- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Qin Wang; Miguel Ortega-Vazquez; Aidan Tuohy; Erik Ela; Mobolaji Bello; Daniel Kirk-Davidoff; William B. Hobbs; Vijay Kumar;IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2025.3547561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2025.3547561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Qin Wang; Miguel Ortega-Vazquez; Aidan Tuohy; Erik Ela; Mobolaji Bello; Daniel Kirk-Davidoff; William B. Hobbs; Vijay Kumar;IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2025.3547561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2025.3547561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:AIP Publishing Authors: J. O. Allen; W. B. Hobbs;doi: 10.1063/5.0130265
PV system modeling is primarily done on hourly timescales and so cannot capture subhourly effects, including inverter saturation. Inverter saturation occurs when the potential dc power, Pdc, produced by the collectors is greater than the inverter capacity, and some of the PV power is lost or “clipped.” The inverter clips power rapidly, and calculations based on hour-averaged Pdc will overestimate ac power output for hours in which clipping occurs intermittently. Clipping is greater in systems with high ratios of collectors to inverter capacity, “dc:ac ratio.” We studied this modeling error using minute-scale Pdc measurements from a test site in Birmingham AL that had four different mounting configurations equipped with oversized inverters; i.e., 0.8 dc:ac ratio. PV output was calculated using minute- and hour-averaged Pdc and modeled inverters with dc:ac ratios up to 2.0. The modeling errors due to short term inverter saturation were approximately 2% of the annual output for 1.4 dc:ac ratios. We present the effect of mounting type, dc:ac ratio, season, and hour-of-day on these errors for the study site.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0130265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0130265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:AIP Publishing Authors: J. O. Allen; W. B. Hobbs;doi: 10.1063/5.0130265
PV system modeling is primarily done on hourly timescales and so cannot capture subhourly effects, including inverter saturation. Inverter saturation occurs when the potential dc power, Pdc, produced by the collectors is greater than the inverter capacity, and some of the PV power is lost or “clipped.” The inverter clips power rapidly, and calculations based on hour-averaged Pdc will overestimate ac power output for hours in which clipping occurs intermittently. Clipping is greater in systems with high ratios of collectors to inverter capacity, “dc:ac ratio.” We studied this modeling error using minute-scale Pdc measurements from a test site in Birmingham AL that had four different mounting configurations equipped with oversized inverters; i.e., 0.8 dc:ac ratio. PV output was calculated using minute- and hour-averaged Pdc and modeled inverters with dc:ac ratios up to 2.0. The modeling errors due to short term inverter saturation were approximately 2% of the annual output for 1.4 dc:ac ratios. We present the effect of mounting type, dc:ac ratio, season, and hour-of-day on these errors for the study site.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0130265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0130265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Qin Wang; Aidan Tuohy; Miguel Ortega-Vazquez; Mobolaji Bello; Erik Ela; Daniel Kirk-Davidoff; William B. Hobbs; David J. Ault; Russ Philbrick;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Qin Wang; Aidan Tuohy; Miguel Ortega-Vazquez; Mobolaji Bello; Erik Ela; Daniel Kirk-Davidoff; William B. Hobbs; David J. Ault; Russ Philbrick;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, Netherlands, Italy, NetherlandsPublisher:Wiley Marios Theristis; Nicholas Riedel‐Lyngskær; Joshua S. Stein; Lelia Deville; Leonardo Micheli; Anton Driesse; William B. Hobbs; Silvana Ovaitt; Rajiv Daxini; David Barrie; Mark Campanelli; Heather Hodges; Javier R. Ledesma; Ismael Lokhat; Brendan McCormick; Bin Meng; Bill Miller; Ricardo Motta; Emma Noirault; Megan Parker; Jesús Polo; Daniel Powell; Rodrigo Moretón; Matthew Prilliman; Steve Ransome; Martin Schneider; Branislav Schnierer; Bowen Tian; Frederick Warner; Robert Williams; Bruno Wittmer; Changrui Zhao;doi: 10.1002/pip.3729
handle: 11573/1685338
AbstractThe Photovoltaic (PV) Performance Modeling Collaborative (PVPMC) organized a blind PV performance modeling intercomparison to allow PV modelers to blindly test their models and modeling ability against real system data. Measured weather and irradiance data were provided along with detailed descriptions of PV systems from two locations (Albuquerque, New Mexico, USA, and Roskilde, Denmark). Participants were asked to simulate the plane‐of‐array irradiance, module temperature, and DC power output from six systems and submit their results to Sandia for processing. The results showed overall median mean bias (i.e., the average error per participant) of 0.6% in annual irradiation and −3.3% in annual energy yield. While most PV performance modeling results seem to exhibit higher precision and accuracy as compared to an earlier blind PV modeling study in 2010, human errors, modeling skills, and derates were found to still cause significant errors in the estimates.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, Netherlands, Italy, NetherlandsPublisher:Wiley Marios Theristis; Nicholas Riedel‐Lyngskær; Joshua S. Stein; Lelia Deville; Leonardo Micheli; Anton Driesse; William B. Hobbs; Silvana Ovaitt; Rajiv Daxini; David Barrie; Mark Campanelli; Heather Hodges; Javier R. Ledesma; Ismael Lokhat; Brendan McCormick; Bin Meng; Bill Miller; Ricardo Motta; Emma Noirault; Megan Parker; Jesús Polo; Daniel Powell; Rodrigo Moretón; Matthew Prilliman; Steve Ransome; Martin Schneider; Branislav Schnierer; Bowen Tian; Frederick Warner; Robert Williams; Bruno Wittmer; Changrui Zhao;doi: 10.1002/pip.3729
handle: 11573/1685338
AbstractThe Photovoltaic (PV) Performance Modeling Collaborative (PVPMC) organized a blind PV performance modeling intercomparison to allow PV modelers to blindly test their models and modeling ability against real system data. Measured weather and irradiance data were provided along with detailed descriptions of PV systems from two locations (Albuquerque, New Mexico, USA, and Roskilde, Denmark). Participants were asked to simulate the plane‐of‐array irradiance, module temperature, and DC power output from six systems and submit their results to Sandia for processing. The results showed overall median mean bias (i.e., the average error per participant) of 0.6% in annual irradiation and −3.3% in annual energy yield. While most PV performance modeling results seem to exhibit higher precision and accuracy as compared to an earlier blind PV modeling study in 2010, human errors, modeling skills, and derates were found to still cause significant errors in the estimates.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Qin Wang; William B. Hobbs; Aidan Tuohy; Mobolaji Bello; David J. Ault;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3126118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3126118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Qin Wang; William B. Hobbs; Aidan Tuohy; Mobolaji Bello; David J. Ault;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3126118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3126118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Cara Libby; Bijaya Paudyal; Xin Chen; William B. Hobbs; Daniel Fregosi; Anubhav Jain;This study compared module power loss for 36 modules that endured various accelerated aging test sequences before installation outdoors on a 10-kWp array in Birmingham, AL, USA for 1.72 to 2.72 years. Twelve modules endured standard IEC 61215 aging tests and 24 endured Qualification Plus (Qual Plus). Modules in each group were further split into two test sequences with different exposures. Electrical parameter variations were analyzed as a function of aging test and field exposure history. Fill factor loss was determined to be the cause of observed decreases in power output during accelerated aging tests, while decreases in both open circuit voltage and fill factor dominated the power loss during subsequent on-sun testing. Quantified cell crack features were extracted via computer vision tools from electroluminescence images and correlated with power loss. Results illustrate that standard aging tests led to negligible cracks, while Qual Plus test sequences yielded more severe cracks. While correlating results from qualification tests with in-field performance degradation parameters remains a challenge, this study provides new insights on specific environmental stressors and crack features that may play a role in power loss. Insights on accelerated aging protocols are discussed.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/34g2b4xfData sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3228104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/34g2b4xfData sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3228104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Cara Libby; Bijaya Paudyal; Xin Chen; William B. Hobbs; Daniel Fregosi; Anubhav Jain;This study compared module power loss for 36 modules that endured various accelerated aging test sequences before installation outdoors on a 10-kWp array in Birmingham, AL, USA for 1.72 to 2.72 years. Twelve modules endured standard IEC 61215 aging tests and 24 endured Qualification Plus (Qual Plus). Modules in each group were further split into two test sequences with different exposures. Electrical parameter variations were analyzed as a function of aging test and field exposure history. Fill factor loss was determined to be the cause of observed decreases in power output during accelerated aging tests, while decreases in both open circuit voltage and fill factor dominated the power loss during subsequent on-sun testing. Quantified cell crack features were extracted via computer vision tools from electroluminescence images and correlated with power loss. Results illustrate that standard aging tests led to negligible cracks, while Qual Plus test sequences yielded more severe cracks. While correlating results from qualification tests with in-field performance degradation parameters remains a challenge, this study provides new insights on specific environmental stressors and crack features that may play a role in power loss. Insights on accelerated aging protocols are discussed.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/34g2b4xfData sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3228104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/34g2b4xfData sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3228104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2023Publisher:IEEE Michael G. Deceglie; Timothy J Silverman; Ethan Young; William B. Hobbs; Cara Libby;IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.1109/pvsc48...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc48320.2023.10359606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.1109/pvsc48...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc48320.2023.10359606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2023Publisher:IEEE Michael G. Deceglie; Timothy J Silverman; Ethan Young; William B. Hobbs; Cara Libby;IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.1109/pvsc48...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc48320.2023.10359606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.1109/pvsc48...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc48320.2023.10359606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Nicholas DiOrio; Paul Denholm; William B. Hobbs;Abstract An open-source model was developed to optimize energy storage operation for photovoltaic- (PV-) plus-battery systems with AC-coupled and DC-coupled configurations. It includes the ability to use forecast energy prices to optimize battery charge and discharge on a rolling time horizon. The model allows for exploration of different configurations, including capital costs, inverter performance, dispatch flexibility, and capturing otherwise clipped energy for the DC-coupled system. The model can run 20 full years of hourly data in approximately two seconds, allowing comparison of a large number of configurations. We applied the model in a test case demonstrating reduced inverter clipping for DC-coupled systems and yielded slightly higher overall value than AC-coupled systems, with an approximately 2 percent increase in internal rate of return or benefit/cost ratio. Our results show that at current estimated prices for lithium-ion battery systems, large-scale PV-plus-battery plants are economically viable under the right conditions, with the configuration playing a role in system flexibility and performance. This model provides the ability for project developers, industry professionals, and researchers to use readily available software to quickly evaluate and design these systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Nicholas DiOrio; Paul Denholm; William B. Hobbs;Abstract An open-source model was developed to optimize energy storage operation for photovoltaic- (PV-) plus-battery systems with AC-coupled and DC-coupled configurations. It includes the ability to use forecast energy prices to optimize battery charge and discharge on a rolling time horizon. The model allows for exploration of different configurations, including capital costs, inverter performance, dispatch flexibility, and capturing otherwise clipped energy for the DC-coupled system. The model can run 20 full years of hourly data in approximately two seconds, allowing comparison of a large number of configurations. We applied the model in a test case demonstrating reduced inverter clipping for DC-coupled systems and yielded slightly higher overall value than AC-coupled systems, with an approximately 2 percent increase in internal rate of return or benefit/cost ratio. Our results show that at current estimated prices for lithium-ion battery systems, large-scale PV-plus-battery plants are economically viable under the right conditions, with the configuration playing a role in system flexibility and performance. This model provides the ability for project developers, industry professionals, and researchers to use readily available software to quickly evaluate and design these systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Daniel Fregosi; Nicholas Pilot; Michael Bolen; William B. Hobbs;<p>As renewable energy penetration on the grid increases, requirements are being placed on PV owners and operators to limit power ramp rates. PV power ramping is an issue for grid stability since generation-load balance must be continually met, and when a large PV resource significantly increases or decreases, another resource must compensate to ensure matching. Traditional dispatchable resources have a limited ability to respond quickly. Therefore, to aid in grid stability, ramp rate limitations have been imposed on PV plants. This work addresses the question of how much fast-responding storage is needed to mitigate high ramp rates of PV plants, and how much benefit is there from short-term power forecasting in terms of reducing the storage requirement. The results provide a baseline estimate for system planners and designers. Furthermore, the storage controller design and optimization are given, along with the open-source code, such that others can tailor the simulation to their specific plant and weather profile. results from studying a 100 MW PV plant power production profile show a reduction in ramp-rate violations from 10% of yearly intervals to below 1% with 12 minutes of storage. With forecasting, the same level of smoothing is achieved with a 5-minute rated storage. A sensitivity analysis shows the impacts of varying constraints, such as storage power rating, PV system size for geographic smoothing, forecast window length, and the ramp-rate limit magnitude.</p>
IEEE Journal of Phot... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3231713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3231713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Daniel Fregosi; Nicholas Pilot; Michael Bolen; William B. Hobbs;<p>As renewable energy penetration on the grid increases, requirements are being placed on PV owners and operators to limit power ramp rates. PV power ramping is an issue for grid stability since generation-load balance must be continually met, and when a large PV resource significantly increases or decreases, another resource must compensate to ensure matching. Traditional dispatchable resources have a limited ability to respond quickly. Therefore, to aid in grid stability, ramp rate limitations have been imposed on PV plants. This work addresses the question of how much fast-responding storage is needed to mitigate high ramp rates of PV plants, and how much benefit is there from short-term power forecasting in terms of reducing the storage requirement. The results provide a baseline estimate for system planners and designers. Furthermore, the storage controller design and optimization are given, along with the open-source code, such that others can tailor the simulation to their specific plant and weather profile. results from studying a 100 MW PV plant power production profile show a reduction in ramp-rate violations from 10% of yearly intervals to below 1% with 12 minutes of storage. With forecasting, the same level of smoothing is achieved with a 5-minute rated storage. A sensitivity analysis shows the impacts of varying constraints, such as storage power rating, PV system size for geographic smoothing, forecast window length, and the ramp-rate limit magnitude.</p>
IEEE Journal of Phot... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3231713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3231713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Joseph Ranalli; William B. Hobbs;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3366666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3366666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Joseph Ranalli; William B. Hobbs;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3366666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3366666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Qin Wang; Miguel Ortega-Vazquez; Aidan Tuohy; Erik Ela; Mobolaji Bello; Daniel Kirk-Davidoff; William B. Hobbs; Vijay Kumar;IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2025.3547561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2025.3547561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Qin Wang; Miguel Ortega-Vazquez; Aidan Tuohy; Erik Ela; Mobolaji Bello; Daniel Kirk-Davidoff; William B. Hobbs; Vijay Kumar;IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2025.3547561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2025.3547561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:AIP Publishing Authors: J. O. Allen; W. B. Hobbs;doi: 10.1063/5.0130265
PV system modeling is primarily done on hourly timescales and so cannot capture subhourly effects, including inverter saturation. Inverter saturation occurs when the potential dc power, Pdc, produced by the collectors is greater than the inverter capacity, and some of the PV power is lost or “clipped.” The inverter clips power rapidly, and calculations based on hour-averaged Pdc will overestimate ac power output for hours in which clipping occurs intermittently. Clipping is greater in systems with high ratios of collectors to inverter capacity, “dc:ac ratio.” We studied this modeling error using minute-scale Pdc measurements from a test site in Birmingham AL that had four different mounting configurations equipped with oversized inverters; i.e., 0.8 dc:ac ratio. PV output was calculated using minute- and hour-averaged Pdc and modeled inverters with dc:ac ratios up to 2.0. The modeling errors due to short term inverter saturation were approximately 2% of the annual output for 1.4 dc:ac ratios. We present the effect of mounting type, dc:ac ratio, season, and hour-of-day on these errors for the study site.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0130265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0130265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:AIP Publishing Authors: J. O. Allen; W. B. Hobbs;doi: 10.1063/5.0130265
PV system modeling is primarily done on hourly timescales and so cannot capture subhourly effects, including inverter saturation. Inverter saturation occurs when the potential dc power, Pdc, produced by the collectors is greater than the inverter capacity, and some of the PV power is lost or “clipped.” The inverter clips power rapidly, and calculations based on hour-averaged Pdc will overestimate ac power output for hours in which clipping occurs intermittently. Clipping is greater in systems with high ratios of collectors to inverter capacity, “dc:ac ratio.” We studied this modeling error using minute-scale Pdc measurements from a test site in Birmingham AL that had four different mounting configurations equipped with oversized inverters; i.e., 0.8 dc:ac ratio. PV output was calculated using minute- and hour-averaged Pdc and modeled inverters with dc:ac ratios up to 2.0. The modeling errors due to short term inverter saturation were approximately 2% of the annual output for 1.4 dc:ac ratios. We present the effect of mounting type, dc:ac ratio, season, and hour-of-day on these errors for the study site.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0130265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0130265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Qin Wang; Aidan Tuohy; Miguel Ortega-Vazquez; Mobolaji Bello; Erik Ela; Daniel Kirk-Davidoff; William B. Hobbs; David J. Ault; Russ Philbrick;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Qin Wang; Aidan Tuohy; Miguel Ortega-Vazquez; Mobolaji Bello; Erik Ela; Daniel Kirk-Davidoff; William B. Hobbs; David J. Ault; Russ Philbrick;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, Netherlands, Italy, NetherlandsPublisher:Wiley Marios Theristis; Nicholas Riedel‐Lyngskær; Joshua S. Stein; Lelia Deville; Leonardo Micheli; Anton Driesse; William B. Hobbs; Silvana Ovaitt; Rajiv Daxini; David Barrie; Mark Campanelli; Heather Hodges; Javier R. Ledesma; Ismael Lokhat; Brendan McCormick; Bin Meng; Bill Miller; Ricardo Motta; Emma Noirault; Megan Parker; Jesús Polo; Daniel Powell; Rodrigo Moretón; Matthew Prilliman; Steve Ransome; Martin Schneider; Branislav Schnierer; Bowen Tian; Frederick Warner; Robert Williams; Bruno Wittmer; Changrui Zhao;doi: 10.1002/pip.3729
handle: 11573/1685338
AbstractThe Photovoltaic (PV) Performance Modeling Collaborative (PVPMC) organized a blind PV performance modeling intercomparison to allow PV modelers to blindly test their models and modeling ability against real system data. Measured weather and irradiance data were provided along with detailed descriptions of PV systems from two locations (Albuquerque, New Mexico, USA, and Roskilde, Denmark). Participants were asked to simulate the plane‐of‐array irradiance, module temperature, and DC power output from six systems and submit their results to Sandia for processing. The results showed overall median mean bias (i.e., the average error per participant) of 0.6% in annual irradiation and −3.3% in annual energy yield. While most PV performance modeling results seem to exhibit higher precision and accuracy as compared to an earlier blind PV modeling study in 2010, human errors, modeling skills, and derates were found to still cause significant errors in the estimates.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, Netherlands, Italy, NetherlandsPublisher:Wiley Marios Theristis; Nicholas Riedel‐Lyngskær; Joshua S. Stein; Lelia Deville; Leonardo Micheli; Anton Driesse; William B. Hobbs; Silvana Ovaitt; Rajiv Daxini; David Barrie; Mark Campanelli; Heather Hodges; Javier R. Ledesma; Ismael Lokhat; Brendan McCormick; Bin Meng; Bill Miller; Ricardo Motta; Emma Noirault; Megan Parker; Jesús Polo; Daniel Powell; Rodrigo Moretón; Matthew Prilliman; Steve Ransome; Martin Schneider; Branislav Schnierer; Bowen Tian; Frederick Warner; Robert Williams; Bruno Wittmer; Changrui Zhao;doi: 10.1002/pip.3729
handle: 11573/1685338
AbstractThe Photovoltaic (PV) Performance Modeling Collaborative (PVPMC) organized a blind PV performance modeling intercomparison to allow PV modelers to blindly test their models and modeling ability against real system data. Measured weather and irradiance data were provided along with detailed descriptions of PV systems from two locations (Albuquerque, New Mexico, USA, and Roskilde, Denmark). Participants were asked to simulate the plane‐of‐array irradiance, module temperature, and DC power output from six systems and submit their results to Sandia for processing. The results showed overall median mean bias (i.e., the average error per participant) of 0.6% in annual irradiation and −3.3% in annual energy yield. While most PV performance modeling results seem to exhibit higher precision and accuracy as compared to an earlier blind PV modeling study in 2010, human errors, modeling skills, and derates were found to still cause significant errors in the estimates.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Qin Wang; William B. Hobbs; Aidan Tuohy; Mobolaji Bello; David J. Ault;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3126118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3126118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Qin Wang; William B. Hobbs; Aidan Tuohy; Mobolaji Bello; David J. Ault;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3126118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3126118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Cara Libby; Bijaya Paudyal; Xin Chen; William B. Hobbs; Daniel Fregosi; Anubhav Jain;This study compared module power loss for 36 modules that endured various accelerated aging test sequences before installation outdoors on a 10-kWp array in Birmingham, AL, USA for 1.72 to 2.72 years. Twelve modules endured standard IEC 61215 aging tests and 24 endured Qualification Plus (Qual Plus). Modules in each group were further split into two test sequences with different exposures. Electrical parameter variations were analyzed as a function of aging test and field exposure history. Fill factor loss was determined to be the cause of observed decreases in power output during accelerated aging tests, while decreases in both open circuit voltage and fill factor dominated the power loss during subsequent on-sun testing. Quantified cell crack features were extracted via computer vision tools from electroluminescence images and correlated with power loss. Results illustrate that standard aging tests led to negligible cracks, while Qual Plus test sequences yielded more severe cracks. While correlating results from qualification tests with in-field performance degradation parameters remains a challenge, this study provides new insights on specific environmental stressors and crack features that may play a role in power loss. Insights on accelerated aging protocols are discussed.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/34g2b4xfData sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3228104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/34g2b4xfData sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3228104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Cara Libby; Bijaya Paudyal; Xin Chen; William B. Hobbs; Daniel Fregosi; Anubhav Jain;This study compared module power loss for 36 modules that endured various accelerated aging test sequences before installation outdoors on a 10-kWp array in Birmingham, AL, USA for 1.72 to 2.72 years. Twelve modules endured standard IEC 61215 aging tests and 24 endured Qualification Plus (Qual Plus). Modules in each group were further split into two test sequences with different exposures. Electrical parameter variations were analyzed as a function of aging test and field exposure history. Fill factor loss was determined to be the cause of observed decreases in power output during accelerated aging tests, while decreases in both open circuit voltage and fill factor dominated the power loss during subsequent on-sun testing. Quantified cell crack features were extracted via computer vision tools from electroluminescence images and correlated with power loss. Results illustrate that standard aging tests led to negligible cracks, while Qual Plus test sequences yielded more severe cracks. While correlating results from qualification tests with in-field performance degradation parameters remains a challenge, this study provides new insights on specific environmental stressors and crack features that may play a role in power loss. Insights on accelerated aging protocols are discussed.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/34g2b4xfData sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3228104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/34g2b4xfData sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3228104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2023Publisher:IEEE Michael G. Deceglie; Timothy J Silverman; Ethan Young; William B. Hobbs; Cara Libby;IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.1109/pvsc48...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc48320.2023.10359606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.1109/pvsc48...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc48320.2023.10359606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2023Publisher:IEEE Michael G. Deceglie; Timothy J Silverman; Ethan Young; William B. Hobbs; Cara Libby;IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.1109/pvsc48...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc48320.2023.10359606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.1109/pvsc48...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc48320.2023.10359606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Nicholas DiOrio; Paul Denholm; William B. Hobbs;Abstract An open-source model was developed to optimize energy storage operation for photovoltaic- (PV-) plus-battery systems with AC-coupled and DC-coupled configurations. It includes the ability to use forecast energy prices to optimize battery charge and discharge on a rolling time horizon. The model allows for exploration of different configurations, including capital costs, inverter performance, dispatch flexibility, and capturing otherwise clipped energy for the DC-coupled system. The model can run 20 full years of hourly data in approximately two seconds, allowing comparison of a large number of configurations. We applied the model in a test case demonstrating reduced inverter clipping for DC-coupled systems and yielded slightly higher overall value than AC-coupled systems, with an approximately 2 percent increase in internal rate of return or benefit/cost ratio. Our results show that at current estimated prices for lithium-ion battery systems, large-scale PV-plus-battery plants are economically viable under the right conditions, with the configuration playing a role in system flexibility and performance. This model provides the ability for project developers, industry professionals, and researchers to use readily available software to quickly evaluate and design these systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Nicholas DiOrio; Paul Denholm; William B. Hobbs;Abstract An open-source model was developed to optimize energy storage operation for photovoltaic- (PV-) plus-battery systems with AC-coupled and DC-coupled configurations. It includes the ability to use forecast energy prices to optimize battery charge and discharge on a rolling time horizon. The model allows for exploration of different configurations, including capital costs, inverter performance, dispatch flexibility, and capturing otherwise clipped energy for the DC-coupled system. The model can run 20 full years of hourly data in approximately two seconds, allowing comparison of a large number of configurations. We applied the model in a test case demonstrating reduced inverter clipping for DC-coupled systems and yielded slightly higher overall value than AC-coupled systems, with an approximately 2 percent increase in internal rate of return or benefit/cost ratio. Our results show that at current estimated prices for lithium-ion battery systems, large-scale PV-plus-battery plants are economically viable under the right conditions, with the configuration playing a role in system flexibility and performance. This model provides the ability for project developers, industry professionals, and researchers to use readily available software to quickly evaluate and design these systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Daniel Fregosi; Nicholas Pilot; Michael Bolen; William B. Hobbs;<p>As renewable energy penetration on the grid increases, requirements are being placed on PV owners and operators to limit power ramp rates. PV power ramping is an issue for grid stability since generation-load balance must be continually met, and when a large PV resource significantly increases or decreases, another resource must compensate to ensure matching. Traditional dispatchable resources have a limited ability to respond quickly. Therefore, to aid in grid stability, ramp rate limitations have been imposed on PV plants. This work addresses the question of how much fast-responding storage is needed to mitigate high ramp rates of PV plants, and how much benefit is there from short-term power forecasting in terms of reducing the storage requirement. The results provide a baseline estimate for system planners and designers. Furthermore, the storage controller design and optimization are given, along with the open-source code, such that others can tailor the simulation to their specific plant and weather profile. results from studying a 100 MW PV plant power production profile show a reduction in ramp-rate violations from 10% of yearly intervals to below 1% with 12 minutes of storage. With forecasting, the same level of smoothing is achieved with a 5-minute rated storage. A sensitivity analysis shows the impacts of varying constraints, such as storage power rating, PV system size for geographic smoothing, forecast window length, and the ramp-rate limit magnitude.</p>
IEEE Journal of Phot... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3231713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3231713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Daniel Fregosi; Nicholas Pilot; Michael Bolen; William B. Hobbs;<p>As renewable energy penetration on the grid increases, requirements are being placed on PV owners and operators to limit power ramp rates. PV power ramping is an issue for grid stability since generation-load balance must be continually met, and when a large PV resource significantly increases or decreases, another resource must compensate to ensure matching. Traditional dispatchable resources have a limited ability to respond quickly. Therefore, to aid in grid stability, ramp rate limitations have been imposed on PV plants. This work addresses the question of how much fast-responding storage is needed to mitigate high ramp rates of PV plants, and how much benefit is there from short-term power forecasting in terms of reducing the storage requirement. The results provide a baseline estimate for system planners and designers. Furthermore, the storage controller design and optimization are given, along with the open-source code, such that others can tailor the simulation to their specific plant and weather profile. results from studying a 100 MW PV plant power production profile show a reduction in ramp-rate violations from 10% of yearly intervals to below 1% with 12 minutes of storage. With forecasting, the same level of smoothing is achieved with a 5-minute rated storage. A sensitivity analysis shows the impacts of varying constraints, such as storage power rating, PV system size for geographic smoothing, forecast window length, and the ramp-rate limit magnitude.</p>
IEEE Journal of Phot... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3231713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3231713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Joseph Ranalli; William B. Hobbs;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3366666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3366666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Joseph Ranalli; William B. Hobbs;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3366666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3366666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu