- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Susca T.; Zanghirella F.; Colasuonno L.; Del Fatto V.;handle: 20.500.12079/70327
Urban Heat Island (UHI) is a worldwide threat affecting building energy demand, public health, and energy security. Green wall deployment can simultaneously positively impact UHI and building energy demand depending on climate zones. According to the different climate zones worldwide, the present systematic literature review (SLR) investigates the direct effects of green wall installation on building energy use and UHI. 1325 articles were screened, and 51, corresponding to 647 case studies, were selected after removing those with methodological or statistical heterogeneity. The effects of green wall deployment have been explored according to cooling and heating season, weather conditions, daytime, nighttime, green wall typology, green wall orientation, and application scale. The performed analyses show that green walls: (1) can reduce heating and cooling building energy demand up to 16.5% and ∼51%, respectively, and mitigate UHI up to ∼5 °C in all the investigated climate zones; (2) can decrease to the greatest extent building energy needs when applied in low-density urban contexts where they can be installed on the entire building. Besides, when applied to a single façade, South orientation should be preferred in most climate zones to maximize building energy saving; (3) have the best UHI mitigating potential—up to 8 °C—in highly urbanized areas featured with narrow streets surrounded by high-rising buildings. Altogether, green walls are a fit-all solution to reduce building energy demand and mitigate UHI, providing healthier living conditions. However, further research is necessary to include quantifiable and unquantifiable effects omitted in the current study.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Elsevier BV Authors: ZANGHIRELLA, FABIO; PERINO, Marco; SERRA, VALENTINA;handle: 11583/2375546
Abstract Active transparent facades constitute a building envelope component that is becoming more and more common in high-rise office buildings. Many designers have opted for a ventilated facade, claiming that this technology is sustainable, reduces energy consumption and enhances indoor comfort conditions, but these claims have often proved to be wrong. From the thermofluid-dynamic analysis point of view, few design procedures or sufficiently detailed, reliable and easy to use simulation software are available for ventilated facades. A numerical model that has been developed to simulate the thermal behaviour of mechanically ventilated active transparent facades is presented in this paper. The model, developed in the Simulink/Matlab® environment, simulates the facade in both steady-state and transient conditions and provides the temperature of the different layers of the facade structure and the corresponding heat fluxes as output data. The model has been validated by comparing the simulation results with experimental data obtained in the laboratory. A test has also been performed on a real facade under actual operating conditions. The model performance has resulted to be quite promising. The accuracy of the prediction of the temperature is good, while the simulations of the heat fluxes are slightly less reliable for some operative conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2010.08.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2010.08.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2010 ItalyPublisher:Elsevier BV Authors: PERINO, Marco; SERRA, VALENTINA; ZANGHIRELLA, FABIO;handle: 11583/2290815 , 11583/1843569
The results of an extensive experimental campaign on a climate facade with a mechanically ventilated air gap, carried out at the Department of Energetics at the Politecnico di Torino, are presented. Measurements were performed utilizing the TWINS (Testing Window Innovative Systems) test facility, which consists of two outdoor cells, one used for reference purposes, and the other which adopts different active facade configurations. The energy efficiency of the facade and the thermal comfort implications have been evaluated considering the ability to pre-heat the ventilation air in the winter season, and the ability to remove part of the solar load during the summer season; the normalized daily energy passing through the facade and the normalized surface temperature of the inner glass were analysed. The improvement in performance obtained by varying the configuration and operative conditions (changing the air flow rate, the shading device and the internal glazing) has been investigated.
Energy and Buildings arrow_drop_down Publications Open Repository TOrinoConference object . 2008Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2009.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu85 citations 85 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down Publications Open Repository TOrinoConference object . 2008Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2009.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Mirko Nicotra; Matteo Caldera; Pierluigi Leone; Fabio Zanghirella;handle: 11583/2728653
Abstract Thermal Energy Storages (TES) are widely used in many energy systems and improving their performance has become increasingly important. Various CFD models are currently available, both one-dimensional and multi-dimensional, with different level of accuracy, computational cost and capability to be generalised. This work is aimed at analising the relevant phases, i.e. charge, discharge and low inertial discharge, of a couple of hot water TES characterized by different inlet temperatures and flow rates, with three numerical approaches: 1D, 2D, and a reduced model. In particular, the latter approach provides a simple analytical function for the evaluation of the temperature profile inside the tanks. The numerical models are validated on experimental data obtained from a test bench with two hot water tanks, in which one tank is connected to a micro-CHP while the other is connected to a heat pump, and operated at different temperature levels. The results of the 2D and the reduced models are in good agreement with experiments showing a maximum error lower than 1.2 K during the discharge cycles; nevertheless, the reduced model has a much lower computational cost and the dimensionless nature of the implemented function allows generalising the validity of the results to storage tanks operating at different conditions.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.05.132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.05.132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Susca T.; Zanghirella F.; Del Fatto V.;handle: 20.500.12079/73868
The proposed study investigates the effect of urban heat island mitigation scenarios by applying extensive green roofs, green façades, and living walls to two built areas within Turin and Rome, Italy. Three mitigation scenarios and a baseline one have been developed in ENVI-met software for each built area and run for a typical winter day, summer day, and summer day with a heat wave. The simulation results show that building integrated vegetation technology-application on a single building has an irrelevant effect on local temperatures; contrariwise, building integrated vegetation technology-wide application can effectively mitigate urban warming. Furthermore, the effect of green roofs and green walls on urban temperature is negligible in winter, likely because of the limited plant activity and the reduced amount of incoming solar radiation. Results also show that green façades are more effective than green roofs in mitigating pedestrian-level air temperature when installed on high-rise buildings, and green walls are more beneficial in mitigating summer urban heat island when installed in canyons parallel to wind direction than in perpendicular ones. Depending on the mitigation scenario, average decreases in urban temperatures up to 1 °C can be reached in the whole selected built area, alleviating urban warming.
ENEA Open Archive arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ENEA Open Archive arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Francesca Pagliaro; Francesca Hugony; Fabio Zanghirella; Rossano Basili; Monica Misceo; Luca Colasuonno; Vincenzo Del Fatto;Abstract Energy Performance Certificates (EPCs) and EPC digital registers are key tools to evaluate different aspects of the building stock and its energy consumption. This paper presents several detailed energy performance evaluations on the Italian buildings based on a sample of over 2,000,000 EPCs extracted from the national EPC register (SIAPE), contributing to the definition of an updated energy performance baseline of the Italian building stock. This is the first work using the Italian EPC register to define such a baseline to the extent of the authors’ knowledge. Furthermore, combined analyses of EPC data were carried out to obtain information on the influence of the Italian energy regulations on building characteristics and on the effectiveness of energy strategy application for building renovation. This study underlines the relevance of EPC registers and how the combined analysis of EPC parameters can provide a large amount of useful information on several aspects of the building stock, allowing the monitoring of the impact of the Italian energy policy framework on buildings energy performance. Finally, based on these results, the paper supports public authorities and decision-makers in planning and developing future energy programs and identifying the best practices on the Italian territory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:International Information and Engineering Technology Association Caldera, Matteo; Puglisi, Giovanni; Zanghirella, Fabio; Ungaro, Paola; Cammarata, Giuliano;doi: 10.18280/ijht.360201
n/a
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/ijht.360201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/ijht.360201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 ItalyPublisher:Elsevier BV ANCONA, MARIA ALESSANDRA; BRANCHINI, LISA; Di Pietra, B.; MELINO, FRANCESCO; Puglisi, G.; Zanghirella, F.;handle: 20.500.12079/4325 , 11585/551231
AbstractIn the last decades the concept of distributed generation – i.e. the installation of (electrical and/or thermal) energy production systems at the final users – was born and found gradually increasing diffusion. For what concerns the electrical production, the distributed generation systems are directly connected to the National Electricity Transmission Grid, allowing a bidirectional energy flux at the utilities and giving rise to the so-called smart grid.In this scenario and considering that, even thanks to the direction taken by European regulations, in the European territory there is already a large number of thermal power generation's distributed systems (e.g. solar thermal panels), in the near future the concept of smart grid could be extended to the heat sector, especially in relation to District Heating Networks (DHNs). As a consequence, with the aim of analyzing the penetration of this type of networks, several possible layouts for the exchange utilities’ substation have been developed and will be presented in this study. Such layouts allow to optimize thermal exchange, as a function of network design temperatures (for both the supply and the return), of utilities’ thermal power requirement and depending on the characteristics of the production system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | QUANTUMEC| QUANTUMCausone F.; Tatti A.; Pietrobon M.; Zanghirella F.; Pagliano L.;handle: 11311/1122096
Abstract Over the last decades, the reduction of the energy use in the building sector has become a topic of major investigation and policy development worldwide. Guidelines have been defined to drive governments and building construction stakeholders towards the retrofit of the existing building stock and to the construction of new high-performance buildings. However, availability of operational data is often limited, especially when it comes to high performance buildings in warm climates, although it is essential to define design approaches targeted to energy efficiency, to design smart energy grids and demand-response oriented energy programs. Buildings, such as living laboratories, may offer opportunities to implement and develop energy databases, to provide benchmarks and to study occupant behaviour under different operational conditions. The paper investigates the energy and thermal comfort performance of a residential building in the Mediterranean climate. The building, certified as Passivhaus and equipped with an advanced monitoring system, allows to test different control strategies, to study occupant behaviour and to provide real time operational data. In particular, the data analysis showed a positive energy balance on yearly basis, i.e. an energy use of 59.7 kWh/m2net/year vs. an on-site energy generation of 76.0 kWh/m2net/year. The energy breakdown highlighted, that energy uses related to user behaviour and comfort requests account for about 72% of the total energy use, confirming that occupant behaviour is one of the major drivers of the operational energy use (and the related services) in high performance buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 ItalyPublisher:Elsevier BV Authors: Puglisi, G.; Zanghirella, F.; Di Pietra, B.;handle: 20.500.12079/3967
AbstractIn this paper the presence of customers (prosumers), connected to a District Heating Systems (DHS), that not only can consume but also produce district heating by means of small-scale solar collectors, and that can use the DHS as a virtual storage for the thermal energy produced and not immediately used, with the possibility to use it later, is investigated. Three configurations were simulated: (1) absence of solar thermal system, (2) solar thermal system not connected to the DHS, (3) solar thermal system feeding a local heat storage, connected to the DHS by a single bi-directional heat exchanger. The results show that for the connected configuration, the thermal solar system can overcome the limited production of the isolated configuration during summer, producing thermal energy to feed the DHS, and that the thermal energy produced annually is more than 100% the annual energy needs of the single family house for space heating and domestic heat water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Susca T.; Zanghirella F.; Colasuonno L.; Del Fatto V.;handle: 20.500.12079/70327
Urban Heat Island (UHI) is a worldwide threat affecting building energy demand, public health, and energy security. Green wall deployment can simultaneously positively impact UHI and building energy demand depending on climate zones. According to the different climate zones worldwide, the present systematic literature review (SLR) investigates the direct effects of green wall installation on building energy use and UHI. 1325 articles were screened, and 51, corresponding to 647 case studies, were selected after removing those with methodological or statistical heterogeneity. The effects of green wall deployment have been explored according to cooling and heating season, weather conditions, daytime, nighttime, green wall typology, green wall orientation, and application scale. The performed analyses show that green walls: (1) can reduce heating and cooling building energy demand up to 16.5% and ∼51%, respectively, and mitigate UHI up to ∼5 °C in all the investigated climate zones; (2) can decrease to the greatest extent building energy needs when applied in low-density urban contexts where they can be installed on the entire building. Besides, when applied to a single façade, South orientation should be preferred in most climate zones to maximize building energy saving; (3) have the best UHI mitigating potential—up to 8 °C—in highly urbanized areas featured with narrow streets surrounded by high-rising buildings. Altogether, green walls are a fit-all solution to reduce building energy demand and mitigate UHI, providing healthier living conditions. However, further research is necessary to include quantifiable and unquantifiable effects omitted in the current study.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Elsevier BV Authors: ZANGHIRELLA, FABIO; PERINO, Marco; SERRA, VALENTINA;handle: 11583/2375546
Abstract Active transparent facades constitute a building envelope component that is becoming more and more common in high-rise office buildings. Many designers have opted for a ventilated facade, claiming that this technology is sustainable, reduces energy consumption and enhances indoor comfort conditions, but these claims have often proved to be wrong. From the thermofluid-dynamic analysis point of view, few design procedures or sufficiently detailed, reliable and easy to use simulation software are available for ventilated facades. A numerical model that has been developed to simulate the thermal behaviour of mechanically ventilated active transparent facades is presented in this paper. The model, developed in the Simulink/Matlab® environment, simulates the facade in both steady-state and transient conditions and provides the temperature of the different layers of the facade structure and the corresponding heat fluxes as output data. The model has been validated by comparing the simulation results with experimental data obtained in the laboratory. A test has also been performed on a real facade under actual operating conditions. The model performance has resulted to be quite promising. The accuracy of the prediction of the temperature is good, while the simulations of the heat fluxes are slightly less reliable for some operative conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2010.08.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2010.08.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2010 ItalyPublisher:Elsevier BV Authors: PERINO, Marco; SERRA, VALENTINA; ZANGHIRELLA, FABIO;handle: 11583/2290815 , 11583/1843569
The results of an extensive experimental campaign on a climate facade with a mechanically ventilated air gap, carried out at the Department of Energetics at the Politecnico di Torino, are presented. Measurements were performed utilizing the TWINS (Testing Window Innovative Systems) test facility, which consists of two outdoor cells, one used for reference purposes, and the other which adopts different active facade configurations. The energy efficiency of the facade and the thermal comfort implications have been evaluated considering the ability to pre-heat the ventilation air in the winter season, and the ability to remove part of the solar load during the summer season; the normalized daily energy passing through the facade and the normalized surface temperature of the inner glass were analysed. The improvement in performance obtained by varying the configuration and operative conditions (changing the air flow rate, the shading device and the internal glazing) has been investigated.
Energy and Buildings arrow_drop_down Publications Open Repository TOrinoConference object . 2008Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2009.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu85 citations 85 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down Publications Open Repository TOrinoConference object . 2008Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2009.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Mirko Nicotra; Matteo Caldera; Pierluigi Leone; Fabio Zanghirella;handle: 11583/2728653
Abstract Thermal Energy Storages (TES) are widely used in many energy systems and improving their performance has become increasingly important. Various CFD models are currently available, both one-dimensional and multi-dimensional, with different level of accuracy, computational cost and capability to be generalised. This work is aimed at analising the relevant phases, i.e. charge, discharge and low inertial discharge, of a couple of hot water TES characterized by different inlet temperatures and flow rates, with three numerical approaches: 1D, 2D, and a reduced model. In particular, the latter approach provides a simple analytical function for the evaluation of the temperature profile inside the tanks. The numerical models are validated on experimental data obtained from a test bench with two hot water tanks, in which one tank is connected to a micro-CHP while the other is connected to a heat pump, and operated at different temperature levels. The results of the 2D and the reduced models are in good agreement with experiments showing a maximum error lower than 1.2 K during the discharge cycles; nevertheless, the reduced model has a much lower computational cost and the dimensionless nature of the implemented function allows generalising the validity of the results to storage tanks operating at different conditions.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.05.132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2018.05.132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Susca T.; Zanghirella F.; Del Fatto V.;handle: 20.500.12079/73868
The proposed study investigates the effect of urban heat island mitigation scenarios by applying extensive green roofs, green façades, and living walls to two built areas within Turin and Rome, Italy. Three mitigation scenarios and a baseline one have been developed in ENVI-met software for each built area and run for a typical winter day, summer day, and summer day with a heat wave. The simulation results show that building integrated vegetation technology-application on a single building has an irrelevant effect on local temperatures; contrariwise, building integrated vegetation technology-wide application can effectively mitigate urban warming. Furthermore, the effect of green roofs and green walls on urban temperature is negligible in winter, likely because of the limited plant activity and the reduced amount of incoming solar radiation. Results also show that green façades are more effective than green roofs in mitigating pedestrian-level air temperature when installed on high-rise buildings, and green walls are more beneficial in mitigating summer urban heat island when installed in canyons parallel to wind direction than in perpendicular ones. Depending on the mitigation scenario, average decreases in urban temperatures up to 1 °C can be reached in the whole selected built area, alleviating urban warming.
ENEA Open Archive arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ENEA Open Archive arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Francesca Pagliaro; Francesca Hugony; Fabio Zanghirella; Rossano Basili; Monica Misceo; Luca Colasuonno; Vincenzo Del Fatto;Abstract Energy Performance Certificates (EPCs) and EPC digital registers are key tools to evaluate different aspects of the building stock and its energy consumption. This paper presents several detailed energy performance evaluations on the Italian buildings based on a sample of over 2,000,000 EPCs extracted from the national EPC register (SIAPE), contributing to the definition of an updated energy performance baseline of the Italian building stock. This is the first work using the Italian EPC register to define such a baseline to the extent of the authors’ knowledge. Furthermore, combined analyses of EPC data were carried out to obtain information on the influence of the Italian energy regulations on building characteristics and on the effectiveness of energy strategy application for building renovation. This study underlines the relevance of EPC registers and how the combined analysis of EPC parameters can provide a large amount of useful information on several aspects of the building stock, allowing the monitoring of the impact of the Italian energy policy framework on buildings energy performance. Finally, based on these results, the paper supports public authorities and decision-makers in planning and developing future energy programs and identifying the best practices on the Italian territory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:International Information and Engineering Technology Association Caldera, Matteo; Puglisi, Giovanni; Zanghirella, Fabio; Ungaro, Paola; Cammarata, Giuliano;doi: 10.18280/ijht.360201
n/a
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/ijht.360201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/ijht.360201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 ItalyPublisher:Elsevier BV ANCONA, MARIA ALESSANDRA; BRANCHINI, LISA; Di Pietra, B.; MELINO, FRANCESCO; Puglisi, G.; Zanghirella, F.;handle: 20.500.12079/4325 , 11585/551231
AbstractIn the last decades the concept of distributed generation – i.e. the installation of (electrical and/or thermal) energy production systems at the final users – was born and found gradually increasing diffusion. For what concerns the electrical production, the distributed generation systems are directly connected to the National Electricity Transmission Grid, allowing a bidirectional energy flux at the utilities and giving rise to the so-called smart grid.In this scenario and considering that, even thanks to the direction taken by European regulations, in the European territory there is already a large number of thermal power generation's distributed systems (e.g. solar thermal panels), in the near future the concept of smart grid could be extended to the heat sector, especially in relation to District Heating Networks (DHNs). As a consequence, with the aim of analyzing the penetration of this type of networks, several possible layouts for the exchange utilities’ substation have been developed and will be presented in this study. Such layouts allow to optimize thermal exchange, as a function of network design temperatures (for both the supply and the return), of utilities’ thermal power requirement and depending on the characteristics of the production system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | QUANTUMEC| QUANTUMCausone F.; Tatti A.; Pietrobon M.; Zanghirella F.; Pagliano L.;handle: 11311/1122096
Abstract Over the last decades, the reduction of the energy use in the building sector has become a topic of major investigation and policy development worldwide. Guidelines have been defined to drive governments and building construction stakeholders towards the retrofit of the existing building stock and to the construction of new high-performance buildings. However, availability of operational data is often limited, especially when it comes to high performance buildings in warm climates, although it is essential to define design approaches targeted to energy efficiency, to design smart energy grids and demand-response oriented energy programs. Buildings, such as living laboratories, may offer opportunities to implement and develop energy databases, to provide benchmarks and to study occupant behaviour under different operational conditions. The paper investigates the energy and thermal comfort performance of a residential building in the Mediterranean climate. The building, certified as Passivhaus and equipped with an advanced monitoring system, allows to test different control strategies, to study occupant behaviour and to provide real time operational data. In particular, the data analysis showed a positive energy balance on yearly basis, i.e. an energy use of 59.7 kWh/m2net/year vs. an on-site energy generation of 76.0 kWh/m2net/year. The energy breakdown highlighted, that energy uses related to user behaviour and comfort requests account for about 72% of the total energy use, confirming that occupant behaviour is one of the major drivers of the operational energy use (and the related services) in high performance buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 ItalyPublisher:Elsevier BV Authors: Puglisi, G.; Zanghirella, F.; Di Pietra, B.;handle: 20.500.12079/3967
AbstractIn this paper the presence of customers (prosumers), connected to a District Heating Systems (DHS), that not only can consume but also produce district heating by means of small-scale solar collectors, and that can use the DHS as a virtual storage for the thermal energy produced and not immediately used, with the possibility to use it later, is investigated. Three configurations were simulated: (1) absence of solar thermal system, (2) solar thermal system not connected to the DHS, (3) solar thermal system feeding a local heat storage, connected to the DHS by a single bi-directional heat exchanger. The results show that for the connected configuration, the thermal solar system can overcome the limited production of the isolated configuration during summer, producing thermal energy to feed the DHS, and that the thermal energy produced annually is more than 100% the annual energy needs of the single family house for space heating and domestic heat water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu