- home
- Advanced Search
- Energy Research
- 7. Clean energy
- Energy Research
- 7. Clean energy
description Publicationkeyboard_double_arrow_right Article , Journal 2014 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Luo, Changqing; Guo, Shengyong; Guo, Song; Yang, Laurence T.; Min, Geyong; Xie, Xia;The increasing demand for wireless services has led to a severe energy consumption problem with the rising of greenhouse gas emission. While the renewable energy can somehow alleviate this problem, the routing, flow rate, and power still have to be well investigated with the objective of minimizing energy consumption in multi-hop energy renewable wireless mesh networks (ER-WMNs). This paper formulates the problem of network-wide energy consumption minimization under the network throughput constraint as a mixed-integer nonlinear programming problem by jointly optimizing routing, rate control, and power allocation. Moreover, the min-max fairness model is applied to address the fairness issue because the uneven routing problem may incur the sharp reduction of network performance in multi-hop ER-WMNs. Due to the high computational complexity of the formulated mathematical programming problem, an energy-aware multi-path routing algorithm (EARA) is also proposed to deal with the joint control of routing, flow rate, and power allocation in practical multi-hop WMNs. To search the optimal routing, it applies a weighted Dijkstra's shortest path algorithm, where the weight is defined as a function of the power consumption and residual energy of a node. Extensive simulation results are presented to show the performance of the proposed schemes and the effects of energy replenishment rate and network throughput on the network lifetime.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Parallel and Distributed SystemsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpds.2013.2297922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Parallel and Distributed SystemsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpds.2013.2297922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Tang, Zaiyang; Guo, Song; Li, Peng; Miyazaki, Toshiaki; Jin, Hai; Liao, Xiaofei;Energy efficiency is important for smartphones because they are powered by batteries with limited capacity. Existing work has shown that the tail energy of the third-generation (3G)/fourth-generation (4G) network interface on a mobile device would lead to low energy efficiency. To solve the tail energy minimization problem, some online scheduling algorithms have been proposed, but with a big gap from the offline algorithms that work depending on the knowledge of future transmissions. In this paper, we study the tail energy minimization problem by exploiting the techniques of machine learning and participatory sensing. We design a client–server architecture, in which the training process is conducted in a server, and mobile devices download the constructed predictor from the server to make transmission decisions. A system is developed and deployed on real hardware to evaluate the performance of our proposal. The experimental results show that it can significantly improve the energy efficiency of mobile devices while incurring minimum overhead.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2014.2350510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2014.2350510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Huawei Huang; Song Guo; Weifa Liang; Kun Wang; Yasuo Okabe;Satellite-based communication technology has gained much attention in the past few years, where satellites play mainly the supplementary roles as relay devices to terrestrial communication networks. Unlike previous work, we treat the low-earth-orbit (LEO) satellites as secure data storage mediums. We focus on data acquisition from a LEO satellite based data storage system (also referred to as the LEO based datacenters), which has been considered as a promising and secure paradigm on data storage. Under the LEO based datacenter architecture, one fundamental challenge is to deal with energy-efficient downloading from space to ground while maintaining the system stability. In this paper, we aim to maximize the amount of data admitted while minimizing the energy consumption, when downloading files from LEO based datacenters to meet user demands. To this end, we first formulate a novel optimization problem and develop an online scheduling framework. We then devise a novel coflow-like “Join the first $K$ K -shortest Queues (JKQ)” based job-dispatch strategy, which can significantly lower backlogs of queues residing in LEO satellites, thereby improving the system stability. We also analyze the optimality of the proposed approach and system stability. We finally evaluate the performance of the proposed algorithm through conducting emulator based simulations, based on real-world LEO constellation and user demand traces. The simulation results show that the proposed algorithm can dramatically lower the queue backlogs and achieve high energy efficiency.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Mobile ComputingArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tmc.2019.2936202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Mobile ComputingArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tmc.2019.2936202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Deze Zeng; Jie Zhang; Lin Gu; Song Guo; Jiangtao Luo;The fast development of mobile computing has raised ever-increasing diverse communication needs in wireless networks. To catch up with such needs, cloud radio access networks (CRAN) is proposed to enable efficient radio resource sharing and management. At the same time, the massive deployment of radio access networks has caused huge energy consumption. Incorporating renewable green energy to lower the brown energy consumption also has become a widely concerned topic. In this paper, we are motivated to investigate a green energy aware remote radio head activation problem for coordinated multipoint communications in green energy powered CRAN, aiming at minimizing the network brown energy power consumption. The problem is first formulated into a nonconvex optimization form. By analyzing the characteristics of the formulation, we further propose a heuristic algorithm based on an ordered selection method. Extensive simulation based experiment results show that the proposed green energy aware algorithm provides an effective way to reduce brown energy power consumption, well fitting the goal of developing green communications.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2018.2863246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2018.2863246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Boyu Deng; Chunxiao Jiang; Song Guo;In this letter, we give a cloud-based satellite communication network (C-SCN) architecture to make full utilization of resources in current satellite systems. Since the complex computation and transmission bring huge energy cost, energy minimization is one of the most important problems in the C-SCN. Considering that the energy minimization problem is involved with the delay constraint, we decompose the original problem into two coupling subproblems, virtual machine assignment and power allocation, and then propose a joint optimization algorithm to solve the subproblems. Our simulation results show that the proposed algorithm is superior to the existing algorithms on energy efficiency in the C-SCN.
IEEE Communications ... arrow_drop_down IEEE Communications LettersArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lcomm.2019.2944362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IEEE Communications ... arrow_drop_down IEEE Communications LettersArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lcomm.2019.2944362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of)Publisher:Association for Computing Machinery (ACM) Xiaojie Wang; Jiameng Li; Zhaolong Ning; Qingyang Song; Lei Guo; Song Guo; Mohammad S. Obaidat;doi: 10.1145/3579992
Wireless Powered Mobile Edge Computing (WPMEC) is an integration of Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) technologies, to both improve computing capabilities of mobile devices and energy compensation for their limited battery capabilities. Generally, energy transmitters, mobile devices, and edge servers form a WPMEC system that realizes a closed loop of sending and collecting energy as well as offloading and receiving task data. Due to constraints of time-varying network environments, time-coupled battery levels, and the half-duplex character of mobile devices, the joint design of computation offloading and resource allocation solutions in WPMEC systems has become extremely challenging, and a great number of studies have been devoted to it in recent years. In this article, we first introduce the basic model of the WPMEC system. Then, we present key issues and techniques related to WPMEC. In addition, we summarize solutions for computation offloading and resource allocation to solve critical issues in WPMEC networks. Finally, we discuss some research challenges and open issues.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3579992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3579992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Xiaoxuan Hu; Peng Li; Kun Wang; Yanfei Sun; Deze Zeng; Xiaoyan Wang; Song Guo;The fuel cell is a promising power source for green data centers due to its high energy efficiency, low carbon emissions, and high reliability. However, because of the mechanical limitations related to fuel delivery, fuel cells are slow in adjusting power output when the energy demand quickly changes, which is called limited load following . Many recent work have studied to mitigate the limited load following by using energy storage to adjust energy supply, but achieves limited successes because of the constraint of energy storage size. In this paper, we address this challenge by changing both energy supply and demand, via joint workload scheduling and energy management. Specifically, we consider multiple geo-distributed data centers powered by both fuel cells and energy storage. An online algorithm has been proposed to minimize the gap between energy supply and demand by jointly managing the fuel cells output and migrating workloads among data centers. Simulations results based on real-world traces show that the proposed algorithms can achieve satisfactory performance.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Green Communications and NetworkingArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tgcn.2019.2893712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Green Communications and NetworkingArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tgcn.2019.2893712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 China (People's Republic of)Publisher:Springer Science and Business Media LLC Yao, Hong; Huang, Huawei; Zeng, Deze; Li, Bo; Guo, Song;In order to understand the message dissemination performance in delay-tolerant networks, much analysis work has been proposed in literature. However, existing work shares a common simplification that the pairwise inter-meeting time between any two mobile nodes is exponentially distributed. Not mention the fact that such assumption is only an approximation, it cannot be applied by network planners to directly control the mobile nodes for any network optimization, e.g., energy efficiency. It is quite significant to study the relationship between the network performance with the parameters that can be adjusted directly to tackle the limitations of current exponential distribution assumption based analysis. Therefore, in this paper, we are motivated to jointly consider the transmission range and messages residence time to stochastically analyze deadline-constrained message delivery ratio utilizing a controlled epidemic routing. The message propagation is considered as an age-structure process and described by a susceptible---infectious---recovered model, which is then analyzed using delay differential equations. Since both the transmission range and the message residence time are related to the mobile nodes' energy consumption, we further apply our analysis framework to investigate the tradeoff between the energy consumption and the achievable message delivery ratio. The correctness and accuracy of our analysis are validated by extensive simulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-014-0720-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-014-0720-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Wang, Kun; Hu, Xiaoxuan; Li, Huining; Li, Peng; Zeng, Deze; Guo, Song;Energy Internet (EI) is proposed as the evolution of smart grid, aiming to integrate various forms of energy into a highly flexible and efficient grid that provides energy packing and routing functions, similar to the Internet. As an essential part in EI system, a scalable and interoperable communication infrastructure is critical in system construction and operation. In this article, we survey the recent research efforts on EI communications. The motivation and key concepts of EI are first introduced, followed by the key technologies and standardizations enabling the EI communications as well as security issues. Open challenges in system complexity, efficiency, reliability are explored and recent achievements in these research topics are summarized as well.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/tsusc....Article . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsusc.2017.2707122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu101 citations 101 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/tsusc....Article . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsusc.2017.2707122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of), China (People's Republic of), Chile, China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Jinsong Wu; Song Guo; Jie Li; Deze Zeng;Nowadays, there are two significant tendencies, how to process the enormous amount of data, big data, and how to deal with the green issues related to sustainability and environmental concerns. An interesting question is whether there are inherent correlations between the two tendencies in general. To answer this question, this paper firstly makes a comprehensive literature survey on how to green big data systems in terms of the whole life cycle of big data processing, and then this paper studies the relevance between big data and green metrics and proposes two new metrics, effective energy efficiency and effective resource efficiency in order to bring new views and potentials of green metrics for the future times of big data.
Universidad de Chile... arrow_drop_down Universidad de Chile: Repositorio académicoArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2016.2550538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 177 citations 177 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Universidad de Chile... arrow_drop_down Universidad de Chile: Repositorio académicoArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2016.2550538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Luo, Changqing; Guo, Shengyong; Guo, Song; Yang, Laurence T.; Min, Geyong; Xie, Xia;The increasing demand for wireless services has led to a severe energy consumption problem with the rising of greenhouse gas emission. While the renewable energy can somehow alleviate this problem, the routing, flow rate, and power still have to be well investigated with the objective of minimizing energy consumption in multi-hop energy renewable wireless mesh networks (ER-WMNs). This paper formulates the problem of network-wide energy consumption minimization under the network throughput constraint as a mixed-integer nonlinear programming problem by jointly optimizing routing, rate control, and power allocation. Moreover, the min-max fairness model is applied to address the fairness issue because the uneven routing problem may incur the sharp reduction of network performance in multi-hop ER-WMNs. Due to the high computational complexity of the formulated mathematical programming problem, an energy-aware multi-path routing algorithm (EARA) is also proposed to deal with the joint control of routing, flow rate, and power allocation in practical multi-hop WMNs. To search the optimal routing, it applies a weighted Dijkstra's shortest path algorithm, where the weight is defined as a function of the power consumption and residual energy of a node. Extensive simulation results are presented to show the performance of the proposed schemes and the effects of energy replenishment rate and network throughput on the network lifetime.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Parallel and Distributed SystemsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpds.2013.2297922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Parallel and Distributed SystemsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpds.2013.2297922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Tang, Zaiyang; Guo, Song; Li, Peng; Miyazaki, Toshiaki; Jin, Hai; Liao, Xiaofei;Energy efficiency is important for smartphones because they are powered by batteries with limited capacity. Existing work has shown that the tail energy of the third-generation (3G)/fourth-generation (4G) network interface on a mobile device would lead to low energy efficiency. To solve the tail energy minimization problem, some online scheduling algorithms have been proposed, but with a big gap from the offline algorithms that work depending on the knowledge of future transmissions. In this paper, we study the tail energy minimization problem by exploiting the techniques of machine learning and participatory sensing. We design a client–server architecture, in which the training process is conducted in a server, and mobile devices download the constructed predictor from the server to make transmission decisions. A system is developed and deployed on real hardware to evaluate the performance of our proposal. The experimental results show that it can significantly improve the energy efficiency of mobile devices while incurring minimum overhead.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2014.2350510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2014.2350510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Huawei Huang; Song Guo; Weifa Liang; Kun Wang; Yasuo Okabe;Satellite-based communication technology has gained much attention in the past few years, where satellites play mainly the supplementary roles as relay devices to terrestrial communication networks. Unlike previous work, we treat the low-earth-orbit (LEO) satellites as secure data storage mediums. We focus on data acquisition from a LEO satellite based data storage system (also referred to as the LEO based datacenters), which has been considered as a promising and secure paradigm on data storage. Under the LEO based datacenter architecture, one fundamental challenge is to deal with energy-efficient downloading from space to ground while maintaining the system stability. In this paper, we aim to maximize the amount of data admitted while minimizing the energy consumption, when downloading files from LEO based datacenters to meet user demands. To this end, we first formulate a novel optimization problem and develop an online scheduling framework. We then devise a novel coflow-like “Join the first $K$ K -shortest Queues (JKQ)” based job-dispatch strategy, which can significantly lower backlogs of queues residing in LEO satellites, thereby improving the system stability. We also analyze the optimality of the proposed approach and system stability. We finally evaluate the performance of the proposed algorithm through conducting emulator based simulations, based on real-world LEO constellation and user demand traces. The simulation results show that the proposed algorithm can dramatically lower the queue backlogs and achieve high energy efficiency.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Mobile ComputingArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tmc.2019.2936202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Mobile ComputingArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tmc.2019.2936202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Deze Zeng; Jie Zhang; Lin Gu; Song Guo; Jiangtao Luo;The fast development of mobile computing has raised ever-increasing diverse communication needs in wireless networks. To catch up with such needs, cloud radio access networks (CRAN) is proposed to enable efficient radio resource sharing and management. At the same time, the massive deployment of radio access networks has caused huge energy consumption. Incorporating renewable green energy to lower the brown energy consumption also has become a widely concerned topic. In this paper, we are motivated to investigate a green energy aware remote radio head activation problem for coordinated multipoint communications in green energy powered CRAN, aiming at minimizing the network brown energy power consumption. The problem is first formulated into a nonconvex optimization form. By analyzing the characteristics of the formulation, we further propose a heuristic algorithm based on an ordered selection method. Extensive simulation based experiment results show that the proposed green energy aware algorithm provides an effective way to reduce brown energy power consumption, well fitting the goal of developing green communications.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2018.2863246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2018.2863246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Boyu Deng; Chunxiao Jiang; Song Guo;In this letter, we give a cloud-based satellite communication network (C-SCN) architecture to make full utilization of resources in current satellite systems. Since the complex computation and transmission bring huge energy cost, energy minimization is one of the most important problems in the C-SCN. Considering that the energy minimization problem is involved with the delay constraint, we decompose the original problem into two coupling subproblems, virtual machine assignment and power allocation, and then propose a joint optimization algorithm to solve the subproblems. Our simulation results show that the proposed algorithm is superior to the existing algorithms on energy efficiency in the C-SCN.
IEEE Communications ... arrow_drop_down IEEE Communications LettersArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lcomm.2019.2944362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IEEE Communications ... arrow_drop_down IEEE Communications LettersArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lcomm.2019.2944362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of)Publisher:Association for Computing Machinery (ACM) Xiaojie Wang; Jiameng Li; Zhaolong Ning; Qingyang Song; Lei Guo; Song Guo; Mohammad S. Obaidat;doi: 10.1145/3579992
Wireless Powered Mobile Edge Computing (WPMEC) is an integration of Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) technologies, to both improve computing capabilities of mobile devices and energy compensation for their limited battery capabilities. Generally, energy transmitters, mobile devices, and edge servers form a WPMEC system that realizes a closed loop of sending and collecting energy as well as offloading and receiving task data. Due to constraints of time-varying network environments, time-coupled battery levels, and the half-duplex character of mobile devices, the joint design of computation offloading and resource allocation solutions in WPMEC systems has become extremely challenging, and a great number of studies have been devoted to it in recent years. In this article, we first introduce the basic model of the WPMEC system. Then, we present key issues and techniques related to WPMEC. In addition, we summarize solutions for computation offloading and resource allocation to solve critical issues in WPMEC networks. Finally, we discuss some research challenges and open issues.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3579992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1145/3579992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Xiaoxuan Hu; Peng Li; Kun Wang; Yanfei Sun; Deze Zeng; Xiaoyan Wang; Song Guo;The fuel cell is a promising power source for green data centers due to its high energy efficiency, low carbon emissions, and high reliability. However, because of the mechanical limitations related to fuel delivery, fuel cells are slow in adjusting power output when the energy demand quickly changes, which is called limited load following . Many recent work have studied to mitigate the limited load following by using energy storage to adjust energy supply, but achieves limited successes because of the constraint of energy storage size. In this paper, we address this challenge by changing both energy supply and demand, via joint workload scheduling and energy management. Specifically, we consider multiple geo-distributed data centers powered by both fuel cells and energy storage. An online algorithm has been proposed to minimize the gap between energy supply and demand by jointly managing the fuel cells output and migrating workloads among data centers. Simulations results based on real-world traces show that the proposed algorithms can achieve satisfactory performance.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Green Communications and NetworkingArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tgcn.2019.2893712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Green Communications and NetworkingArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tgcn.2019.2893712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 China (People's Republic of)Publisher:Springer Science and Business Media LLC Yao, Hong; Huang, Huawei; Zeng, Deze; Li, Bo; Guo, Song;In order to understand the message dissemination performance in delay-tolerant networks, much analysis work has been proposed in literature. However, existing work shares a common simplification that the pairwise inter-meeting time between any two mobile nodes is exponentially distributed. Not mention the fact that such assumption is only an approximation, it cannot be applied by network planners to directly control the mobile nodes for any network optimization, e.g., energy efficiency. It is quite significant to study the relationship between the network performance with the parameters that can be adjusted directly to tackle the limitations of current exponential distribution assumption based analysis. Therefore, in this paper, we are motivated to jointly consider the transmission range and messages residence time to stochastically analyze deadline-constrained message delivery ratio utilizing a controlled epidemic routing. The message propagation is considered as an age-structure process and described by a susceptible---infectious---recovered model, which is then analyzed using delay differential equations. Since both the transmission range and the message residence time are related to the mobile nodes' energy consumption, we further apply our analysis framework to investigate the tradeoff between the energy consumption and the achievable message delivery ratio. The correctness and accuracy of our analysis are validated by extensive simulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-014-0720-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-014-0720-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Wang, Kun; Hu, Xiaoxuan; Li, Huining; Li, Peng; Zeng, Deze; Guo, Song;Energy Internet (EI) is proposed as the evolution of smart grid, aiming to integrate various forms of energy into a highly flexible and efficient grid that provides energy packing and routing functions, similar to the Internet. As an essential part in EI system, a scalable and interoperable communication infrastructure is critical in system construction and operation. In this article, we survey the recent research efforts on EI communications. The motivation and key concepts of EI are first introduced, followed by the key technologies and standardizations enabling the EI communications as well as security issues. Open challenges in system complexity, efficiency, reliability are explored and recent achievements in these research topics are summarized as well.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/tsusc....Article . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsusc.2017.2707122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu101 citations 101 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/tsusc....Article . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsusc.2017.2707122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of), China (People's Republic of), Chile, China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Jinsong Wu; Song Guo; Jie Li; Deze Zeng;Nowadays, there are two significant tendencies, how to process the enormous amount of data, big data, and how to deal with the green issues related to sustainability and environmental concerns. An interesting question is whether there are inherent correlations between the two tendencies in general. To answer this question, this paper firstly makes a comprehensive literature survey on how to green big data systems in terms of the whole life cycle of big data processing, and then this paper studies the relevance between big data and green metrics and proposes two new metrics, effective energy efficiency and effective resource efficiency in order to bring new views and potentials of green metrics for the future times of big data.
Universidad de Chile... arrow_drop_down Universidad de Chile: Repositorio académicoArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2016.2550538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 177 citations 177 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Universidad de Chile... arrow_drop_down Universidad de Chile: Repositorio académicoArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2016.2550538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu