- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Inter-Research Science Center Funded by:UKRI | Achieving Sustainable Agr...UKRI| Achieving Sustainable Agricultural Systems (ASSIST)Senapati, N.; Griffiths, S; Hawkesford, M. J.; Shewry, P. R.; Semenov, M. A.;doi: 10.3354/cr01602
A substantial increase in food production is needed for global food security. Europe is the largest wheat producer, delivering 35% of wheat globally, but its future genetic yield potential is yet unknown. We estimated the genetic yield potential of wheat in Europe under 2050 climate by designing in silico wheat ideotypes based on genetic variation in wheat germplasm. To evaluate the importance of heat and drought stresses around flowering, a critical stage in wheat development, sensitive and tolerant ideotypes were designed. Ideotype yields ranged from 9 to 17 t ha-1 across major wheat growing regions in Europe under 2050 climate. Both ideotypes showed a substantial increase in yield of 66-89% compared to current local cultivars under future climate. Key traits for wheat improvements under future climate were identified. Ideotype design is a powerful tool for estimating crop genetic yield potential in a target environment, along with the potential to accelerate breeding by providing target traits for improvements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Inter-Research Science Center Funded by:UKRI | Achieving Sustainable Agr...UKRI| Achieving Sustainable Agricultural Systems (ASSIST)Senapati, N.; Griffiths, S; Hawkesford, M. J.; Shewry, P. R.; Semenov, M. A.;doi: 10.3354/cr01602
A substantial increase in food production is needed for global food security. Europe is the largest wheat producer, delivering 35% of wheat globally, but its future genetic yield potential is yet unknown. We estimated the genetic yield potential of wheat in Europe under 2050 climate by designing in silico wheat ideotypes based on genetic variation in wheat germplasm. To evaluate the importance of heat and drought stresses around flowering, a critical stage in wheat development, sensitive and tolerant ideotypes were designed. Ideotype yields ranged from 9 to 17 t ha-1 across major wheat growing regions in Europe under 2050 climate. Both ideotypes showed a substantial increase in yield of 66-89% compared to current local cultivars under future climate. Key traits for wheat improvements under future climate were identified. Ideotype design is a powerful tool for estimating crop genetic yield potential in a target environment, along with the potential to accelerate breeding by providing target traits for improvements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Oxford University Press (OUP) Authors: Senapati, N.; Stratonovitch, P.; Paul, M. J.; Semenov, M. A.;Drought stress during reproductive development could drastically reduce wheat grain number and yield, but quantitative evaluation of such an effect is unknown under climate change. The objectives of this study were to evaluate potential yield benefits of drought tolerance during reproductive development for wheat ideotypes under climate change in Europe, and to identify potential cultivar parameters for improvement. We used the Sirius wheat model to optimize drought-tolerant (DT) and drought-sensitive (DS) wheat ideotypes under a future 2050 climate scenario at 13 contrasting sites, representing major wheat growing regions in Europe. Averaged over the sites, DT ideotypes achieved 13.4% greater yield compared with DS, with higher yield stability. However, the performances of the ideotypes were site dependent. Mean yield of DT was 28-37% greater compared with DS in southern Europe. In contrast, no yield difference (≤1%) between ideotypes was found in north-western Europe. An intermediate yield benefit of 10-23% was found due to drought tolerance in central and eastern Europe. We conclude that tolerance to drought stress during reproductive development is important for high yield potentials and greater yield stability of wheat under climate change in Europe.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/ery226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/ery226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Oxford University Press (OUP) Authors: Senapati, N.; Stratonovitch, P.; Paul, M. J.; Semenov, M. A.;Drought stress during reproductive development could drastically reduce wheat grain number and yield, but quantitative evaluation of such an effect is unknown under climate change. The objectives of this study were to evaluate potential yield benefits of drought tolerance during reproductive development for wheat ideotypes under climate change in Europe, and to identify potential cultivar parameters for improvement. We used the Sirius wheat model to optimize drought-tolerant (DT) and drought-sensitive (DS) wheat ideotypes under a future 2050 climate scenario at 13 contrasting sites, representing major wheat growing regions in Europe. Averaged over the sites, DT ideotypes achieved 13.4% greater yield compared with DS, with higher yield stability. However, the performances of the ideotypes were site dependent. Mean yield of DT was 28-37% greater compared with DS in southern Europe. In contrast, no yield difference (≤1%) between ideotypes was found in north-western Europe. An intermediate yield benefit of 10-23% was found due to drought tolerance in central and eastern Europe. We conclude that tolerance to drought stress during reproductive development is important for high yield potentials and greater yield stability of wheat under climate change in Europe.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/ery226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/ery226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 Netherlands, Finland, France, Netherlands, Germany, Denmark, Italy, Germany, France, Germany, United Kingdom, SpainPublisher:Oxford University Press (OUP) Funded by:UKRI | Achieving Sustainable Agr..., DFG | Catchments as Reactors: M..., DFG +2 projectsUKRI| Achieving Sustainable Agricultural Systems (ASSIST) ,DFG| Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS) ,DFG ,AKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA) ,EC| FACCE ERA NET PLUSDueri, Sibylle; Brown, Hamish; Asseng, Senthold; Ewert, Frank; Webber, Heidi; George, Mike; Craigie, Rob; Guarin, Jose Rafael; Pequeno, Diego N L; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D; Basso, Bruno; Berger, Andres G; Mujica, Gennady Bracho; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Kersebaum, Kurt C; Nendel, Claas; Olesen, Jørgen E; Padovan, Gloria; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W M; Rodríguez, Alfredo; Rötter, Reimund P; Ramos, Margarita Ruiz; Semenov, Mikhail A; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Martre; Pierre;Abstract Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 119 Powered bymore_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 Netherlands, Finland, France, Netherlands, Germany, Denmark, Italy, Germany, France, Germany, United Kingdom, SpainPublisher:Oxford University Press (OUP) Funded by:UKRI | Achieving Sustainable Agr..., DFG | Catchments as Reactors: M..., DFG +2 projectsUKRI| Achieving Sustainable Agricultural Systems (ASSIST) ,DFG| Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS) ,DFG ,AKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA) ,EC| FACCE ERA NET PLUSDueri, Sibylle; Brown, Hamish; Asseng, Senthold; Ewert, Frank; Webber, Heidi; George, Mike; Craigie, Rob; Guarin, Jose Rafael; Pequeno, Diego N L; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D; Basso, Bruno; Berger, Andres G; Mujica, Gennady Bracho; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Kersebaum, Kurt C; Nendel, Claas; Olesen, Jørgen E; Padovan, Gloria; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W M; Rodríguez, Alfredo; Rötter, Reimund P; Ramos, Margarita Ruiz; Semenov, Mikhail A; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Martre; Pierre;Abstract Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 119 Powered bymore_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Achieving Sustainable Agr...UKRI| Achieving Sustainable Agricultural Systems (ASSIST)Authors: Senapati, N.; Semenov, M. A.;AbstractDesigning crop ideotypes in silico is a powerful tool to explore the crop yield potential and yield gap. We defined yield gap as the difference between yield potential of a crop ideotype optimized under local environment and yield of an existing cultivar under optimal management. Wheat ideotypes were designed for the current climate using the Sirius model for both water-limited and irrigated conditions in two high wheat-productive countries viz. the United Kingdom (UK) and New Zealand (NZ) with the objective of estimating yield gap. The mean ideotype yields of 15.0–19.0 t ha−1 were achieved in water-limited conditions in the UK and NZ, whereas 15.6–19.5 t ha−1 under irrigated conditions. Substantial yield gaps were found in both water-limited, 28–31% (4–6 t ha−1), and irrigated conditions, 30–32% (5–6 t ha−1) in the UK and NZ. Both yield potential (25–27%) and yield gap (32–38%) were greater in NZ than the UK. Ideotype design is generic and could apply globally for estimating yield gap. Despite wheat breeding efforts, the considerable yield gap still potentially exists in high productive countries such as the UK and NZ. To accelerate breeding, wheat ideotypes can provide the key traits for wheat improvement and closing the yield gap.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-40981-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-40981-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Achieving Sustainable Agr...UKRI| Achieving Sustainable Agricultural Systems (ASSIST)Authors: Senapati, N.; Semenov, M. A.;AbstractDesigning crop ideotypes in silico is a powerful tool to explore the crop yield potential and yield gap. We defined yield gap as the difference between yield potential of a crop ideotype optimized under local environment and yield of an existing cultivar under optimal management. Wheat ideotypes were designed for the current climate using the Sirius model for both water-limited and irrigated conditions in two high wheat-productive countries viz. the United Kingdom (UK) and New Zealand (NZ) with the objective of estimating yield gap. The mean ideotype yields of 15.0–19.0 t ha−1 were achieved in water-limited conditions in the UK and NZ, whereas 15.6–19.5 t ha−1 under irrigated conditions. Substantial yield gaps were found in both water-limited, 28–31% (4–6 t ha−1), and irrigated conditions, 30–32% (5–6 t ha−1) in the UK and NZ. Both yield potential (25–27%) and yield gap (32–38%) were greater in NZ than the UK. Ideotype design is generic and could apply globally for estimating yield gap. Despite wheat breeding efforts, the considerable yield gap still potentially exists in high productive countries such as the UK and NZ. To accelerate breeding, wheat ideotypes can provide the key traits for wheat improvement and closing the yield gap.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-40981-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-40981-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, Italy, Netherlands, France, Netherlands, Italy, Czech Republic, France, Spain, France, Czech Republic, Finland, GermanyPublisher:IOP Publishing Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Guarin, Jose Rafael; Martre, Pierre; Ewert, Frank; Webber, Heidi; Dueri, Sibylle; Calderini, Daniel; Reynolds, Matthew; Molero, Gemma; Miralles, Daniel; Garcia, Guillermo; Slafer, Gustavo; Giunta, Francesco; Pequeno, Diego N. L.; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D.; Basso, Bruno; Berger, Andres G.; Bindi, Marco; Bracho-Mujica, Gennady; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Hunt, Leslie A.; Kersebaum, Kurt C.; Nendel, Claas; Olesen, Jørgen E.; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W. M.; Rodríguez, Alfredo; Rötter, Reimund P.; Ramos, Margarita Ruiz; Semenov, Mikhail A.; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhang, Zhao; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Asseng, Senthold; Guarin, Jose Rafael;; Martre, Pierre;; Ewert, Frank;; Webber, Heidi;; Dueri, Sibylle;; Calderini, Daniel;; Reynolds, Matthew;; Molero, Gemma;; Miralles, Daniel;; Garcia, Guillermo;; Slafer, Gustavo;; Giunta, Francesco;; Pequeno, Diego N L;; Stella, Tommaso;; Ahmed, Mukhtar;; Alderman, Phillip D;; Basso, Bruno;; Berger, Andres G;; Bindi, Marco;; Bracho-Mujica, Gennady;; Cammarano, Davide;; Chen, Yi;; Dumont, Benjamin;; Rezaei, Ehsan Eyshi;; Fereres, Elias;; Ferrise, Roberto;; Gaiser, Thomas;; Gao, Yujing;; Garcia-Vila, Margarita;; Gayler, Sebastian;; Hochman, Zvi;; Hoogenboom, Gerrit;; Hunt, Leslie A;; Kersebaum, Kurt C;; Nendel, Claas;; Olesen, Jørgen E;; Palosuo, Taru;; Priesack, Eckart;; Pullens, Johannes W M;; Rodríguez, Alfredo;; Rötter, Reimund P;; Ramos, Margarita Ruiz;; Semenov, Mikhail A;; Senapati, Nimai;; Siebert, Stefan;; Srivastava, Amit Kumar;; Stöckle, Claudio;; Supit, Iwan;; Tao, Fulu;; Thorburn, Peter;; Wang, Enli;; Weber, Tobias Karl David;; Xiao, Liujun;; Zhang, Zhao;; Zhao, Chuang;; Zhao, Jin;; Zhao, Zhigan;; Zhu, Yan;; Asseng, Senthold;;handle: 10261/286709 , 11388/355191 , 11388/329749 , 2158/1304741 , 10883/22405 , 10568/129183
Abstract Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 93 Powered bymore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, Italy, Netherlands, France, Netherlands, Italy, Czech Republic, France, Spain, France, Czech Republic, Finland, GermanyPublisher:IOP Publishing Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Guarin, Jose Rafael; Martre, Pierre; Ewert, Frank; Webber, Heidi; Dueri, Sibylle; Calderini, Daniel; Reynolds, Matthew; Molero, Gemma; Miralles, Daniel; Garcia, Guillermo; Slafer, Gustavo; Giunta, Francesco; Pequeno, Diego N. L.; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D.; Basso, Bruno; Berger, Andres G.; Bindi, Marco; Bracho-Mujica, Gennady; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Hunt, Leslie A.; Kersebaum, Kurt C.; Nendel, Claas; Olesen, Jørgen E.; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W. M.; Rodríguez, Alfredo; Rötter, Reimund P.; Ramos, Margarita Ruiz; Semenov, Mikhail A.; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhang, Zhao; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Asseng, Senthold; Guarin, Jose Rafael;; Martre, Pierre;; Ewert, Frank;; Webber, Heidi;; Dueri, Sibylle;; Calderini, Daniel;; Reynolds, Matthew;; Molero, Gemma;; Miralles, Daniel;; Garcia, Guillermo;; Slafer, Gustavo;; Giunta, Francesco;; Pequeno, Diego N L;; Stella, Tommaso;; Ahmed, Mukhtar;; Alderman, Phillip D;; Basso, Bruno;; Berger, Andres G;; Bindi, Marco;; Bracho-Mujica, Gennady;; Cammarano, Davide;; Chen, Yi;; Dumont, Benjamin;; Rezaei, Ehsan Eyshi;; Fereres, Elias;; Ferrise, Roberto;; Gaiser, Thomas;; Gao, Yujing;; Garcia-Vila, Margarita;; Gayler, Sebastian;; Hochman, Zvi;; Hoogenboom, Gerrit;; Hunt, Leslie A;; Kersebaum, Kurt C;; Nendel, Claas;; Olesen, Jørgen E;; Palosuo, Taru;; Priesack, Eckart;; Pullens, Johannes W M;; Rodríguez, Alfredo;; Rötter, Reimund P;; Ramos, Margarita Ruiz;; Semenov, Mikhail A;; Senapati, Nimai;; Siebert, Stefan;; Srivastava, Amit Kumar;; Stöckle, Claudio;; Supit, Iwan;; Tao, Fulu;; Thorburn, Peter;; Wang, Enli;; Weber, Tobias Karl David;; Xiao, Liujun;; Zhang, Zhao;; Zhao, Chuang;; Zhao, Jin;; Zhao, Zhigan;; Zhu, Yan;; Asseng, Senthold;;handle: 10261/286709 , 11388/355191 , 11388/329749 , 2158/1304741 , 10883/22405 , 10568/129183
Abstract Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 93 Powered bymore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Senapati, N.; Brown, H. E.; Semenov, M. A.;Designing crop ideotype is an important step to raise genetic yield potential in a target environment. In the present study, we designed wheat ideotypes based on the state-of-the-art knowledge in crop physiology to increase genetic yield potential for the 2050-climate, as projected by the HadGEM2 global climate model for the RCP8.5 emission scenario, in two high-wheat-productive countries, viz. the United Kingdom (UK) and New Zealand (NZ). Wheat ideotypes were optimized to maximize yield potential for both water-limited (IW2050 ) and potential (IP2050 ) conditions by using Sirius model and exploring the full range of cultivar parameters. On average, a 43-51% greater yield potential over the present winter wheat cv. Claire was achieved for IW2050 in the UK and NZ, whereas a 51-62% increase was obtained for IP2050 . Yield benefits due to the potential condition over water-limitation were small in the UK, but 13% in NZ. The yield potentials of wheat were 16% (2.6 t ha-1) and 31% (5 t ha-1) greater in NZ than in the UK under 2050-climate in water-limited and potential conditions respectively. Modelling predicts the possibility of substantial increase in genetic yield potential of winter wheat under climate change in high productive countries. Wheat ideotypes optimized for future climate could provide plant scientists and breeders with a road map for selection of the target traits and their optimal combinations for wheat improvement and genetic adaptation to raise the yield potential.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Senapati, N.; Brown, H. E.; Semenov, M. A.;Designing crop ideotype is an important step to raise genetic yield potential in a target environment. In the present study, we designed wheat ideotypes based on the state-of-the-art knowledge in crop physiology to increase genetic yield potential for the 2050-climate, as projected by the HadGEM2 global climate model for the RCP8.5 emission scenario, in two high-wheat-productive countries, viz. the United Kingdom (UK) and New Zealand (NZ). Wheat ideotypes were optimized to maximize yield potential for both water-limited (IW2050 ) and potential (IP2050 ) conditions by using Sirius model and exploring the full range of cultivar parameters. On average, a 43-51% greater yield potential over the present winter wheat cv. Claire was achieved for IW2050 in the UK and NZ, whereas a 51-62% increase was obtained for IP2050 . Yield benefits due to the potential condition over water-limitation were small in the UK, but 13% in NZ. The yield potentials of wheat were 16% (2.6 t ha-1) and 31% (5 t ha-1) greater in NZ than in the UK under 2050-climate in water-limited and potential conditions respectively. Modelling predicts the possibility of substantial increase in genetic yield potential of winter wheat under climate change in high productive countries. Wheat ideotypes optimized for future climate could provide plant scientists and breeders with a road map for selection of the target traits and their optimal combinations for wheat improvement and genetic adaptation to raise the yield potential.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:UKRI | Resilient Farming Futures...UKRI| Resilient Farming Futures: Understanding impacts of single and compound climate policy and biotic stresses on agroecosystem ‘resilience’Authors: Mikhail A. Semenov; Nimai Senapati; Kevin Coleman; Adrian L. Collins;Under the extant threat of climate change, impact assessment studies are essential to investigate and quantify the severity of the potential impacts, and support recommendations for mitigation strategies with foresight. Future climate change scenarios are therefore crucial for underpinning impact studies. Here, transient climate scenarios are important as they provide a more realistic and dynamic evolution of future climate conditions over time, rather than only static climate scenarios. It is also important to downscale climate projection of Global Climate Models (GCMs) from coarse spatial and temporal resolution to local scale site-specific daily climate scenarios which have a sufficiently large number of years or realisations for accounting for inter-annual variability and detecting rare extreme climatic events. In the new dataset presented herein, transient future climate scenarios were generated at 26 representative sites across Great Britain (GB) using the Long Ashton Research Station Weather Generator (LARS-WG 8.0), based on climate projections from a subset of five GCMs from the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble and two emission scenarios. For each site, 100 realisations of continuous transient time series of daily weather (minimum air temperature, maximum air temperature, rainfall and solar radiation) over the period 2020 to 2090 were generated. The use of a subset of five GCMs reduces computational requirements substantially for impact assessments, while allowing quantification of uncertainties in impacts related to uncertainty in future climate projections arising from GCMs. The dataset can be used to underpin assessments of future climate change risk and vulnerability, and their temporal patterns and progressive changes over time. Our data are designed to be used as a time series of climatic input to impact models for climate change assessments continuously over time related to various fields and disciplines, including land and water resources, agriculture and food production, soil carbon cycle, ecology and epidemiology, and human health and welfare. Various key stakeholders, such as researchers, breeders, farm managers, social and public sector advisers, policymakers and planners, may benefit from this new transient dataset for investigating, forecasting, designing and prioritising adaptive and mitigation strategies under changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2025.111695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2025.111695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:UKRI | Resilient Farming Futures...UKRI| Resilient Farming Futures: Understanding impacts of single and compound climate policy and biotic stresses on agroecosystem ‘resilience’Authors: Mikhail A. Semenov; Nimai Senapati; Kevin Coleman; Adrian L. Collins;Under the extant threat of climate change, impact assessment studies are essential to investigate and quantify the severity of the potential impacts, and support recommendations for mitigation strategies with foresight. Future climate change scenarios are therefore crucial for underpinning impact studies. Here, transient climate scenarios are important as they provide a more realistic and dynamic evolution of future climate conditions over time, rather than only static climate scenarios. It is also important to downscale climate projection of Global Climate Models (GCMs) from coarse spatial and temporal resolution to local scale site-specific daily climate scenarios which have a sufficiently large number of years or realisations for accounting for inter-annual variability and detecting rare extreme climatic events. In the new dataset presented herein, transient future climate scenarios were generated at 26 representative sites across Great Britain (GB) using the Long Ashton Research Station Weather Generator (LARS-WG 8.0), based on climate projections from a subset of five GCMs from the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble and two emission scenarios. For each site, 100 realisations of continuous transient time series of daily weather (minimum air temperature, maximum air temperature, rainfall and solar radiation) over the period 2020 to 2090 were generated. The use of a subset of five GCMs reduces computational requirements substantially for impact assessments, while allowing quantification of uncertainties in impacts related to uncertainty in future climate projections arising from GCMs. The dataset can be used to underpin assessments of future climate change risk and vulnerability, and their temporal patterns and progressive changes over time. Our data are designed to be used as a time series of climatic input to impact models for climate change assessments continuously over time related to various fields and disciplines, including land and water resources, agriculture and food production, soil carbon cycle, ecology and epidemiology, and human health and welfare. Various key stakeholders, such as researchers, breeders, farm managers, social and public sector advisers, policymakers and planners, may benefit from this new transient dataset for investigating, forecasting, designing and prioritising adaptive and mitigation strategies under changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2025.111695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2025.111695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Inter-Research Science Center Funded by:UKRI | Achieving Sustainable Agr...UKRI| Achieving Sustainable Agricultural Systems (ASSIST)Senapati, N.; Griffiths, S; Hawkesford, M. J.; Shewry, P. R.; Semenov, M. A.;doi: 10.3354/cr01602
A substantial increase in food production is needed for global food security. Europe is the largest wheat producer, delivering 35% of wheat globally, but its future genetic yield potential is yet unknown. We estimated the genetic yield potential of wheat in Europe under 2050 climate by designing in silico wheat ideotypes based on genetic variation in wheat germplasm. To evaluate the importance of heat and drought stresses around flowering, a critical stage in wheat development, sensitive and tolerant ideotypes were designed. Ideotype yields ranged from 9 to 17 t ha-1 across major wheat growing regions in Europe under 2050 climate. Both ideotypes showed a substantial increase in yield of 66-89% compared to current local cultivars under future climate. Key traits for wheat improvements under future climate were identified. Ideotype design is a powerful tool for estimating crop genetic yield potential in a target environment, along with the potential to accelerate breeding by providing target traits for improvements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Inter-Research Science Center Funded by:UKRI | Achieving Sustainable Agr...UKRI| Achieving Sustainable Agricultural Systems (ASSIST)Senapati, N.; Griffiths, S; Hawkesford, M. J.; Shewry, P. R.; Semenov, M. A.;doi: 10.3354/cr01602
A substantial increase in food production is needed for global food security. Europe is the largest wheat producer, delivering 35% of wheat globally, but its future genetic yield potential is yet unknown. We estimated the genetic yield potential of wheat in Europe under 2050 climate by designing in silico wheat ideotypes based on genetic variation in wheat germplasm. To evaluate the importance of heat and drought stresses around flowering, a critical stage in wheat development, sensitive and tolerant ideotypes were designed. Ideotype yields ranged from 9 to 17 t ha-1 across major wheat growing regions in Europe under 2050 climate. Both ideotypes showed a substantial increase in yield of 66-89% compared to current local cultivars under future climate. Key traits for wheat improvements under future climate were identified. Ideotype design is a powerful tool for estimating crop genetic yield potential in a target environment, along with the potential to accelerate breeding by providing target traits for improvements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Oxford University Press (OUP) Authors: Senapati, N.; Stratonovitch, P.; Paul, M. J.; Semenov, M. A.;Drought stress during reproductive development could drastically reduce wheat grain number and yield, but quantitative evaluation of such an effect is unknown under climate change. The objectives of this study were to evaluate potential yield benefits of drought tolerance during reproductive development for wheat ideotypes under climate change in Europe, and to identify potential cultivar parameters for improvement. We used the Sirius wheat model to optimize drought-tolerant (DT) and drought-sensitive (DS) wheat ideotypes under a future 2050 climate scenario at 13 contrasting sites, representing major wheat growing regions in Europe. Averaged over the sites, DT ideotypes achieved 13.4% greater yield compared with DS, with higher yield stability. However, the performances of the ideotypes were site dependent. Mean yield of DT was 28-37% greater compared with DS in southern Europe. In contrast, no yield difference (≤1%) between ideotypes was found in north-western Europe. An intermediate yield benefit of 10-23% was found due to drought tolerance in central and eastern Europe. We conclude that tolerance to drought stress during reproductive development is important for high yield potentials and greater yield stability of wheat under climate change in Europe.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/ery226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/ery226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Oxford University Press (OUP) Authors: Senapati, N.; Stratonovitch, P.; Paul, M. J.; Semenov, M. A.;Drought stress during reproductive development could drastically reduce wheat grain number and yield, but quantitative evaluation of such an effect is unknown under climate change. The objectives of this study were to evaluate potential yield benefits of drought tolerance during reproductive development for wheat ideotypes under climate change in Europe, and to identify potential cultivar parameters for improvement. We used the Sirius wheat model to optimize drought-tolerant (DT) and drought-sensitive (DS) wheat ideotypes under a future 2050 climate scenario at 13 contrasting sites, representing major wheat growing regions in Europe. Averaged over the sites, DT ideotypes achieved 13.4% greater yield compared with DS, with higher yield stability. However, the performances of the ideotypes were site dependent. Mean yield of DT was 28-37% greater compared with DS in southern Europe. In contrast, no yield difference (≤1%) between ideotypes was found in north-western Europe. An intermediate yield benefit of 10-23% was found due to drought tolerance in central and eastern Europe. We conclude that tolerance to drought stress during reproductive development is important for high yield potentials and greater yield stability of wheat under climate change in Europe.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/ery226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/ery226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 Netherlands, Finland, France, Netherlands, Germany, Denmark, Italy, Germany, France, Germany, United Kingdom, SpainPublisher:Oxford University Press (OUP) Funded by:UKRI | Achieving Sustainable Agr..., DFG | Catchments as Reactors: M..., DFG +2 projectsUKRI| Achieving Sustainable Agricultural Systems (ASSIST) ,DFG| Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS) ,DFG ,AKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA) ,EC| FACCE ERA NET PLUSDueri, Sibylle; Brown, Hamish; Asseng, Senthold; Ewert, Frank; Webber, Heidi; George, Mike; Craigie, Rob; Guarin, Jose Rafael; Pequeno, Diego N L; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D; Basso, Bruno; Berger, Andres G; Mujica, Gennady Bracho; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Kersebaum, Kurt C; Nendel, Claas; Olesen, Jørgen E; Padovan, Gloria; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W M; Rodríguez, Alfredo; Rötter, Reimund P; Ramos, Margarita Ruiz; Semenov, Mikhail A; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Martre; Pierre;Abstract Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 119 Powered bymore_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 Netherlands, Finland, France, Netherlands, Germany, Denmark, Italy, Germany, France, Germany, United Kingdom, SpainPublisher:Oxford University Press (OUP) Funded by:UKRI | Achieving Sustainable Agr..., DFG | Catchments as Reactors: M..., DFG +2 projectsUKRI| Achieving Sustainable Agricultural Systems (ASSIST) ,DFG| Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS) ,DFG ,AKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA) ,EC| FACCE ERA NET PLUSDueri, Sibylle; Brown, Hamish; Asseng, Senthold; Ewert, Frank; Webber, Heidi; George, Mike; Craigie, Rob; Guarin, Jose Rafael; Pequeno, Diego N L; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D; Basso, Bruno; Berger, Andres G; Mujica, Gennady Bracho; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Kersebaum, Kurt C; Nendel, Claas; Olesen, Jørgen E; Padovan, Gloria; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W M; Rodríguez, Alfredo; Rötter, Reimund P; Ramos, Margarita Ruiz; Semenov, Mikhail A; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Martre; Pierre;Abstract Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 119 Powered bymore_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://doi.org/10.7910/dvn/xa4va2Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsFlore (Florence Research Repository)Article . 2022Data sources: Flore (Florence Research Repository)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Achieving Sustainable Agr...UKRI| Achieving Sustainable Agricultural Systems (ASSIST)Authors: Senapati, N.; Semenov, M. A.;AbstractDesigning crop ideotypes in silico is a powerful tool to explore the crop yield potential and yield gap. We defined yield gap as the difference between yield potential of a crop ideotype optimized under local environment and yield of an existing cultivar under optimal management. Wheat ideotypes were designed for the current climate using the Sirius model for both water-limited and irrigated conditions in two high wheat-productive countries viz. the United Kingdom (UK) and New Zealand (NZ) with the objective of estimating yield gap. The mean ideotype yields of 15.0–19.0 t ha−1 were achieved in water-limited conditions in the UK and NZ, whereas 15.6–19.5 t ha−1 under irrigated conditions. Substantial yield gaps were found in both water-limited, 28–31% (4–6 t ha−1), and irrigated conditions, 30–32% (5–6 t ha−1) in the UK and NZ. Both yield potential (25–27%) and yield gap (32–38%) were greater in NZ than the UK. Ideotype design is generic and could apply globally for estimating yield gap. Despite wheat breeding efforts, the considerable yield gap still potentially exists in high productive countries such as the UK and NZ. To accelerate breeding, wheat ideotypes can provide the key traits for wheat improvement and closing the yield gap.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-40981-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-40981-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Achieving Sustainable Agr...UKRI| Achieving Sustainable Agricultural Systems (ASSIST)Authors: Senapati, N.; Semenov, M. A.;AbstractDesigning crop ideotypes in silico is a powerful tool to explore the crop yield potential and yield gap. We defined yield gap as the difference between yield potential of a crop ideotype optimized under local environment and yield of an existing cultivar under optimal management. Wheat ideotypes were designed for the current climate using the Sirius model for both water-limited and irrigated conditions in two high wheat-productive countries viz. the United Kingdom (UK) and New Zealand (NZ) with the objective of estimating yield gap. The mean ideotype yields of 15.0–19.0 t ha−1 were achieved in water-limited conditions in the UK and NZ, whereas 15.6–19.5 t ha−1 under irrigated conditions. Substantial yield gaps were found in both water-limited, 28–31% (4–6 t ha−1), and irrigated conditions, 30–32% (5–6 t ha−1) in the UK and NZ. Both yield potential (25–27%) and yield gap (32–38%) were greater in NZ than the UK. Ideotype design is generic and could apply globally for estimating yield gap. Despite wheat breeding efforts, the considerable yield gap still potentially exists in high productive countries such as the UK and NZ. To accelerate breeding, wheat ideotypes can provide the key traits for wheat improvement and closing the yield gap.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-40981-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-40981-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, Italy, Netherlands, France, Netherlands, Italy, Czech Republic, France, Spain, France, Czech Republic, Finland, GermanyPublisher:IOP Publishing Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Guarin, Jose Rafael; Martre, Pierre; Ewert, Frank; Webber, Heidi; Dueri, Sibylle; Calderini, Daniel; Reynolds, Matthew; Molero, Gemma; Miralles, Daniel; Garcia, Guillermo; Slafer, Gustavo; Giunta, Francesco; Pequeno, Diego N. L.; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D.; Basso, Bruno; Berger, Andres G.; Bindi, Marco; Bracho-Mujica, Gennady; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Hunt, Leslie A.; Kersebaum, Kurt C.; Nendel, Claas; Olesen, Jørgen E.; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W. M.; Rodríguez, Alfredo; Rötter, Reimund P.; Ramos, Margarita Ruiz; Semenov, Mikhail A.; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhang, Zhao; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Asseng, Senthold; Guarin, Jose Rafael;; Martre, Pierre;; Ewert, Frank;; Webber, Heidi;; Dueri, Sibylle;; Calderini, Daniel;; Reynolds, Matthew;; Molero, Gemma;; Miralles, Daniel;; Garcia, Guillermo;; Slafer, Gustavo;; Giunta, Francesco;; Pequeno, Diego N L;; Stella, Tommaso;; Ahmed, Mukhtar;; Alderman, Phillip D;; Basso, Bruno;; Berger, Andres G;; Bindi, Marco;; Bracho-Mujica, Gennady;; Cammarano, Davide;; Chen, Yi;; Dumont, Benjamin;; Rezaei, Ehsan Eyshi;; Fereres, Elias;; Ferrise, Roberto;; Gaiser, Thomas;; Gao, Yujing;; Garcia-Vila, Margarita;; Gayler, Sebastian;; Hochman, Zvi;; Hoogenboom, Gerrit;; Hunt, Leslie A;; Kersebaum, Kurt C;; Nendel, Claas;; Olesen, Jørgen E;; Palosuo, Taru;; Priesack, Eckart;; Pullens, Johannes W M;; Rodríguez, Alfredo;; Rötter, Reimund P;; Ramos, Margarita Ruiz;; Semenov, Mikhail A;; Senapati, Nimai;; Siebert, Stefan;; Srivastava, Amit Kumar;; Stöckle, Claudio;; Supit, Iwan;; Tao, Fulu;; Thorburn, Peter;; Wang, Enli;; Weber, Tobias Karl David;; Xiao, Liujun;; Zhang, Zhao;; Zhao, Chuang;; Zhao, Jin;; Zhao, Zhigan;; Zhu, Yan;; Asseng, Senthold;;handle: 10261/286709 , 11388/355191 , 11388/329749 , 2158/1304741 , 10883/22405 , 10568/129183
Abstract Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 93 Powered bymore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, Italy, Netherlands, France, Netherlands, Italy, Czech Republic, France, Spain, France, Czech Republic, Finland, GermanyPublisher:IOP Publishing Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Guarin, Jose Rafael; Martre, Pierre; Ewert, Frank; Webber, Heidi; Dueri, Sibylle; Calderini, Daniel; Reynolds, Matthew; Molero, Gemma; Miralles, Daniel; Garcia, Guillermo; Slafer, Gustavo; Giunta, Francesco; Pequeno, Diego N. L.; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip D.; Basso, Bruno; Berger, Andres G.; Bindi, Marco; Bracho-Mujica, Gennady; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Rezaei, Ehsan Eyshi; Fereres, Elias; Ferrise, Roberto; Gaiser, Thomas; Gao, Yujing; Garcia-Vila, Margarita; Gayler, Sebastian; Hochman, Zvi; Hoogenboom, Gerrit; Hunt, Leslie A.; Kersebaum, Kurt C.; Nendel, Claas; Olesen, Jørgen E.; Palosuo, Taru; Priesack, Eckart; Pullens, Johannes W. M.; Rodríguez, Alfredo; Rötter, Reimund P.; Ramos, Margarita Ruiz; Semenov, Mikhail A.; Senapati, Nimai; Siebert, Stefan; Srivastava, Amit Kumar; Stöckle, Claudio; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Wang, Enli; Weber, Tobias Karl David; Xiao, Liujun; Zhang, Zhao; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Asseng, Senthold; Guarin, Jose Rafael;; Martre, Pierre;; Ewert, Frank;; Webber, Heidi;; Dueri, Sibylle;; Calderini, Daniel;; Reynolds, Matthew;; Molero, Gemma;; Miralles, Daniel;; Garcia, Guillermo;; Slafer, Gustavo;; Giunta, Francesco;; Pequeno, Diego N L;; Stella, Tommaso;; Ahmed, Mukhtar;; Alderman, Phillip D;; Basso, Bruno;; Berger, Andres G;; Bindi, Marco;; Bracho-Mujica, Gennady;; Cammarano, Davide;; Chen, Yi;; Dumont, Benjamin;; Rezaei, Ehsan Eyshi;; Fereres, Elias;; Ferrise, Roberto;; Gaiser, Thomas;; Gao, Yujing;; Garcia-Vila, Margarita;; Gayler, Sebastian;; Hochman, Zvi;; Hoogenboom, Gerrit;; Hunt, Leslie A;; Kersebaum, Kurt C;; Nendel, Claas;; Olesen, Jørgen E;; Palosuo, Taru;; Priesack, Eckart;; Pullens, Johannes W M;; Rodríguez, Alfredo;; Rötter, Reimund P;; Ramos, Margarita Ruiz;; Semenov, Mikhail A;; Senapati, Nimai;; Siebert, Stefan;; Srivastava, Amit Kumar;; Stöckle, Claudio;; Supit, Iwan;; Tao, Fulu;; Thorburn, Peter;; Wang, Enli;; Weber, Tobias Karl David;; Xiao, Liujun;; Zhang, Zhao;; Zhao, Chuang;; Zhao, Jin;; Zhao, Zhigan;; Zhu, Yan;; Asseng, Senthold;;handle: 10261/286709 , 11388/355191 , 11388/329749 , 2158/1304741 , 10883/22405 , 10568/129183
Abstract Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 93 Powered bymore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022License: CC BY NC NDFull-Text: https://flore.unifi.it/bitstream/2158/1304741/1/Guarin_2022_Environ._Res._Lett._17_124045.pdfData sources: Flore (Florence Research Repository)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesPublication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aca77c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Senapati, N.; Brown, H. E.; Semenov, M. A.;Designing crop ideotype is an important step to raise genetic yield potential in a target environment. In the present study, we designed wheat ideotypes based on the state-of-the-art knowledge in crop physiology to increase genetic yield potential for the 2050-climate, as projected by the HadGEM2 global climate model for the RCP8.5 emission scenario, in two high-wheat-productive countries, viz. the United Kingdom (UK) and New Zealand (NZ). Wheat ideotypes were optimized to maximize yield potential for both water-limited (IW2050 ) and potential (IP2050 ) conditions by using Sirius model and exploring the full range of cultivar parameters. On average, a 43-51% greater yield potential over the present winter wheat cv. Claire was achieved for IW2050 in the UK and NZ, whereas a 51-62% increase was obtained for IP2050 . Yield benefits due to the potential condition over water-limitation were small in the UK, but 13% in NZ. The yield potentials of wheat were 16% (2.6 t ha-1) and 31% (5 t ha-1) greater in NZ than in the UK under 2050-climate in water-limited and potential conditions respectively. Modelling predicts the possibility of substantial increase in genetic yield potential of winter wheat under climate change in high productive countries. Wheat ideotypes optimized for future climate could provide plant scientists and breeders with a road map for selection of the target traits and their optimal combinations for wheat improvement and genetic adaptation to raise the yield potential.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Senapati, N.; Brown, H. E.; Semenov, M. A.;Designing crop ideotype is an important step to raise genetic yield potential in a target environment. In the present study, we designed wheat ideotypes based on the state-of-the-art knowledge in crop physiology to increase genetic yield potential for the 2050-climate, as projected by the HadGEM2 global climate model for the RCP8.5 emission scenario, in two high-wheat-productive countries, viz. the United Kingdom (UK) and New Zealand (NZ). Wheat ideotypes were optimized to maximize yield potential for both water-limited (IW2050 ) and potential (IP2050 ) conditions by using Sirius model and exploring the full range of cultivar parameters. On average, a 43-51% greater yield potential over the present winter wheat cv. Claire was achieved for IW2050 in the UK and NZ, whereas a 51-62% increase was obtained for IP2050 . Yield benefits due to the potential condition over water-limitation were small in the UK, but 13% in NZ. The yield potentials of wheat were 16% (2.6 t ha-1) and 31% (5 t ha-1) greater in NZ than in the UK under 2050-climate in water-limited and potential conditions respectively. Modelling predicts the possibility of substantial increase in genetic yield potential of winter wheat under climate change in high productive countries. Wheat ideotypes optimized for future climate could provide plant scientists and breeders with a road map for selection of the target traits and their optimal combinations for wheat improvement and genetic adaptation to raise the yield potential.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:UKRI | Resilient Farming Futures...UKRI| Resilient Farming Futures: Understanding impacts of single and compound climate policy and biotic stresses on agroecosystem ‘resilience’Authors: Mikhail A. Semenov; Nimai Senapati; Kevin Coleman; Adrian L. Collins;Under the extant threat of climate change, impact assessment studies are essential to investigate and quantify the severity of the potential impacts, and support recommendations for mitigation strategies with foresight. Future climate change scenarios are therefore crucial for underpinning impact studies. Here, transient climate scenarios are important as they provide a more realistic and dynamic evolution of future climate conditions over time, rather than only static climate scenarios. It is also important to downscale climate projection of Global Climate Models (GCMs) from coarse spatial and temporal resolution to local scale site-specific daily climate scenarios which have a sufficiently large number of years or realisations for accounting for inter-annual variability and detecting rare extreme climatic events. In the new dataset presented herein, transient future climate scenarios were generated at 26 representative sites across Great Britain (GB) using the Long Ashton Research Station Weather Generator (LARS-WG 8.0), based on climate projections from a subset of five GCMs from the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble and two emission scenarios. For each site, 100 realisations of continuous transient time series of daily weather (minimum air temperature, maximum air temperature, rainfall and solar radiation) over the period 2020 to 2090 were generated. The use of a subset of five GCMs reduces computational requirements substantially for impact assessments, while allowing quantification of uncertainties in impacts related to uncertainty in future climate projections arising from GCMs. The dataset can be used to underpin assessments of future climate change risk and vulnerability, and their temporal patterns and progressive changes over time. Our data are designed to be used as a time series of climatic input to impact models for climate change assessments continuously over time related to various fields and disciplines, including land and water resources, agriculture and food production, soil carbon cycle, ecology and epidemiology, and human health and welfare. Various key stakeholders, such as researchers, breeders, farm managers, social and public sector advisers, policymakers and planners, may benefit from this new transient dataset for investigating, forecasting, designing and prioritising adaptive and mitigation strategies under changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2025.111695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2025.111695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:UKRI | Resilient Farming Futures...UKRI| Resilient Farming Futures: Understanding impacts of single and compound climate policy and biotic stresses on agroecosystem ‘resilience’Authors: Mikhail A. Semenov; Nimai Senapati; Kevin Coleman; Adrian L. Collins;Under the extant threat of climate change, impact assessment studies are essential to investigate and quantify the severity of the potential impacts, and support recommendations for mitigation strategies with foresight. Future climate change scenarios are therefore crucial for underpinning impact studies. Here, transient climate scenarios are important as they provide a more realistic and dynamic evolution of future climate conditions over time, rather than only static climate scenarios. It is also important to downscale climate projection of Global Climate Models (GCMs) from coarse spatial and temporal resolution to local scale site-specific daily climate scenarios which have a sufficiently large number of years or realisations for accounting for inter-annual variability and detecting rare extreme climatic events. In the new dataset presented herein, transient future climate scenarios were generated at 26 representative sites across Great Britain (GB) using the Long Ashton Research Station Weather Generator (LARS-WG 8.0), based on climate projections from a subset of five GCMs from the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble and two emission scenarios. For each site, 100 realisations of continuous transient time series of daily weather (minimum air temperature, maximum air temperature, rainfall and solar radiation) over the period 2020 to 2090 were generated. The use of a subset of five GCMs reduces computational requirements substantially for impact assessments, while allowing quantification of uncertainties in impacts related to uncertainty in future climate projections arising from GCMs. The dataset can be used to underpin assessments of future climate change risk and vulnerability, and their temporal patterns and progressive changes over time. Our data are designed to be used as a time series of climatic input to impact models for climate change assessments continuously over time related to various fields and disciplines, including land and water resources, agriculture and food production, soil carbon cycle, ecology and epidemiology, and human health and welfare. Various key stakeholders, such as researchers, breeders, farm managers, social and public sector advisers, policymakers and planners, may benefit from this new transient dataset for investigating, forecasting, designing and prioritising adaptive and mitigation strategies under changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2025.111695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2025.111695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu