- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint 2023Publisher:The Royal Society Timothy M. Waring; Meredith T. Niles; Matthew M. Kling; Stephanie N. Miller; Laurent Hébert-Dufresne; Hossein Sabzian; Nicholas Gotelli; Brian J. McGill;It has been proposed that climate adaptation research can benefit from an evolutionary approach. But related empirical research is lacking. We advance the evolutionary study of climate adaptation with two case studies from contemporary United States agriculture. First, we define ‘cultural adaptation to climate change’ as a mechanistic process of population-level cultural change. We argue this definition enables rigorous comparisons, yields testable hypotheses from mathematical theory and distinguishes adaptive change, non-adaptive change and desirable policy outcomes. Next, we develop an operational approach to identify ‘cultural adaptation to climate change’ based on established empirical criteria. We apply this approach to data on crop choices and the use of cover crops between 2008 and 2021 from the United States. We find evidence that crop choices are adapting to local trends in two separate climate variables in some regions of the USA. But evidence suggests that cover cropping may be adapting more to the economic environment than climatic conditions. Further research is needed to characterize the process of cultural adaptation, particularly the routes and mechanisms of cultural transmission. Furthermore, climate adaptation policy could benefit from research on factors that differentiate regions exhibiting adaptive trends in crop choice from those that do not. This article is part of the theme issue ‘Climate change adaptation needs a science of culture’.
OSF Preprints arrow_drop_down https://doi.org/10.31219/osf.i...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2023 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2022.0397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OSF Preprints arrow_drop_down https://doi.org/10.31219/osf.i...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2023 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2022.0397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Portugal, United Kingdom, United States, Australia, United States, United KingdomPublisher:The Royal Society Funded by:EC | BIOTIMEEC| BIOTIMELise Øvreås; Kevin J. Gaston; Anne E. Magurran; Brian J. McGill; Maria Dornelas; A. C. Studeny; A. C. Studeny; Robert K. Colwell; Mark Vellend; Nicolas J. Gotelli; Thomas P. Curtis; Peter J. Mumby; Hélène Morlon; Matthew A. Kosnik; Robin L. Chazdon; Anne Chao; Stephen T. Buckland; Jenny L. McCune;Growing concern about biodiversity loss underscores the need to quantify and understand temporal change. Here, we review the opportunities presented by biodiversity time series, and address three related issues: (i) recognizing the characteristics of temporal data; (ii) selecting appropriate statistical procedures for analysing temporal data; and (iii) inferring and forecasting biodiversity change. With regard to the first issue, we draw attention to defining characteristics of biodiversity time series—lack of physical boundaries, uni-dimensionality, autocorrelation and directionality—that inform the choice of analytic methods. Second, we explore methods of quantifying change in biodiversity at different timescales, noting that autocorrelation can be viewed as a feature that sheds light on the underlying structure of temporal change. Finally, we address the transition from inferring to forecasting biodiversity change, highlighting potential pitfalls associated with phase-shifts and novel conditions.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 203 citations 203 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:EC | BIOTIMEEC| BIOTIMEAuthors: Brian J. McGill; Maria Dornelas; Nicholas J. Gotelli; Anne E. Magurran;pmid: 25542312
Humans are transforming the biosphere in unprecedented ways, raising the important question of how these impacts are changing biodiversity. Here we argue that our understanding of biodiversity trends in the Anthropocene, and our ability to protect the natural world, is impeded by a failure to consider different types of biodiversity measured at different spatial scales. We propose that ecologists should recognize and assess 15 distinct categories of biodiversity trend. We summarize what is known about each of these 15 categories, identify major gaps in our current knowledge, and recommend the next steps required for better understanding of trends in biodiversity.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu539 citations 539 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 United StatesPublisher:Public Library of Science (PLoS) Funded by:NSERCNSERCAuthors: Samson, Jason; Berteaux, Dominique; McGill, Brian; Humphries, Murray;Better understanding of the changing relationship between human populations and climate is a global research priority. The 20(th) century in the contiguous United States offers a particularly well-documented example of human demographic expansion during a period of radical socioeconomic and environmental change. One would expect that as human society has been transformed by technology, we would become increasingly decoupled from climate and more dependent on social infrastructure. Here we use spatially-explicit models to evaluate climatic, socio-economic and biophysical correlates of demographic change in the contiguous United States between 1900 and 2000. Climate-correlated variation in population growth has caused the U.S. population to shift its realized climate niche from cool, seasonal climates to warm, aseasonal climates. As a result, the average annual temperature experienced by U.S. citizens between 1920 and 2000 has increased by more than 1.5°C and the temperature seasonality has decreased by 1.1°C during a century when climate change accounted for only a 0.24°C increase in average annual temperature and a 0.15°C decrease in temperature seasonality. Thus, despite advancing technology, climate-correlated demographics continue to be a major feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing to a substantial warming of the climate niche during a period of rapid environmental warming, making an already bad situation worse.
The University of Ma... arrow_drop_down The University of Maine: DigitalCommons@UMaineArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0045683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Maine: DigitalCommons@UMaineArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0045683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Association for the Advancement of Science (AAAS) Authors: Daniel C. Laughlin; Brian J. McGill;pmid: 38963858
Tree species appear to prefer distinct climatic conditions, but the true nature of these preferences is obscured by species interactions and dispersal, which limit species’ ranges. We quantified realized and potential thermal niches of 188 North American tree species to conduct a continental-scale test of the architecture of niches. We found strong and consistent evidence that species occurring at thermal extremes occupy less than three-quarters of their potential niches, and species’ potential niches overlap at a mean annual temperature of ~12°C. These results clarify the breadth of thermal tolerances of temperate tree species and support the centrifugal organization of thermal niches. Accounting for the nonrealized components of ecological niches will advance theory and prediction in global change ecology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adm8671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adm8671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | TraChangeEC| TraChangeMartins, Inês S.; Schrodt, Franziska; Blowes, Shane A.; Bates, Amanda E.; Bjorkman, Anne D.; Brambilla, Viviana; Carvajal-Quintero, Juan; Chow, Cher F. Y.; Daskalova, Gergana N.; Edwards, Kyle; Eisenhauer, Nico; Field, Richard; Fontrodona-Eslava, Ada; Henn, Jonathan J.; van Klink, Roel; Madin, Joshua S.; Magurran, Anne E.; McWilliam, Michael; Moyes, Faye; Pugh, Brittany; Sagouis, Alban; Trindade-Santos, Isaac; McGill, Brian J.; Chase, Jonathan M.; Dornelas, Maria;pmid: 37676959
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2009 United StatesPublisher:Wiley Allen H. Hurlbert; Brian J. Enquist; Brian J. Enquist; Brian J. Enquist; Brian A. Maurer; Rampal S. Etienne; Rampal S. Etienne; Brian J. McGill; Fangliang He; Jessica L. Green; Jessica L. Green; Hélène Morlon; David Storch; David Storch; Annette Ostling; Anne E. Magurran; Han Olff; Ethan P. White; Tommaso Zillio; David Alonso;AbstractThe species abundance distribution (SAD) is one of the few universal patterns in ecology. Research on this fundamental distribution has primarily focused on the study of numerical counts, irrespective of the traits of individuals. Here we show that considering a set of Generalized Species Abundance Distributions (GSADs) encompassing several abundance measures, such as numerical abundance, biomass and resource use, can provide novel insights into the structure of ecological communities and the forces that organize them. We use a taxonomically diverse combination of macroecological data sets to investigate the similarities and differences between GSADs. We then use probability theory to explore, under parsimonious assumptions, theoretical linkages among them. Our study suggests that examining different GSADs simultaneously in natural systems may help with assessing determinants of community structure. Broadening SADs to encompass multiple abundance measures opens novel perspectives in biodiversity research and warrants future empirical and theoretical developments.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2009License: PDMData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2009.01318.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2009License: PDMData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2009.01318.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2023Publisher:The Royal Society Timothy M. Waring; Meredith T. Niles; Matthew M. Kling; Stephanie N. Miller; Laurent Hébert-Dufresne; Hossein Sabzian; Nicholas Gotelli; Brian J. McGill;It has been proposed that climate adaptation research can benefit from an evolutionary approach. But related empirical research is lacking. We advance the evolutionary study of climate adaptation with two case studies from contemporary United States agriculture. First, we define ‘cultural adaptation to climate change’ as a mechanistic process of population-level cultural change. We argue this definition enables rigorous comparisons, yields testable hypotheses from mathematical theory and distinguishes adaptive change, non-adaptive change and desirable policy outcomes. Next, we develop an operational approach to identify ‘cultural adaptation to climate change’ based on established empirical criteria. We apply this approach to data on crop choices and the use of cover crops between 2008 and 2021 from the United States. We find evidence that crop choices are adapting to local trends in two separate climate variables in some regions of the USA. But evidence suggests that cover cropping may be adapting more to the economic environment than climatic conditions. Further research is needed to characterize the process of cultural adaptation, particularly the routes and mechanisms of cultural transmission. Furthermore, climate adaptation policy could benefit from research on factors that differentiate regions exhibiting adaptive trends in crop choice from those that do not. This article is part of the theme issue ‘Climate change adaptation needs a science of culture’.
OSF Preprints arrow_drop_down https://doi.org/10.31219/osf.i...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2023 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2022.0397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OSF Preprints arrow_drop_down https://doi.org/10.31219/osf.i...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2023 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2022.0397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Portugal, United Kingdom, United States, Australia, United States, United KingdomPublisher:The Royal Society Funded by:EC | BIOTIMEEC| BIOTIMELise Øvreås; Kevin J. Gaston; Anne E. Magurran; Brian J. McGill; Maria Dornelas; A. C. Studeny; A. C. Studeny; Robert K. Colwell; Mark Vellend; Nicolas J. Gotelli; Thomas P. Curtis; Peter J. Mumby; Hélène Morlon; Matthew A. Kosnik; Robin L. Chazdon; Anne Chao; Stephen T. Buckland; Jenny L. McCune;Growing concern about biodiversity loss underscores the need to quantify and understand temporal change. Here, we review the opportunities presented by biodiversity time series, and address three related issues: (i) recognizing the characteristics of temporal data; (ii) selecting appropriate statistical procedures for analysing temporal data; and (iii) inferring and forecasting biodiversity change. With regard to the first issue, we draw attention to defining characteristics of biodiversity time series—lack of physical boundaries, uni-dimensionality, autocorrelation and directionality—that inform the choice of analytic methods. Second, we explore methods of quantifying change in biodiversity at different timescales, noting that autocorrelation can be viewed as a feature that sheds light on the underlying structure of temporal change. Finally, we address the transition from inferring to forecasting biodiversity change, highlighting potential pitfalls associated with phase-shifts and novel conditions.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 203 citations 203 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:EC | BIOTIMEEC| BIOTIMEAuthors: Brian J. McGill; Maria Dornelas; Nicholas J. Gotelli; Anne E. Magurran;pmid: 25542312
Humans are transforming the biosphere in unprecedented ways, raising the important question of how these impacts are changing biodiversity. Here we argue that our understanding of biodiversity trends in the Anthropocene, and our ability to protect the natural world, is impeded by a failure to consider different types of biodiversity measured at different spatial scales. We propose that ecologists should recognize and assess 15 distinct categories of biodiversity trend. We summarize what is known about each of these 15 categories, identify major gaps in our current knowledge, and recommend the next steps required for better understanding of trends in biodiversity.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu539 citations 539 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 United StatesPublisher:Public Library of Science (PLoS) Funded by:NSERCNSERCAuthors: Samson, Jason; Berteaux, Dominique; McGill, Brian; Humphries, Murray;Better understanding of the changing relationship between human populations and climate is a global research priority. The 20(th) century in the contiguous United States offers a particularly well-documented example of human demographic expansion during a period of radical socioeconomic and environmental change. One would expect that as human society has been transformed by technology, we would become increasingly decoupled from climate and more dependent on social infrastructure. Here we use spatially-explicit models to evaluate climatic, socio-economic and biophysical correlates of demographic change in the contiguous United States between 1900 and 2000. Climate-correlated variation in population growth has caused the U.S. population to shift its realized climate niche from cool, seasonal climates to warm, aseasonal climates. As a result, the average annual temperature experienced by U.S. citizens between 1920 and 2000 has increased by more than 1.5°C and the temperature seasonality has decreased by 1.1°C during a century when climate change accounted for only a 0.24°C increase in average annual temperature and a 0.15°C decrease in temperature seasonality. Thus, despite advancing technology, climate-correlated demographics continue to be a major feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing to a substantial warming of the climate niche during a period of rapid environmental warming, making an already bad situation worse.
The University of Ma... arrow_drop_down The University of Maine: DigitalCommons@UMaineArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0045683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Maine: DigitalCommons@UMaineArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0045683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Association for the Advancement of Science (AAAS) Authors: Daniel C. Laughlin; Brian J. McGill;pmid: 38963858
Tree species appear to prefer distinct climatic conditions, but the true nature of these preferences is obscured by species interactions and dispersal, which limit species’ ranges. We quantified realized and potential thermal niches of 188 North American tree species to conduct a continental-scale test of the architecture of niches. We found strong and consistent evidence that species occurring at thermal extremes occupy less than three-quarters of their potential niches, and species’ potential niches overlap at a mean annual temperature of ~12°C. These results clarify the breadth of thermal tolerances of temperate tree species and support the centrifugal organization of thermal niches. Accounting for the nonrealized components of ecological niches will advance theory and prediction in global change ecology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adm8671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adm8671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | TraChangeEC| TraChangeMartins, Inês S.; Schrodt, Franziska; Blowes, Shane A.; Bates, Amanda E.; Bjorkman, Anne D.; Brambilla, Viviana; Carvajal-Quintero, Juan; Chow, Cher F. Y.; Daskalova, Gergana N.; Edwards, Kyle; Eisenhauer, Nico; Field, Richard; Fontrodona-Eslava, Ada; Henn, Jonathan J.; van Klink, Roel; Madin, Joshua S.; Magurran, Anne E.; McWilliam, Michael; Moyes, Faye; Pugh, Brittany; Sagouis, Alban; Trindade-Santos, Isaac; McGill, Brian J.; Chase, Jonathan M.; Dornelas, Maria;pmid: 37676959
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2009 United StatesPublisher:Wiley Allen H. Hurlbert; Brian J. Enquist; Brian J. Enquist; Brian J. Enquist; Brian A. Maurer; Rampal S. Etienne; Rampal S. Etienne; Brian J. McGill; Fangliang He; Jessica L. Green; Jessica L. Green; Hélène Morlon; David Storch; David Storch; Annette Ostling; Anne E. Magurran; Han Olff; Ethan P. White; Tommaso Zillio; David Alonso;AbstractThe species abundance distribution (SAD) is one of the few universal patterns in ecology. Research on this fundamental distribution has primarily focused on the study of numerical counts, irrespective of the traits of individuals. Here we show that considering a set of Generalized Species Abundance Distributions (GSADs) encompassing several abundance measures, such as numerical abundance, biomass and resource use, can provide novel insights into the structure of ecological communities and the forces that organize them. We use a taxonomically diverse combination of macroecological data sets to investigate the similarities and differences between GSADs. We then use probability theory to explore, under parsimonious assumptions, theoretical linkages among them. Our study suggests that examining different GSADs simultaneously in natural systems may help with assessing determinants of community structure. Broadening SADs to encompass multiple abundance measures opens novel perspectives in biodiversity research and warrants future empirical and theoretical developments.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2009License: PDMData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2009.01318.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2009License: PDMData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2009.01318.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu