- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009Embargo end date: 01 Jan 2009 Switzerland, Germany, GermanyPublisher:Wiley Funded by:SNSF | Effects of diversity in p...SNSF| Effects of diversity in plant communities assembled from late- successional, early-successional or artificial species poolMarquard, E.; Weigelt, A.; Temperton, V. M.; Roscher, C.; Schumacher, J.; Buchmann, N.; Fischer, M.; Schulze, E.-D.; Weisser, W.W.; Schmidt, B.;pmid: 20120799
Plant diversity has been shown to increase community biomass in experimental communities, but the mechanisms resulting in such positive biodiversity effects have remained largely unknown. We used a large‐scale six‐year biodiversity experiment near Jena, Germany, to examine how aboveground community biomass in grasslands is affected by different components of plant diversity and thereby infer the mechanisms that may underlie positive biodiversity effects. As components of diversity we defined the number of species (1–16), number of functional groups (1–4), presence of functional groups (legumes, tall herbs, small herbs, and grasses) and proportional abundance of functional groups. Using linear models, replacement series on the level of functional groups, and additive partitioning on the level of species, we explored whether the observed biodiversity effects originated from disproportionate effects of single functional groups or species or from positive interactions between them.Aboveground community biomass was positively related to the number of species measured across functional groups as well as to the number of functional groups measured across different levels of species richness. Furthermore, increasing the number of species within functional groups increased aboveground community biomass, indicating that species within functional groups were not redundant with respect to biomass production. A positive relationship between the number of functional groups and aboveground community biomass within a particular level of species richness suggested that complementarity was larger between species belonging to different rather than to the same functional groups. The presence of legumes or tall herbs had a strong positive impact on aboveground community biomass whereas the presence of small herbs or grasses had on average no significant effect. Two‐ and three‐way interactions between functional group presences were weak, suggesting that their main effects were largely additive. Replacement series analyses on the level of functional groups revealed strong transgressive overyielding and relative yields >1, indicating facilitation. On the species level, we found strong complementarity effects that increased over time while selection effects due to disproportionate contributions of particular species decreased over time. We conclude that transgressive overyielding between functional groups and species richness effects within functional groups caused the positive biodiversity effects on aboveground community biomass in our experiment.
Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2009 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-0069.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 322 citations 322 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2009 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-0069.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 02 Sep 2024 Germany, Germany, France, France, Germany, Germany, NetherlandsPublisher:Springer Science and Business Media LLC Markus Fischer; Yvonne Oelmann; Wolfgang Wilcke; Nico Eisenhauer; Alexandra Weigelt; Thomas Schröder-Georgi; Teja Tscharntke; Fons van der Plas; Michael Scherer-Lorenzen; Christoph Scherber; Gerd Gleixner; Wolfgang W. Weisser; Hans de Kroon; Sophia Leimer; Nina Buchmann; Liesje Mommer; Adriana Alzate; Christian Wirth; Christian Wirth; Bernhard Schmid; Bernhard Schmid; Christiane Roscher; Kathryn E. Barry; Christof Engels; Romain L. Barnard; Anke Hildebrandt; Anke Hildebrandt; Winfried Voigt; Eva Koller-France; Vicky M. Temperton; Pascal A. Niklaus; E.-D. Schulze; Stefan Scheu; Sebastian T. Meyer; Anne Ebeling; Alexandru Milcu; Alexandru Milcu;Earth is home to over 350,000 vascular plant species that differ in their traits in innumerable ways. A key challenge is to predict how natural or anthropogenically driven changes in the identity, abundance and diversity of co-occurring plant species drive important ecosystem-level properties such as biomass production or carbon storage. Here, we analyse the extent to which 42 different ecosystem properties can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented number of traits analysed, the average percentage of variation in ecosystem properties jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most other studies linking ecosystem properties to plant traits analysed no more than six traits and, when including only six traits in our analysis, the average percentage of variation explained in across-year levels of ecosystem properties dropped to 4.8%. Furthermore, we found on average only 12.2% overlap in significant predictors among ecosystem properties, indicating that a small set of key traits able to explain multiple ecosystem properties does not exist. Our results therefore suggest that there are specific limits to the extent to which traits per se can predict the long-term functional consequences of biodiversity change, so that data on additional drivers, such as interacting abiotic factors, may be required to improve predictions of ecosystem property levels.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2020Data sources: HAL - Université de Bourgogne (HAL-uB)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-01316-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 143 citations 143 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2020Data sources: HAL - Université de Bourgogne (HAL-uB)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-01316-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 03 Mar 2025 Netherlands, Germany, SwitzerlandPublisher:Wiley Funded by:DFG | Exploring mechanisms unde..., DFGDFG| Exploring mechanisms underlying the relationship between biodiversity and ecosystem functioning (Jena Experiment) ,DFGOksana Y. Buzhdygan; Britta Tietjen; Jana S. Petermann; Nico Eisenhauer; Jes Hines; Bernhard Schmid; Selina Baldauf; Anne Ebeling; Christoph Scherber; Nina Buchmann; Stuart R. Borrett; Hans de Kroon; Wolfgang Weisser; Sebastian T. Meyer;AbstractThe strength of biodiversity–ecosystem functioning (BEF) relationships varies within and across studies, depending on the investigated ecosystem function and diversity facet (e.g., species richness or functional composition), limiting our ability to translate BEF results into recommendations for management and conservation. The variability in BEF relationships is particularly high when considering complex multitrophic communities and can be explained by food web contexts. Here we examine how different plant diversity facets affect biomass stocks and energy flows of each trophic group depending on their position in the trophic network. We used coupled aboveground–belowground multitrophic networks of energy dynamics, assembled across the experimental gradients of grassland plant species richness, functional diversity, and presence of plant functional groups. We compared the strengths of these diversity effects between trophic groups, trophic levels, aboveground versus belowground subnetworks, and types of ecosystem functions. Plant species richness, functional trait diversity, and the presence of legumes and grasses were influential drivers of ecosystem energetics. The effects of plant species richness across the food web often operated through mechanisms of plant functional‐trait diversity. The effects of plant species richness attenuated across trophic levels. Legume presence strengthened the top‐down control (predation) of primary consumers. We found an overall mismatch in the strength of diversity effects on flows versus stocks. Some trophic groups showed even contrasting direction in responses of their stocks and flows to plant diversity. This indicates that plant diversity constrains consumer functioning by means other than only altered consumer biomass. Responses of flows and stocks to plant diversity differed between trophic groups, and aboveground versus belowground parts. Individual stocks and energy flows were responsive to different biodiversity facets, highlighting the importance of the explicit consideration of individual functions and diversity facets for a comprehensive multitrophic understanding. For example, legume presence increased aboveground processes but reduced plant carbon uptake and belowground plant production. Plant communities containing legumes lost more biomass to herbivores, had faster decomposition, and channeled less energy to soil detritus. An important implication of these results is that targeted grassland management would profit from focusing on specific plant diversity facets depending on the ecosystem function or service of interest.
Ecological Monograph... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2025License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.70004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2025License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.70004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jan 2021 Finland, Finland, Finland, Norway, Finland, Germany, SwitzerlandPublisher:Wiley Funded by:RCN | Scenarios for biodiversit..., DFGRCN| Scenarios for biodiversity and ecosystem services acknowledging health BiodivERsA_BioEssHealth ,DFGBurner, Ryan C.; Stephan, Jörg G.; Drag, Lukas; Birkemoe, Tone; Muller, Jörg; Snäll, Tord; Ovaskainen, Otso; Potterf, Mária; Siitonen, Juha; Skarpaas, Olav; Doerfler, Inken; Gossner, Martin M.; Schall, Peter; Weisser, Wolfgang W.; Sverdrup‐Thygeson; Anne;handle: 10852/93199 , 10138/336866 , 11250/2984149
AbstractAimThe aim of this study was to investigate the role of traits in beetle community assembly and test for consistency in these effects among several bioclimatic regions. We asked (1) whether traits predicted species’ responses to environmental gradients (i.e. their niches), (2) whether these same traits could predict co‐occurrence patterns and (3) how consistent were niches and the role of traits among study regions.LocationBoreal forests in Norway and Finland, temperate forests in Germany.TaxonWood‐living (saproxylic) beetles.MethodsWe compiled capture records of 468 wood‐living beetle species from the three regions, along with nine morphological and ecological species traits. Eight climatic and forest covariates were also collected. We used Bayesian hierarchical joint species distribution models to estimate the influence of traits and phylogeny on species’ niches. We also tested for correlations between species associations and trait similarity. Finally, we compared species niches and the effects of traits among study regions.ResultsTraits explained some of the variability in species’ niches, but their effects differed among study regions. However, substantial phylogenetic signal in species niches implies that unmeasured but phylogenetically structured traits have a stronger effect. Degree of trait similarity was correlated with species associations but depended idiosyncratically on the trait and region. Species niches were much more consistent—widespread taxa often responded similarly to an environmental gradient in each region.Main conclusionsThe inconsistent effects of traits among regions limit their current use in understanding beetle community assembly. Phylogenetic signal in niches, however, implies that better predictive traits can eventually be identified. Consistency of species niches among regions means niches may remain relatively stable under future climate and land use changes; this lends credibility to predictive distribution models based on future climate projections but may imply that species’ scope for short‐term adaptation is limited.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10852/93199Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.14272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10852/93199Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.14272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 SwitzerlandPublisher:Springer Science and Business Media LLC Roscher, C; Schumacher, J; Weisser, W W; Schmid, B; Schulze, E D;pmid: 17851699
Several studies have shown that the contribution of individual species to the positive relationship between species richness and community biomass production cannot be easily predicted from species monocultures. Here, we used a biodiversity experiment with a pool of nine potentially dominant grassland species to relate the species richness-productivity relationship to responses in density, size and aboveground allocation patterns of individual species. Aboveground community biomass increased strongly with the transition from monocultures to two-species mixtures but only slightly with the transition from two- to nine-species mixtures. Tripartite partitioning showed that the strong increase shown by the former was due to trait-independent complementarity effects, while the slight increase shown by the latter was due to dominance effects. Trait-dependent complementarity effects depended on species composition. Relative yield total (RYT) was greater than 1 (RYT>1) in mixtures but did not increase with species richness, which is consistent with the constant complementarity effect. The relative yield (RY) of only one species, Arrhenatherum elatius, continually increased with species richness, while those of the other species studied decreased with species richness or varied among different species compositions within richness levels. High observed/expected RYs (RYo/RYe>1) of individual species were mainly due to increased module densities, whereas low observed/expected RYs (RYo/RYe<1) were due to more pronounced decreases in module density (species with stoloniferous or creeping growth) or module size (species with clearly-defined plant individuals). The trade-off between module density and size, typical for plant populations under the law of constant final yield, was compensated among species. The positive trait-independent complementarity effect could be explained by an increase in community module density, which reached a maximum at low species richness. In contrast, the increasing dominance effect was attributable to the species-specific ability, in particular that of A. elatius, to increase module size, while intrinsic growth limitations led to a suppression of the remaining species in many mixtures.
Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2007 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-007-0846-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2007 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-007-0846-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Embargo end date: 01 Jan 2013 SwitzerlandPublisher:Public Library of Science (PLoS) Funded by:SNSF | Mechanisms underlying pla..., DFG | Exploring mechanisms unde..., SNSF | Effects of diversity in p...SNSF| Mechanisms underlying plant community productivity, stability and assembly (D-A-CH/LAE) ,DFG| Exploring mechanisms underlying the relationship between biodiversity and ecosystem functioning (Jena Experiment) ,SNSF| Effects of diversity in plant communities assembled from late- successional, early-successional or artificial species poolMarquard Elisabeth; Schmid Bernhard; Roscher Christiane; De Luca Enrica; Nadrowski Karin; Weisser Wolfgang W.; Weigelt Alexandra;Numerous studies have reported positive effects of species richness on plant community productivity. Such biodiversity effects are usually quantified by comparing the performance of plant mixtures with reference monocultures. However, several mechanisms, such as the lack of resource complementarity and facilitation or the accumulation of detrimental agents, suggest that monocultures are more likely than mixtures to deteriorate over time. Increasing biodiversity effects over time could therefore result from declining monocultures instead of reflecting increases in the functioning of mixtures. Commonly, the latter is assumed when positive trends in biodiversity effects occur. Here, we analysed the performance of 60 grassland species growing in monocultures and mixtures over 9 years in a biodiversity experiment to clarify whether their temporal biomass dynamics differed and whether a potential decline of monocultures contributed significantly to the positive net biodiversity effect observed. Surprisingly, individual species' populations produced, on average, significantly more biomass per unit area when growing in monoculture than when growing in mixture. Over time, productivity of species decreased at a rate that was, on average, slightly more negative in monocultures than in mixtures. The mean net biodiversity effect across all mixtures was continuously positive and ranged between 64-217 g per m(2). Short-term increases in the mean net biodiversity effect were only partly due to deteriorating monocultures and were strongly affected by particular species gaining dominance in mixtures in the respective years. We conclude that our species performed, on average, comparably in monocultures and mixtures; monoculture populations being slightly more productive than mixture populations but this trend decreased over time. This suggested that negative feedbacks had not yet affected monocultures strongly but could potentially become more evident in the future. Positive biodiversity effects on aboveground productivity were heavily driven by a small, but changing, set of species that behaved differently from the average species.
PLoS ONE arrow_drop_down Zurich Open Repository and ArchiveArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Zurich Open Repository and ArchiveArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:DFG, RCN | Scenarios for biodiversit...DFG ,RCN| Scenarios for biodiversity and ecosystem services acknowledging health BiodivERsA_BioEssHealthBurner, Ryan C.; Drag, Lukas; Stephan, Jörg G.; Birkemoe, Tone; Wetherbee, Ross; Muller, Jörg; Siitonen, Juha; Snäll, Tord; Skarpaas, Olav; Potterf, Mária; Doerfler, Inken; Gossner, Martin M.; Schall, Peter; Weisser, Wolfgang W.; Sverdrup-Thygeson, Anne;From article abstract: https://doi.org/10.1016/j.biocon.2022.109491 ABSTRACT Biodiverse communities have been shown to sustain high levels of multifunctionality and thus a loss of species likely negatively impacts ecosystem functions. For most taxa, however, the roles of individual species are poorly known. Rare species, often the most likely to go extinct, may have unique traits leading to unique functional roles. Alternatively, rare species may be functionally redundant, such that their loss would not disrupt ecosystem functions. We quantified the functional role of rare species by using capture records of wood-living (saproxylic) beetle species, combined with recent databases of their morphological and ecological traits, from three regions in central and northern Europe. Using a rarity index based on species��� local abundance, geographic range, and habitat breadth, we used local and regional species removal simulations to examine the contributions of both the rarest and the most common beetle species to three measures of community functional structure: functional richness, functional specialization, and functional originality. In both regional species pools and local communities, all three of these measures declined more rapidly when rare species were removed than under common (or random) species removal scenarios. These consistent patterns across scales and among several forest types give evidence that rare species provide unique functional contributions, and that their loss may disproportionately impact ecosystem functions. This implies that conservation measures targeting rare and endangered species, such as preserving intact forests with dead wood and mature trees, can provide broader ecosystem-level benefits. Experimental research linking functional structure to ecosystem processes should be prioritized to increase our understanding of the functional consequences of species loss and to develop more effective conservation strategies. DATASET DESCRIPTION This dataset includes a) beetle capture information and b) beetle trait information from three countries: 1) Norway, 2) Finland, and 3) Germany. FILES readme.txt -- this has the information from this description section Norway_traits.csv, Finland_traits.csv, Germany_traits.csv -- these are the trait files, including all species Norway_sites.species.csv, Finland_sites.species.csv, Germany_sites.species.csv -- this has species (rows) by sites (columns); values are the number of beetles caught (for number of traps, dates, and other site covariates, see related dataset: https://doi.org/10.5061/dryad.tmpg4f50b and manuscript: https://doi.org/10.1111/jbi.14272). Species names follow GBIF taxonomic backbone. Traits_METADATA.csv -- this has information on all the fields in the trait data ACKNOWLEDGEMENTS This research was funded through the 2017-2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, for "BioESSHealth: Scenarios for biodiversity and ecosystem services acknowledging health", and with the funding organizations NFR (grant no. 295621), Formas (grant no. 2018-2435), and DLR. The German data collection was partly funded by the German Science Foundation DFG Priority Program SPP1374 "Infrastructure-Biodiversity-Exploratories" (DFG-Az: AM 149/16-3; (Regions Swabian Alb, Hainich-D��n, and Schorfheide-Chorin in Germany), project Arthropods (WE3081/21), the Bayerisches Staatsministerium f��r Ern��hrung, Landwirtschaft und Forsten, grant L55 (Region Steigerwald in Germany), and the Deutsche Bundesstiftung Umwelt (Bavarian Forest). Thanks also to Sindre Ligaard for identifying the beetle species in Norway, to Petri Martikainen and Matti Koivula for contributing to data collection and identifying beetles in Finland, and to numerous field assistants who set and maintained traps. {"references": ["https://doi.org/10.1111/cobi.12427", "https://doi.org/10.1111/1365-2656.13512"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5950609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 15visibility views 15 download downloads 27 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5950609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009Embargo end date: 01 Jan 2009 SwitzerlandPublisher:Wiley Christof Engels; Wolfgang W. Weisser; Holger Bessler; Bernhard Schmid; Nina Buchmann; Ernst Detlef Schulze; Christiane Roscher; Vicky M. Temperton; Vicky M. Temperton;pmid: 19569367
We investigated effects of plant species richness in experimental grassland plots on annual above‐ and belowground biomass production estimated from repeated harvests and ingrowth cores, respectively. Aboveground and total biomass production increased with increasing plant species richness while belowground production remained constant. Root to shoot biomass production ratios (R/S) in mixtures were lower than expected from monoculture performance of the species present in the mixtures, showing that interactions among species led to reduced biomass partitioning to belowground organs. This change in partitioning to belowground organs was not confined to mixtures with legumes, but also measured in mixtures without legumes, and correlated with aboveground overyielding in mixtures. It is suggested that species‐rich communities invest less in belowground biomass than do monocultures to extract soil resources, thus leading to increased investment into aboveground organs and overyielding.
Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2009 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/08-0867.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 114 citations 114 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2009 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/08-0867.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:DFG, DFG | German Centre for Integra..., DFG | Exploring mechanisms unde...DFG ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,DFG| Exploring mechanisms underlying the relationship between biodiversity and ecosystem functioning (Jena Experiment)Nico Eisenhauer; Nico Eisenhauer; Marcel Ciobanu; Wolfgang W. Weisser; Alexandra J. Wright; Simone Cesarz; Anja Vogel; Anja Vogel; Anne Ebeling;pmid: 28608023
The magnitude and frequency of extreme weather events are predicted to increase in the future due to ongoing climate change. In particular, floods and droughts resulting from climate change are thought to alter the ecosystem functions and stability. However, knowledge of the effects of these weather events on soil fauna is scarce, although they are key towards functioning of terrestrial ecosystems. Plant species richness has been shown to affect the stability of ecosystem functions and food webs. Here, we used the occurrence of a natural flood in a biodiversity grassland experiment that was followed by a simulated summer drought experiment, to investigate the interactive effects of plant species richness, a natural flood, and a subsequent summer drought on nematode communities. Three and five months after the natural flooding, effects of flooding severity were still detectable in the belowground system. We found that flooding severity decreased soil nematode food-web structure (loss of K-strategists) and the abundance of plant feeding nematodes. However, high plant species richness maintained higher diversity and abundance of higher trophic levels compared to monocultures throughout the flood. The subsequent summer drought seemed to be of lower importance but reversed negative flooding effects in some cases. This probably occurred because the studied grassland system is well adapted to drought, or because drought conditions alleviated the negative impact of long-term soil waterlogging. Using soil nematodes as indicator taxa, this study suggests that high plant species richness can maintain soil food web complexity after consecutive environmental perturbations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-017-3893-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-017-3893-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, Turkey, GermanyPublisher:Springer Science and Business Media LLC Thomas Nauss; Wolfgang W. Weisser; Daniel Prati; Martin M. Gossner; Nadja K. Simons; Nadja K. Simons; Christian Ammer; Caterina Penone; Jan Christian Habel; Jan Christian Habel; Ernst Detlef Schulze; Jürgen Bauhus; Jörg Müller; Didem Ambarlı; Didem Ambarlı; Karl Eduard Linsenmair; Sebastian Seibold; Juliane Vogt; Peter Schall; Markus Fischer; Nico Blüthgen; Stephan Wöllauer;pmid: 31666721
Recent reports of local extinctions of arthropod species1, and of massive declines in arthropod biomass2, point to land-use intensification as a major driver of decreasing biodiversity. However, to our knowledge, there are no multisite time series of arthropod occurrences across gradients of land-use intensity with which to confirm causal relationships. Moreover, it remains unclear which land-use types and arthropod groups are affected, and whether the observed declines in biomass and diversity are linked to one another. Here we analyse data from more than 1 million individual arthropods (about 2,700 species), from standardized inventories taken between 2008 and 2017 at 150 grassland and 140 forest sites in 3 regions of Germany. Overall gamma diversity in grasslands and forests decreased over time, indicating loss of species across sites and regions. In annually sampled grasslands, biomass, abundance and number of species declined by 67%, 78% and 34%, respectively. The decline was consistent across trophic levels and mainly affected rare species; its magnitude was independent of local land-use intensity. However, sites embedded in landscapes with a higher cover of agricultural land showed a stronger temporal decline. In 30 forest sites with annual inventories, biomass and species number-but not abundance-decreased by 41% and 36%, respectively. This was supported by analyses of all forest sites sampled in three-year intervals. The decline affected rare and abundant species, and trends differed across trophic levels. Our results show that there are widespread declines in arthropod biomass, abundance and the number of species across trophic levels. Arthropod declines in forests demonstrate that loss is not restricted to open habitats. Our results suggest that major drivers of arthropod decline act at larger spatial scales, and are (at least for grasslands) associated with agriculture at the landscape level. This implies that policies need to address the landscape scale to mitigate the negative effects of land-use practices.
Nature arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Duzce Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Duzce Üniversitesi Akademik Arşiv Sistemiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1684-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 888 citations 888 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Duzce Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Duzce Üniversitesi Akademik Arşiv Sistemiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1684-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009Embargo end date: 01 Jan 2009 Switzerland, Germany, GermanyPublisher:Wiley Funded by:SNSF | Effects of diversity in p...SNSF| Effects of diversity in plant communities assembled from late- successional, early-successional or artificial species poolMarquard, E.; Weigelt, A.; Temperton, V. M.; Roscher, C.; Schumacher, J.; Buchmann, N.; Fischer, M.; Schulze, E.-D.; Weisser, W.W.; Schmidt, B.;pmid: 20120799
Plant diversity has been shown to increase community biomass in experimental communities, but the mechanisms resulting in such positive biodiversity effects have remained largely unknown. We used a large‐scale six‐year biodiversity experiment near Jena, Germany, to examine how aboveground community biomass in grasslands is affected by different components of plant diversity and thereby infer the mechanisms that may underlie positive biodiversity effects. As components of diversity we defined the number of species (1–16), number of functional groups (1–4), presence of functional groups (legumes, tall herbs, small herbs, and grasses) and proportional abundance of functional groups. Using linear models, replacement series on the level of functional groups, and additive partitioning on the level of species, we explored whether the observed biodiversity effects originated from disproportionate effects of single functional groups or species or from positive interactions between them.Aboveground community biomass was positively related to the number of species measured across functional groups as well as to the number of functional groups measured across different levels of species richness. Furthermore, increasing the number of species within functional groups increased aboveground community biomass, indicating that species within functional groups were not redundant with respect to biomass production. A positive relationship between the number of functional groups and aboveground community biomass within a particular level of species richness suggested that complementarity was larger between species belonging to different rather than to the same functional groups. The presence of legumes or tall herbs had a strong positive impact on aboveground community biomass whereas the presence of small herbs or grasses had on average no significant effect. Two‐ and three‐way interactions between functional group presences were weak, suggesting that their main effects were largely additive. Replacement series analyses on the level of functional groups revealed strong transgressive overyielding and relative yields >1, indicating facilitation. On the species level, we found strong complementarity effects that increased over time while selection effects due to disproportionate contributions of particular species decreased over time. We conclude that transgressive overyielding between functional groups and species richness effects within functional groups caused the positive biodiversity effects on aboveground community biomass in our experiment.
Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2009 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-0069.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 322 citations 322 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2009 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-0069.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 02 Sep 2024 Germany, Germany, France, France, Germany, Germany, NetherlandsPublisher:Springer Science and Business Media LLC Markus Fischer; Yvonne Oelmann; Wolfgang Wilcke; Nico Eisenhauer; Alexandra Weigelt; Thomas Schröder-Georgi; Teja Tscharntke; Fons van der Plas; Michael Scherer-Lorenzen; Christoph Scherber; Gerd Gleixner; Wolfgang W. Weisser; Hans de Kroon; Sophia Leimer; Nina Buchmann; Liesje Mommer; Adriana Alzate; Christian Wirth; Christian Wirth; Bernhard Schmid; Bernhard Schmid; Christiane Roscher; Kathryn E. Barry; Christof Engels; Romain L. Barnard; Anke Hildebrandt; Anke Hildebrandt; Winfried Voigt; Eva Koller-France; Vicky M. Temperton; Pascal A. Niklaus; E.-D. Schulze; Stefan Scheu; Sebastian T. Meyer; Anne Ebeling; Alexandru Milcu; Alexandru Milcu;Earth is home to over 350,000 vascular plant species that differ in their traits in innumerable ways. A key challenge is to predict how natural or anthropogenically driven changes in the identity, abundance and diversity of co-occurring plant species drive important ecosystem-level properties such as biomass production or carbon storage. Here, we analyse the extent to which 42 different ecosystem properties can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented number of traits analysed, the average percentage of variation in ecosystem properties jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most other studies linking ecosystem properties to plant traits analysed no more than six traits and, when including only six traits in our analysis, the average percentage of variation explained in across-year levels of ecosystem properties dropped to 4.8%. Furthermore, we found on average only 12.2% overlap in significant predictors among ecosystem properties, indicating that a small set of key traits able to explain multiple ecosystem properties does not exist. Our results therefore suggest that there are specific limits to the extent to which traits per se can predict the long-term functional consequences of biodiversity change, so that data on additional drivers, such as interacting abiotic factors, may be required to improve predictions of ecosystem property levels.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2020Data sources: HAL - Université de Bourgogne (HAL-uB)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-01316-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 143 citations 143 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2020Data sources: HAL - Université de Bourgogne (HAL-uB)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-01316-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 03 Mar 2025 Netherlands, Germany, SwitzerlandPublisher:Wiley Funded by:DFG | Exploring mechanisms unde..., DFGDFG| Exploring mechanisms underlying the relationship between biodiversity and ecosystem functioning (Jena Experiment) ,DFGOksana Y. Buzhdygan; Britta Tietjen; Jana S. Petermann; Nico Eisenhauer; Jes Hines; Bernhard Schmid; Selina Baldauf; Anne Ebeling; Christoph Scherber; Nina Buchmann; Stuart R. Borrett; Hans de Kroon; Wolfgang Weisser; Sebastian T. Meyer;AbstractThe strength of biodiversity–ecosystem functioning (BEF) relationships varies within and across studies, depending on the investigated ecosystem function and diversity facet (e.g., species richness or functional composition), limiting our ability to translate BEF results into recommendations for management and conservation. The variability in BEF relationships is particularly high when considering complex multitrophic communities and can be explained by food web contexts. Here we examine how different plant diversity facets affect biomass stocks and energy flows of each trophic group depending on their position in the trophic network. We used coupled aboveground–belowground multitrophic networks of energy dynamics, assembled across the experimental gradients of grassland plant species richness, functional diversity, and presence of plant functional groups. We compared the strengths of these diversity effects between trophic groups, trophic levels, aboveground versus belowground subnetworks, and types of ecosystem functions. Plant species richness, functional trait diversity, and the presence of legumes and grasses were influential drivers of ecosystem energetics. The effects of plant species richness across the food web often operated through mechanisms of plant functional‐trait diversity. The effects of plant species richness attenuated across trophic levels. Legume presence strengthened the top‐down control (predation) of primary consumers. We found an overall mismatch in the strength of diversity effects on flows versus stocks. Some trophic groups showed even contrasting direction in responses of their stocks and flows to plant diversity. This indicates that plant diversity constrains consumer functioning by means other than only altered consumer biomass. Responses of flows and stocks to plant diversity differed between trophic groups, and aboveground versus belowground parts. Individual stocks and energy flows were responsive to different biodiversity facets, highlighting the importance of the explicit consideration of individual functions and diversity facets for a comprehensive multitrophic understanding. For example, legume presence increased aboveground processes but reduced plant carbon uptake and belowground plant production. Plant communities containing legumes lost more biomass to herbivores, had faster decomposition, and channeled less energy to soil detritus. An important implication of these results is that targeted grassland management would profit from focusing on specific plant diversity facets depending on the ecosystem function or service of interest.
Ecological Monograph... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2025License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.70004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down Refubium - Repositorium der Freien Universität BerlinArticle . 2025License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.70004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jan 2021 Finland, Finland, Finland, Norway, Finland, Germany, SwitzerlandPublisher:Wiley Funded by:RCN | Scenarios for biodiversit..., DFGRCN| Scenarios for biodiversity and ecosystem services acknowledging health BiodivERsA_BioEssHealth ,DFGBurner, Ryan C.; Stephan, Jörg G.; Drag, Lukas; Birkemoe, Tone; Muller, Jörg; Snäll, Tord; Ovaskainen, Otso; Potterf, Mária; Siitonen, Juha; Skarpaas, Olav; Doerfler, Inken; Gossner, Martin M.; Schall, Peter; Weisser, Wolfgang W.; Sverdrup‐Thygeson; Anne;handle: 10852/93199 , 10138/336866 , 11250/2984149
AbstractAimThe aim of this study was to investigate the role of traits in beetle community assembly and test for consistency in these effects among several bioclimatic regions. We asked (1) whether traits predicted species’ responses to environmental gradients (i.e. their niches), (2) whether these same traits could predict co‐occurrence patterns and (3) how consistent were niches and the role of traits among study regions.LocationBoreal forests in Norway and Finland, temperate forests in Germany.TaxonWood‐living (saproxylic) beetles.MethodsWe compiled capture records of 468 wood‐living beetle species from the three regions, along with nine morphological and ecological species traits. Eight climatic and forest covariates were also collected. We used Bayesian hierarchical joint species distribution models to estimate the influence of traits and phylogeny on species’ niches. We also tested for correlations between species associations and trait similarity. Finally, we compared species niches and the effects of traits among study regions.ResultsTraits explained some of the variability in species’ niches, but their effects differed among study regions. However, substantial phylogenetic signal in species niches implies that unmeasured but phylogenetically structured traits have a stronger effect. Degree of trait similarity was correlated with species associations but depended idiosyncratically on the trait and region. Species niches were much more consistent—widespread taxa often responded similarly to an environmental gradient in each region.Main conclusionsThe inconsistent effects of traits among regions limit their current use in understanding beetle community assembly. Phylogenetic signal in niches, however, implies that better predictive traits can eventually be identified. Consistency of species niches among regions means niches may remain relatively stable under future climate and land use changes; this lends credibility to predictive distribution models based on future climate projections but may imply that species’ scope for short‐term adaptation is limited.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10852/93199Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.14272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10852/93199Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.14272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 SwitzerlandPublisher:Springer Science and Business Media LLC Roscher, C; Schumacher, J; Weisser, W W; Schmid, B; Schulze, E D;pmid: 17851699
Several studies have shown that the contribution of individual species to the positive relationship between species richness and community biomass production cannot be easily predicted from species monocultures. Here, we used a biodiversity experiment with a pool of nine potentially dominant grassland species to relate the species richness-productivity relationship to responses in density, size and aboveground allocation patterns of individual species. Aboveground community biomass increased strongly with the transition from monocultures to two-species mixtures but only slightly with the transition from two- to nine-species mixtures. Tripartite partitioning showed that the strong increase shown by the former was due to trait-independent complementarity effects, while the slight increase shown by the latter was due to dominance effects. Trait-dependent complementarity effects depended on species composition. Relative yield total (RYT) was greater than 1 (RYT>1) in mixtures but did not increase with species richness, which is consistent with the constant complementarity effect. The relative yield (RY) of only one species, Arrhenatherum elatius, continually increased with species richness, while those of the other species studied decreased with species richness or varied among different species compositions within richness levels. High observed/expected RYs (RYo/RYe>1) of individual species were mainly due to increased module densities, whereas low observed/expected RYs (RYo/RYe<1) were due to more pronounced decreases in module density (species with stoloniferous or creeping growth) or module size (species with clearly-defined plant individuals). The trade-off between module density and size, typical for plant populations under the law of constant final yield, was compensated among species. The positive trait-independent complementarity effect could be explained by an increase in community module density, which reached a maximum at low species richness. In contrast, the increasing dominance effect was attributable to the species-specific ability, in particular that of A. elatius, to increase module size, while intrinsic growth limitations led to a suppression of the remaining species in many mixtures.
Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2007 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-007-0846-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2007 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-007-0846-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Embargo end date: 01 Jan 2013 SwitzerlandPublisher:Public Library of Science (PLoS) Funded by:SNSF | Mechanisms underlying pla..., DFG | Exploring mechanisms unde..., SNSF | Effects of diversity in p...SNSF| Mechanisms underlying plant community productivity, stability and assembly (D-A-CH/LAE) ,DFG| Exploring mechanisms underlying the relationship between biodiversity and ecosystem functioning (Jena Experiment) ,SNSF| Effects of diversity in plant communities assembled from late- successional, early-successional or artificial species poolMarquard Elisabeth; Schmid Bernhard; Roscher Christiane; De Luca Enrica; Nadrowski Karin; Weisser Wolfgang W.; Weigelt Alexandra;Numerous studies have reported positive effects of species richness on plant community productivity. Such biodiversity effects are usually quantified by comparing the performance of plant mixtures with reference monocultures. However, several mechanisms, such as the lack of resource complementarity and facilitation or the accumulation of detrimental agents, suggest that monocultures are more likely than mixtures to deteriorate over time. Increasing biodiversity effects over time could therefore result from declining monocultures instead of reflecting increases in the functioning of mixtures. Commonly, the latter is assumed when positive trends in biodiversity effects occur. Here, we analysed the performance of 60 grassland species growing in monocultures and mixtures over 9 years in a biodiversity experiment to clarify whether their temporal biomass dynamics differed and whether a potential decline of monocultures contributed significantly to the positive net biodiversity effect observed. Surprisingly, individual species' populations produced, on average, significantly more biomass per unit area when growing in monoculture than when growing in mixture. Over time, productivity of species decreased at a rate that was, on average, slightly more negative in monocultures than in mixtures. The mean net biodiversity effect across all mixtures was continuously positive and ranged between 64-217 g per m(2). Short-term increases in the mean net biodiversity effect were only partly due to deteriorating monocultures and were strongly affected by particular species gaining dominance in mixtures in the respective years. We conclude that our species performed, on average, comparably in monocultures and mixtures; monoculture populations being slightly more productive than mixture populations but this trend decreased over time. This suggested that negative feedbacks had not yet affected monocultures strongly but could potentially become more evident in the future. Positive biodiversity effects on aboveground productivity were heavily driven by a small, but changing, set of species that behaved differently from the average species.
PLoS ONE arrow_drop_down Zurich Open Repository and ArchiveArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Zurich Open Repository and ArchiveArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:DFG, RCN | Scenarios for biodiversit...DFG ,RCN| Scenarios for biodiversity and ecosystem services acknowledging health BiodivERsA_BioEssHealthBurner, Ryan C.; Drag, Lukas; Stephan, Jörg G.; Birkemoe, Tone; Wetherbee, Ross; Muller, Jörg; Siitonen, Juha; Snäll, Tord; Skarpaas, Olav; Potterf, Mária; Doerfler, Inken; Gossner, Martin M.; Schall, Peter; Weisser, Wolfgang W.; Sverdrup-Thygeson, Anne;From article abstract: https://doi.org/10.1016/j.biocon.2022.109491 ABSTRACT Biodiverse communities have been shown to sustain high levels of multifunctionality and thus a loss of species likely negatively impacts ecosystem functions. For most taxa, however, the roles of individual species are poorly known. Rare species, often the most likely to go extinct, may have unique traits leading to unique functional roles. Alternatively, rare species may be functionally redundant, such that their loss would not disrupt ecosystem functions. We quantified the functional role of rare species by using capture records of wood-living (saproxylic) beetle species, combined with recent databases of their morphological and ecological traits, from three regions in central and northern Europe. Using a rarity index based on species��� local abundance, geographic range, and habitat breadth, we used local and regional species removal simulations to examine the contributions of both the rarest and the most common beetle species to three measures of community functional structure: functional richness, functional specialization, and functional originality. In both regional species pools and local communities, all three of these measures declined more rapidly when rare species were removed than under common (or random) species removal scenarios. These consistent patterns across scales and among several forest types give evidence that rare species provide unique functional contributions, and that their loss may disproportionately impact ecosystem functions. This implies that conservation measures targeting rare and endangered species, such as preserving intact forests with dead wood and mature trees, can provide broader ecosystem-level benefits. Experimental research linking functional structure to ecosystem processes should be prioritized to increase our understanding of the functional consequences of species loss and to develop more effective conservation strategies. DATASET DESCRIPTION This dataset includes a) beetle capture information and b) beetle trait information from three countries: 1) Norway, 2) Finland, and 3) Germany. FILES readme.txt -- this has the information from this description section Norway_traits.csv, Finland_traits.csv, Germany_traits.csv -- these are the trait files, including all species Norway_sites.species.csv, Finland_sites.species.csv, Germany_sites.species.csv -- this has species (rows) by sites (columns); values are the number of beetles caught (for number of traps, dates, and other site covariates, see related dataset: https://doi.org/10.5061/dryad.tmpg4f50b and manuscript: https://doi.org/10.1111/jbi.14272). Species names follow GBIF taxonomic backbone. Traits_METADATA.csv -- this has information on all the fields in the trait data ACKNOWLEDGEMENTS This research was funded through the 2017-2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, for "BioESSHealth: Scenarios for biodiversity and ecosystem services acknowledging health", and with the funding organizations NFR (grant no. 295621), Formas (grant no. 2018-2435), and DLR. The German data collection was partly funded by the German Science Foundation DFG Priority Program SPP1374 "Infrastructure-Biodiversity-Exploratories" (DFG-Az: AM 149/16-3; (Regions Swabian Alb, Hainich-D��n, and Schorfheide-Chorin in Germany), project Arthropods (WE3081/21), the Bayerisches Staatsministerium f��r Ern��hrung, Landwirtschaft und Forsten, grant L55 (Region Steigerwald in Germany), and the Deutsche Bundesstiftung Umwelt (Bavarian Forest). Thanks also to Sindre Ligaard for identifying the beetle species in Norway, to Petri Martikainen and Matti Koivula for contributing to data collection and identifying beetles in Finland, and to numerous field assistants who set and maintained traps. {"references": ["https://doi.org/10.1111/cobi.12427", "https://doi.org/10.1111/1365-2656.13512"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5950609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 15visibility views 15 download downloads 27 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5950609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009Embargo end date: 01 Jan 2009 SwitzerlandPublisher:Wiley Christof Engels; Wolfgang W. Weisser; Holger Bessler; Bernhard Schmid; Nina Buchmann; Ernst Detlef Schulze; Christiane Roscher; Vicky M. Temperton; Vicky M. Temperton;pmid: 19569367
We investigated effects of plant species richness in experimental grassland plots on annual above‐ and belowground biomass production estimated from repeated harvests and ingrowth cores, respectively. Aboveground and total biomass production increased with increasing plant species richness while belowground production remained constant. Root to shoot biomass production ratios (R/S) in mixtures were lower than expected from monoculture performance of the species present in the mixtures, showing that interactions among species led to reduced biomass partitioning to belowground organs. This change in partitioning to belowground organs was not confined to mixtures with legumes, but also measured in mixtures without legumes, and correlated with aboveground overyielding in mixtures. It is suggested that species‐rich communities invest less in belowground biomass than do monocultures to extract soil resources, thus leading to increased investment into aboveground organs and overyielding.
Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2009 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/08-0867.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 114 citations 114 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2009 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/08-0867.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:DFG, DFG | German Centre for Integra..., DFG | Exploring mechanisms unde...DFG ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,DFG| Exploring mechanisms underlying the relationship between biodiversity and ecosystem functioning (Jena Experiment)Nico Eisenhauer; Nico Eisenhauer; Marcel Ciobanu; Wolfgang W. Weisser; Alexandra J. Wright; Simone Cesarz; Anja Vogel; Anja Vogel; Anne Ebeling;pmid: 28608023
The magnitude and frequency of extreme weather events are predicted to increase in the future due to ongoing climate change. In particular, floods and droughts resulting from climate change are thought to alter the ecosystem functions and stability. However, knowledge of the effects of these weather events on soil fauna is scarce, although they are key towards functioning of terrestrial ecosystems. Plant species richness has been shown to affect the stability of ecosystem functions and food webs. Here, we used the occurrence of a natural flood in a biodiversity grassland experiment that was followed by a simulated summer drought experiment, to investigate the interactive effects of plant species richness, a natural flood, and a subsequent summer drought on nematode communities. Three and five months after the natural flooding, effects of flooding severity were still detectable in the belowground system. We found that flooding severity decreased soil nematode food-web structure (loss of K-strategists) and the abundance of plant feeding nematodes. However, high plant species richness maintained higher diversity and abundance of higher trophic levels compared to monocultures throughout the flood. The subsequent summer drought seemed to be of lower importance but reversed negative flooding effects in some cases. This probably occurred because the studied grassland system is well adapted to drought, or because drought conditions alleviated the negative impact of long-term soil waterlogging. Using soil nematodes as indicator taxa, this study suggests that high plant species richness can maintain soil food web complexity after consecutive environmental perturbations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-017-3893-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-017-3893-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, Turkey, GermanyPublisher:Springer Science and Business Media LLC Thomas Nauss; Wolfgang W. Weisser; Daniel Prati; Martin M. Gossner; Nadja K. Simons; Nadja K. Simons; Christian Ammer; Caterina Penone; Jan Christian Habel; Jan Christian Habel; Ernst Detlef Schulze; Jürgen Bauhus; Jörg Müller; Didem Ambarlı; Didem Ambarlı; Karl Eduard Linsenmair; Sebastian Seibold; Juliane Vogt; Peter Schall; Markus Fischer; Nico Blüthgen; Stephan Wöllauer;pmid: 31666721
Recent reports of local extinctions of arthropod species1, and of massive declines in arthropod biomass2, point to land-use intensification as a major driver of decreasing biodiversity. However, to our knowledge, there are no multisite time series of arthropod occurrences across gradients of land-use intensity with which to confirm causal relationships. Moreover, it remains unclear which land-use types and arthropod groups are affected, and whether the observed declines in biomass and diversity are linked to one another. Here we analyse data from more than 1 million individual arthropods (about 2,700 species), from standardized inventories taken between 2008 and 2017 at 150 grassland and 140 forest sites in 3 regions of Germany. Overall gamma diversity in grasslands and forests decreased over time, indicating loss of species across sites and regions. In annually sampled grasslands, biomass, abundance and number of species declined by 67%, 78% and 34%, respectively. The decline was consistent across trophic levels and mainly affected rare species; its magnitude was independent of local land-use intensity. However, sites embedded in landscapes with a higher cover of agricultural land showed a stronger temporal decline. In 30 forest sites with annual inventories, biomass and species number-but not abundance-decreased by 41% and 36%, respectively. This was supported by analyses of all forest sites sampled in three-year intervals. The decline affected rare and abundant species, and trends differed across trophic levels. Our results show that there are widespread declines in arthropod biomass, abundance and the number of species across trophic levels. Arthropod declines in forests demonstrate that loss is not restricted to open habitats. Our results suggest that major drivers of arthropod decline act at larger spatial scales, and are (at least for grasslands) associated with agriculture at the landscape level. This implies that policies need to address the landscape scale to mitigate the negative effects of land-use practices.
Nature arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Duzce Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Duzce Üniversitesi Akademik Arşiv Sistemiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1684-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 888 citations 888 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Duzce Üniversitesi Akademik Arşiv SistemiArticle . 2019Data sources: Duzce Üniversitesi Akademik Arşiv Sistemiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1684-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu