuning of the sub-cell absorption to ensure that every cell in the stack delivers the same current density. Even though currents of the sub-cells can be precisely matched for a fixed illumination spectrum, current mismatch cannot be avoided in real terrestrial applications due to variations of the irradiance spectrum. The issue becomes critical when a solar cell has to cover wider range of applications such as a mixture of direct sun / shadow / artificial light – the case for various distributed PV-powered electronics. Furthermore the current matching constrains choice of materials and designs of sub-cells for a tandem device. A straightforward basic configuration with decoupling the sub-cell's currents is a 3-terminal configuration with one additional contact sheared by the top and bottom cell. This concept requires voltage-matching between the top and bottom cell when these cells are integrated in modules. A realistic concept for the voltage-matched 3-terminal cell reported recently includes a wide gap top cell combined with a tandem bottom cell made of 2 sub-cells with lower bandgaps. The concept is a hybrid between 2 and 3-terminal configurations with voltage matching and relaxed current matching constrains. Established thin film silicon solar cell technology provides interesting option to realize the hybrid 3-terminal cell with amorphous Si top cell (VOC ≈ 0.9 V) and two microcrystalline Si cells (VOC ≈ 0.5 V). In this work we present proof of concept of the voltage matched 3-terminal tandem cell prepared with highly transparent and conductive IOH intermediate contact. The efficiency of 10.4% has been achieved made up of independently operating 7.9% efficient top cell and 2.5% efficient bottom tandem cell. The paper summarizes the development and discusses optical losses identified in the 3-T devices.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: W. Böttler; Vladimir Smirnov; Friedhelm Finger; Jürgen Hüpkes;AbstractSurface morphology of ZnO layers with as-deposited thickness between 550 to 1050nm was varied over wide range by changing etching time. The surface morphology of these ZnO layers was measured by atomic force microscopy (AFM) and statistically analyzed in terms of root mean square roughness and the diameter and depth of the craters. The texture-etched ZnO covered with a Ag and ZnO layers were applied into n-i-p μc-Si:H solar cells as back reflectors. The effects of the back reflector morphologies on solar cell performances were investigated. The link between the morphology, the scattering properties of ZnO layers, and the solar cell performance is discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.12.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.12.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 GermanyPublisher:Wiley Schulte, M.; Bittkau, K.; Pieters, B.E.; Jorke, S.; Stiebig, Helmut; Hüpkes, J.; Rau, U.;doi: 10.1002/pip.1097
AbstractWe investigate the scattering behavior of nano‐textured ZnO–Air and ZnO–Silicon interfaces for the application in thin film silicon solar cells. Contrary to the common approach, the numerical solution of the Maxwell's equations, we introduce a ray tracing approach based on geometric optics and the measured interface topography. The validity of this model is discussed by means of scanning near‐field optical microscopy (SNOM) measurements and numerical solutions of the Maxwell's equations. We show, that the ray tracing model can qualitatively describe the formation of micro lenses, which are the dominant feature of the local scattering properties of the investigated interfaces. A quantitative analysis for the ZnO–Silicon interface at λ = 488 and 780 nm shows that the ray tracing model corresponds well to the numerical solution of the Maxwell's equations, especially within the first 1.5 µm distance from the interface. Direct correlations between the locally scattered intensity and the interface topographies are found. Copyright © 2011 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublications at Bielefeld UniversityArticle . 2011License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2011License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublications at Bielefeld UniversityArticle . 2011License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2011License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV H. Zhu; Jürgen Hüpkes; Sumei Huang; Jorj I. Owen; Eerke Bunte;Abstract Highly transparent and conductive aluminum-doped zinc oxide thin films (ZnO:Al) were reactively sputtered from metallic targets at high rate of up to 90 nm m/min. For the application as transparent light scattering front contact in silicon thin film solar cells, a texture etching process is applied. Typically, it is difficult to achieve appropriate etch features in hydrochloric acid as the deposition process must be tuned and the interrelation is not well understood. We thus introduce a novel two-step etching method based on hydrofluoric acid. By tuning the etch parameters we varied the surface morphology and achieved a regular distribution of large craters with the feature size of 1–2 μm in diameter and about 250 nm in depth. Microcrystalline silicon single junction solar cells (μc-Si:H) and amorphous/microcrystalline silicon (a-Si:H/μc-Si:H) tandem solar cells with high efficiency of up to 8.2% and 11.4%, respectively, were achieved with optimized ZnO:Al films as light scattering transparent front contact.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.11.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.11.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2011 GermanyPublisher:EDP Sciences Authors: Bunte, E.; Zhu, H.; Hüpkes, J.; Owen, J.;Sputtered and wet-chemically texture etched zinc oxide (ZnO) films on glass substrates are regularly applied as transparent front contact in silicon based thin film solar cells. In this study, chemical wet etching in diluted hydrofluoric acid (HF) and subsequently in diluted hydrochloric acid (HCl) on aluminum doped zinc oxide (ZnO:Al) films deposited by magnetron sputtering from ceramic tube targets at high discharge power (~10 kW/m target length) is investigated. Films with thickness of around 800 nm were etched in diluted HCl acid and HF acid to achieve rough surface textures. It is found that the etching of the films in both etchants leads to different surface textures. A two steps etching process, which is especially favorable for films prepared at high deposition rate, was systematically studied. By etching first in diluted hydrofluoric acid (HF) and subsequently in diluted hydrochloric acid (HCl) these films are furnished with a surface texture which is characterized by craters with typical diameter of around 500 − 1000 nm. The resulting surface structure is comparable to etched films sputtered at low deposition rate, which had been demonstrated to be able to achieve high efficiencies in silicon thin film solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2011004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2011004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV T. Repmann; B. Zwaygardt; R. Drese; Oliver Kluth; Bernd Rech; Matthias Wuttig; Jürgen Hüpkes; J. Müller;Abstract Highly conductive and transparent aluminum-doped zinc oxide (ZnO:Al) films were prepared by reactive mid-frequency (MF) magnetron sputtering at high growth rates. By varying the deposition pressure, pronounced differences with respect to film structure and wet chemical etching behavior were obtained. Optimized films develop good light-scattering properties upon etching leading to high efficiencies when applied to amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon-based thin-film solar cells and modules. Initial efficiencies of 7.5% for a μc-Si:H single junction and 9.7% for an a-Si:H/μc-Si:H tandem module were achieved on an aperture area of 64 cm 2 .
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2006.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2006.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2013 GermanyPublisher:EDP Sciences Meier, Matthias; Bittkau, Karsten; Paetzold, Ulrich W.; Hüpkes, Jürgen; Muthmann, Stefan; Schmitz, Ralf; Mück, Andreas; Gordijn, Aad;In this study optical transmission measurements were performed in-situ during the growth of microcrystalline silicon (μc-Si:H) layers by plasma enhanced chemical vapor deposition (PECVD). The stable plasma emission was used as light source. The effective absorption coefficient of the thin μc-Si:H layers which were deposited on rough transparent conductive oxide (TCO) surfaces was calculated from the transient transmission signal. It was observed that by increasing the surface roughness of the TCO, the effective absorption coefficient increases which can be correlated to the increased light scattering effect and thus the enhanced light paths inside the silicon. A correlation between the in-situ determined effective absorbance of the μc-Si:H absorber layer and the short-circuit current density of μc-Si:H thin-film silicon solar cells was found. Hence, an attractive technique is demonstrated to study, on the one hand, the absorbance and the light trapping in thin films depending on the roughness of the substrate and, on the other hand, to estimate the short-circuit current density of thin-film solar cells in-situ, which makes the method interesting as a process control tool.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2013025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2013025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Jürgen Hüpkes; W. Reetz; Bernd Rech; M. Berginski; Timo Wätjen; Aad Gordijn; Matthias Wuttig;This study addresses the potential of different approaches to improve the generated current in silicon thin-film solar cells and modules. Decreasing the carrier concentration in the front contact has proven to increase the quantum efficiency and the cell-current density significantly. Additionally, an optically improved ZnO/Ag back reflector and the optimized light incoupling by anti-reflection layers were studied. In this contribution, we show the potential of the different optical components and discuss combinations thereof in order to obtain a maximized cell-current density in silicon thin-film solar cells. Limitations of the cell-current density are discussed with respect to theoretical calculations.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Jürgen Hüpkes; Karsten Bittkau; Rahul Dewan; Vladislav Jovanov; Dietmar Knipp; Shailesh Shrestha;Abstract A simple method is developed to determine the light trapping properties of arbitrarily textured solar cells with high accuracy. The method allows for determining the quantum efficiency and short circuit current density of thin film solar cells prepared on randomly nanotextured surfaces. The light trapping of the randomly textured solar cell is described by the area weighted superposition of periodically textured solar cells. The necessary input parameters for the calculations are determined by analyzing the randomly textured surfaces of the solar cells using atomic force microscopy and image processing. The analysis of the atomic force microscope images and the calculation of the quantum efficiency and short circuit current can be determined from current maps, without complex and time-consuming calculations. The calculated solar cell parameters exhibit excellent agreement with experimentally measured quantum efficiencies and short circuit current densities for amorphous and microcrystalline silicon thin film solar cells prepared on randomly textured substrates. Finally, the work contributes to a comparison of random and periodic light trapping structures.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV F. Fenske; E. Conrad; Tobias Hanel; M. Berginski; B. Rau; Stefan Gall; Jürgen Hüpkes; Florian Ruske; T. Weber; K.Y. Lee; B. Gorka; Christiane Becker; Pinar Dogan; Bernd Rech;Abstract The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 Ω after 22 h annealing at 600 °C and only slightly increases for a 200 s heat treatment at 900 °C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 °C.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.09.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.09.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV R. Clemente de Lima; T. Merdzhanova; B. Turan; J. Kirchhoff; J. Hüpkes; C. Zahren; O. Astakhov;Abstract Multijunction solar cells, proven technological route for achievements of highest PV conversion efficiencies, require accurate tuning of the sub-cell absorption to ensure that every cell in the stack delivers the same current density. Even though currents of the sub-cells can be precisely matched for a fixed illumination spectrum, current mismatch cannot be avoided in real terrestrial applications due to variations of the irradiance spectrum. The issue becomes critical when a solar cell has to cover wider range of applications such as a mixture of direct sun / shadow / artificial light – the case for various distributed PV-powered electronics. Furthermore the current matching constrains choice of materials and designs of sub-cells for a tandem device. A straightforward basic configuration with decoupling the sub-cell's currents is a 3-terminal configuration with one additional contact sheared by the top and bottom cell. This concept requires voltage-matching between the top and bottom cell when these cells are integrated in modules. A realistic concept for the voltage-matched 3-terminal cell reported recently includes a wide gap top cell combined with a tandem bottom cell made of 2 sub-cells with lower bandgaps. The concept is a hybrid between 2 and 3-terminal configurations with voltage matching and relaxed current matching constrains. Established thin film silicon solar cell technology provides interesting option to realize the hybrid 3-terminal cell with amorphous Si top cell (VOC ≈ 0.9 V) and two microcrystalline Si cells (VOC ≈ 0.5 V). In this work we present proof of concept of the voltage matched 3-terminal tandem cell prepared with highly transparent and conductive IOH intermediate contact. The efficiency of 10.4% has been achieved made up of independently operating 7.9% efficient top cell and 2.5% efficient bottom tandem cell. The paper summarizes the development and discusses optical losses identified in the 3-T devices.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: W. Böttler; Vladimir Smirnov; Friedhelm Finger; Jürgen Hüpkes;AbstractSurface morphology of ZnO layers with as-deposited thickness between 550 to 1050nm was varied over wide range by changing etching time. The surface morphology of these ZnO layers was measured by atomic force microscopy (AFM) and statistically analyzed in terms of root mean square roughness and the diameter and depth of the craters. The texture-etched ZnO covered with a Ag and ZnO layers were applied into n-i-p μc-Si:H solar cells as back reflectors. The effects of the back reflector morphologies on solar cell performances were investigated. The link between the morphology, the scattering properties of ZnO layers, and the solar cell performance is discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.12.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.12.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 GermanyPublisher:Wiley Schulte, M.; Bittkau, K.; Pieters, B.E.; Jorke, S.; Stiebig, Helmut; Hüpkes, J.; Rau, U.;doi: 10.1002/pip.1097
AbstractWe investigate the scattering behavior of nano‐textured ZnO–Air and ZnO–Silicon interfaces for the application in thin film silicon solar cells. Contrary to the common approach, the numerical solution of the Maxwell's equations, we introduce a ray tracing approach based on geometric optics and the measured interface topography. The validity of this model is discussed by means of scanning near‐field optical microscopy (SNOM) measurements and numerical solutions of the Maxwell's equations. We show, that the ray tracing model can qualitatively describe the formation of micro lenses, which are the dominant feature of the local scattering properties of the investigated interfaces. A quantitative analysis for the ZnO–Silicon interface at λ = 488 and 780 nm shows that the ray tracing model corresponds well to the numerical solution of the Maxwell's equations, especially within the first 1.5 µm distance from the interface. Direct correlations between the locally scattered intensity and the interface topographies are found. Copyright © 2011 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublications at Bielefeld UniversityArticle . 2011License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2011License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublications at Bielefeld UniversityArticle . 2011License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2011License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.1097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV H. Zhu; Jürgen Hüpkes; Sumei Huang; Jorj I. Owen; Eerke Bunte;Abstract Highly transparent and conductive aluminum-doped zinc oxide thin films (ZnO:Al) were reactively sputtered from metallic targets at high rate of up to 90 nm m/min. For the application as transparent light scattering front contact in silicon thin film solar cells, a texture etching process is applied. Typically, it is difficult to achieve appropriate etch features in hydrochloric acid as the deposition process must be tuned and the interrelation is not well understood. We thus introduce a novel two-step etching method based on hydrofluoric acid. By tuning the etch parameters we varied the surface morphology and achieved a regular distribution of large craters with the feature size of 1–2 μm in diameter and about 250 nm in depth. Microcrystalline silicon single junction solar cells (μc-Si:H) and amorphous/microcrystalline silicon (a-Si:H/μc-Si:H) tandem solar cells with high efficiency of up to 8.2% and 11.4%, respectively, were achieved with optimized ZnO:Al films as light scattering transparent front contact.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.11.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.11.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2011 GermanyPublisher:EDP Sciences Authors: Bunte, E.; Zhu, H.; Hüpkes, J.; Owen, J.;Sputtered and wet-chemically texture etched zinc oxide (ZnO) films on glass substrates are regularly applied as transparent front contact in silicon based thin film solar cells. In this study, chemical wet etching in diluted hydrofluoric acid (HF) and subsequently in diluted hydrochloric acid (HCl) on aluminum doped zinc oxide (ZnO:Al) films deposited by magnetron sputtering from ceramic tube targets at high discharge power (~10 kW/m target length) is investigated. Films with thickness of around 800 nm were etched in diluted HCl acid and HF acid to achieve rough surface textures. It is found that the etching of the films in both etchants leads to different surface textures. A two steps etching process, which is especially favorable for films prepared at high deposition rate, was systematically studied. By etching first in diluted hydrofluoric acid (HF) and subsequently in diluted hydrochloric acid (HCl) these films are furnished with a surface texture which is characterized by craters with typical diameter of around 500 − 1000 nm. The resulting surface structure is comparable to etched films sputtered at low deposition rate, which had been demonstrated to be able to achieve high efficiencies in silicon thin film solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2011004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2011004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV T. Repmann; B. Zwaygardt; R. Drese; Oliver Kluth; Bernd Rech; Matthias Wuttig; Jürgen Hüpkes; J. Müller;Abstract Highly conductive and transparent aluminum-doped zinc oxide (ZnO:Al) films were prepared by reactive mid-frequency (MF) magnetron sputtering at high growth rates. By varying the deposition pressure, pronounced differences with respect to film structure and wet chemical etching behavior were obtained. Optimized films develop good light-scattering properties upon etching leading to high efficiencies when applied to amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon-based thin-film solar cells and modules. Initial efficiencies of 7.5% for a μc-Si:H single junction and 9.7% for an a-Si:H/μc-Si:H tandem module were achieved on an aperture area of 64 cm 2 .
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2006.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2006.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2013 GermanyPublisher:EDP Sciences Meier, Matthias; Bittkau, Karsten; Paetzold, Ulrich W.; Hüpkes, Jürgen; Muthmann, Stefan; Schmitz, Ralf; Mück, Andreas; Gordijn, Aad;In this study optical transmission measurements were performed in-situ during the growth of microcrystalline silicon (μc-Si:H) layers by plasma enhanced chemical vapor deposition (PECVD). The stable plasma emission was used as light source. The effective absorption coefficient of the thin μc-Si:H layers which were deposited on rough transparent conductive oxide (TCO) surfaces was calculated from the transient transmission signal. It was observed that by increasing the surface roughness of the TCO, the effective absorption coefficient increases which can be correlated to the increased light scattering effect and thus the enhanced light paths inside the silicon. A correlation between the in-situ determined effective absorbance of the μc-Si:H absorber layer and the short-circuit current density of μc-Si:H thin-film silicon solar cells was found. Hence, an attractive technique is demonstrated to study, on the one hand, the absorbance and the light trapping in thin films depending on the roughness of the substrate and, on the other hand, to estimate the short-circuit current density of thin-film solar cells in-situ, which makes the method interesting as a process control tool.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2013025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2013025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Jürgen Hüpkes; W. Reetz; Bernd Rech; M. Berginski; Timo Wätjen; Aad Gordijn; Matthias Wuttig;This study addresses the potential of different approaches to improve the generated current in silicon thin-film solar cells and modules. Decreasing the carrier concentration in the front contact has proven to increase the quantum efficiency and the cell-current density significantly. Additionally, an optically improved ZnO/Ag back reflector and the optimized light incoupling by anti-reflection layers were studied. In this contribution, we show the potential of the different optical components and discuss combinations thereof in order to obtain a maximized cell-current density in silicon thin-film solar cells. Limitations of the cell-current density are discussed with respect to theoretical calculations.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2008.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu