- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Germany, United States, United StatesPublisher:Springer Science and Business Media LLC Bauer, Nico; Mouratiadou, Ioanna; Luderer, Gunnar; Baumstark, Lavinia; Brecha, Robert J.; Edenhofer, Ottmar; Kriegler, Elmar;We analyze the dynamics of global fossil resource markets under different assumptions for the supply of fossil fuel resources, development pathways for energy demand, and climate policy settings. Resource markets, in particular the oil market, are characterized by a large discrepancy between costs of resource extraction and commodity prices on international markets. We explain this observation in terms of (a) the intertemporal scarcity rent, (b) regional price differentials arising from trade and transport costs, (c) heterogeneity and inertia in the extraction sector. These effects are captured by the REMIND model. We use the model to explore economic effects of changes in coal, oil and gas markets induced by climate-change mitigation policies. A large share of fossil fuel reserves and resources will be used in the absence of climate policy leading to atmospheric GHG concentrations well beyond a level of 550 ppm CO2-eq. This result holds independently of different assumptions about energy demand and fossil fuel availability. Achieving ambitious climate targets will drastically reduce fossil fuel consumption, in particular the consumption of coal. Conventional oil and gas as well as non-conventional oil reserves are still exhausted. We find the net present value of fossil fuel rent until 2100 at 30tril.US$ with a large share of oil and a small share of coal. This is reduced by 9 and 12tril.US$ to achieve climate stabilization at 550 and 450 ppm CO2-eq, respectively. This loss is, however, overcompensated by revenues from carbon pricing that are 21 and 32tril.US$, respectively. The overcompensation also holds under variations of energy demand and fossil fuel supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-0901-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 198 citations 198 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-0901-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Preprint 2014 GermanyPublisher:Elsevier BV Authors: Grunewald, N.; Jakob, M.; Mouratiadou, I.;Emission inequality across countries and the contribution of the energy mix and the sectoral composition of a country's energy use are of central importance to the climate debate. We analyze the evolution of inequality in global CO2 per-capita emissions using both historical data on energy-related CO2 emissions and future emission scenarios generated with the integrated assessment model REMIND. Within our sample of 90 countries the results indicate that the Gini index declined from about 0.6 in 1971 to slightly above 0.4 in 2008. A decomposition of the Gini index of total emissions into primary energy carriers indicates that this reduction is mainly attributed to declining shares of emissions from coal/peat and oil in total emissions, and decreasing emission inequality within all fossil primary energy sources. From the perspective of economic sectors, the decline in overall inequality is almost entirely due to a decline of the contribution of emissions from manufacturing & construction. Our analysis also suggests that an equally spread emission reduction from any one source would not have a major impact on overall emission inequality. The analysis of future scenario data indicates that climate policy reduces absolute emission inequality, while inducing drastic progressive emission reductions in all regions.
Research Papers in E... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolecon.2014.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolecon.2014.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Netherlands, FrancePublisher:Wiley Funded by:EC | FACCE SURPLUS, NWO | SUSTAG - Assessing option...EC| FACCE SURPLUS ,NWO| SUSTAG - Assessing options for the SUSTainable intensification of Agriculture for integrated production of food and non-food products at different scalesMouratiadou, Ioanna; Stella, Tommaso; Gaiser, Thomas; Wicke, Birka; Nendel, Claas; Ewert, Frank; Hilst, Floor;AbstractCrop residue exploitation for bioenergy can play an important role in climate change mitigation without jeopardizing food security, but it may be constrained by impacts on soil organic carbon (SOC) stocks, and market, logistic and conversion challenges. We explore opportunities to increase bioenergy potentials from residues while reducing environmental impacts, in line with sustainable intensification. Using the case study of North Rhine‐Westphalia in Germany, we employ a spatiotemporally explicit approach combined with stakeholder interviews. First, the interviews identify agronomic and environmental impacts due to the potential reduction in SOC as the most critical challenge associated with enhanced crop residue exploitation. Market and technological challenges and competition with other residue uses are also identified as significant barriers. Second, with the use of agroecosystem modelling and estimations of bioenergy potentials and greenhouse gas emissions till mid‐century, we evaluate the ability of agricultural management to tackle the identified agronomic and environmental challenges. Integrated site‐specific management based on (a) humus balancing, (b) optimized fertilization and (c) winter soil cover performs better than our reference scenario with respect to all investigated variables. At the regional level, we estimate (a) a 5% increase in technical residue potentials and displaced emissions from substituting fossil fuels by bioethanol, (b) an 8% decrease in SOC losses and associated emissions, (c) an 18% decrease in nitrous oxide emissions, (d) a 37% decrease in mineral fertilizer requirements and emissions from their production and (e) a 16% decrease in nitrate leaching. Results are spatially variable and, despite improvements induced by management, limited amounts of crop residues are exploitable for bioenergy in areas prone to SOC decline. In order to sustainably intensify crop residue exploitation for bioenergy and reconcile climate change mitigation with other sustainability objectives, such as those on soil and water quality, residue management needs to be designed in an integrated and site‐specific manner.
GCB Bioenergy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2019Data sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2019Data sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, GermanyPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEIoanna Mouratiadou; Anne Biewald; Michaja Pehl; Markus Bonsch; Lavinia Baumstark; David Klein; Alexander Popp; Gunnar Luderer; Elmar Kriegler;Abstract Climate change mitigation, in the context of growing population and ever increasing economic activity, will require a transformation of energy and agricultural systems, posing significant challenges to global water resources. We use an integrated modelling framework of the water-energy-land-climate systems to assess how changes in electricity and land use, induced by climate change mitigation, impact on water demand under alternative socioeconomic (Shared Socioeconomic Pathways) and water policy assumptions (irrigation of bioenergy crops, cooling technologies for electricity generation). The impacts of climate change mitigation on cumulated global water demand across the century are highly uncertain, and depending on socioeconomic and water policy conditions, they range from a reduction of 15,000 km3 to an increase of more than 160,000 km3. The impact of irrigation of bioenergy crops is the most prominent factor, leading to significantly higher water requirements under climate change mitigation if bioenergy crops are irrigated. Differences in socioeconomic drivers and fossil fuel availability result in significant differences in electricity and bioenergy demands, in the associated electricity and primary energy mixes, and consequently in water demand. Economic affluence and abundance of fossil fuels aggravate pressures on water resources due to higher energy demand and greater deployment of water intensive technologies such as bioenergy and nuclear power. The evolution of future cooling systems is also identified as an important determinant of electricity water demand. Climate policy can result in a reduction of water demand if combined with policies on irrigation of bioenergy, and the deployment of non-water-intensive electricity sources and cooling types.
Publication Database... arrow_drop_down Environmental Science & PolicyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2016.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down Environmental Science & PolicyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2016.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, GermanyPublisher:Springer Science and Business Media LLC Elmar Kriegler; Gunnar Luderer; Ottmar Edenhofer; Ottmar Edenhofer; Jae Edmonds; Ioanna Mouratiadou;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-016-1667-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-016-1667-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 France, Netherlands, Netherlands, France, France, United Kingdom, Netherlands, Germany, Netherlands, AustriaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSF | WSC-Category 3: A Nationa..., EC | ENERGYA, EC | ENGAGE +2 projectsNSF| WSC-Category 3: A National Energy-Water System Assessment Framework (NEWS): Stage I Development ,EC| ENERGYA ,EC| ENGAGE ,EC| AXIS ,SFI| Multi-model innovations in Integrated Assessment Modelling of Global, Chinese, and Irish energy-economy-environment-climate systems investigating deep decarbonisation pathways from the Paris Agreement to the United Nations sustainable development goalsAuthors: Michelle T. H. van Vliet; Michelle T. H. van Vliet; Shinichiro Fujimori; Shinichiro Fujimori; +30 AuthorsMichelle T. H. van Vliet; Michelle T. H. van Vliet; Shinichiro Fujimori; Shinichiro Fujimori; A. Miara; A. Miara; Ioanna Mouratiadou; Detlef P. van Vuuren; Detlef P. van Vuuren; Vaibhav Chaturvedi; Fulco Ludwig; David E.H.J. Gernaat; David E.H.J. Gernaat; Enrica De Cian; Enrica De Cian; Robert C. Pietzcker; Pedro Rochedo; Olivier Dessens; James Glynn; Silvia R. Santos da Silva; Silvia R. Santos da Silva; Seleshi Yalew; Seleshi Yalew; Seleshi Yalew; Roberto Schaeffer; Mohamad Hejazi; Shouro Dasgupta; Shouro Dasgupta; Gokul Iyer; Silvana Mima; Chan Park; Franziska Piontek; Edward Byers; Robert Vautard;Although our knowledge of climate change impacts on energy systems has increased substantially over the past few decades, there remains a lack of comprehensive overview of impacts across spatial scales. Here, we analyse results of 220 studies projecting climate impacts on energy systems globally and at the regional scale. Globally, a potential increase in cooling demand and decrease in heating demand can be anticipated, in contrast to slight decreases in hydropower and thermal energy capacity. Impacts at the regional scale are more mixed and relatively uncertain across regions, but strongest impacts are reported for South Asia and Latin America. Our assessment shows that climate impacts on energy systems at regional and global scales are uncertain due partly to the wide range of methods and non-harmonized datasets used. For a comprehensive assessment of climate impacts on energy, we propose a consistent multi-model assessment framework to support regional-to-global-scale energy planning.
Nature Energy arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature Energy arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, Netherlands, Netherlands, AustriaPublisher:Elsevier BV M. Strubegger; Ioanna Mouratiadou; Detlef P. van Vuuren; Detlef P. van Vuuren; Marshall Wise; Samuel Carrara; Samuel Carrara; Robert C. Pietzcker; Nico Bauer; Keywan Riahi; Laurent Drouet; Laurent Drouet; Oliver Fricko; Nils Johnson; Elmar Kriegler; Jiyong Eom; Jiyong Eom; David E.H.J. Gernaat; Harmen Sytze de Boer; Shinichiro Fujimori; Toshihiko Masui; Volker Krey; Petr Havlik; David Klein; Katherine Calvin; Page Kyle; Maarten van den Berg; Vassilis Daioglou; Johannes Emmerling; Johannes Emmerling; Jérôme Hilaire; Giacomo Marangoni; Giacomo Marangoni; James E. Edmonds;Abstract Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomic Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy sector SSPs with and without emissions mitigation policies are introduced and analyzed here in order to contribute to future research in climate sciences, mitigation analysis, and studies on impacts, adaptation and vulnerability.
IIASA DARE arrow_drop_down Global Environmental ChangeArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 279 citations 279 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Global Environmental ChangeArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2022 FrancePublisher:Springer Science and Business Media LLC Authors: Macpherson, Joseph; Voglhuber-Slavinsky, Ariane; Olbrisch, Mathias; Schöbel, Philipp; +3 AuthorsMacpherson, Joseph; Voglhuber-Slavinsky, Ariane; Olbrisch, Mathias; Schöbel, Philipp; Dönitz, Ewa; Mouratiadou, Ioanna; Helming, Katharina;AbstractBy leveraging a wide range of novel, data-driven technologies for agricultural production and agri-food value chains, digital agriculture presents potential enhancements to sustainability across food systems. Accordingly, digital agriculture has received considerable attention in policy in recent years, with emphasis mostly placed on the potential of digital agriculture to improve efficiency, productivity and food security, and less attention given to how digitalization may impact other principles of sustainable development, such as biodiversity conservation, soil protection, and human health, for example. Here, we review high-level policy and law in the German and European context to highlight a number of important institutional, societal, and legal preconditions for leveraging digital agriculture to achieve diverse sustainability targets. Additionally, we combine foresight analysis with our review to reflect on how future frame conditions influencing agricultural digitalization and sustainability could conceivably arise. The major points are the following: (1) some polices consider the benefits of digital agriculture, although only to a limited extent and mostly in terms of resource use efficiency; (2) law as it applies to digital agriculture is emerging but is highly fragmented; and (3) the adoption of digital agriculture and if it is used to enhance sustainability will be dependent on future data ownership regimes.
Agronomy for Sustain... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-022-00792-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agronomy for Sustain... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-022-00792-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Netherlands, France, France, France, Netherlands, Germany, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | ADVANCEEC| ADVANCELaurent Drouet; Mohamad Hejazi; David L. Bijl; M. Bevione; Silvana Mima; Michaja Pehl; Gunnar Luderer; Ioanna Mouratiadou; Ioanna Mouratiadou;This study assesses the effects of deep electricity decarbonisation and shifts in the choice of power plant cooling technologies on global electricity water demand, using a suite of five integrated assessment models. We find that electricity sector decarbonisation results in co-benefits for water resources primarily due to the phase-out of water-intensive coal-based thermoelectric power generation, although these co-benefits vary substantially across decarbonisation scenarios. Wind and solar photovoltaic power represent a win-win option for both climate and water resources, but further expansion of nuclear or fossil- and biomass-fuelled power plants with carbon capture and storage may result in increased pressures on the water environment. Further to these results, the paper provides insights on the most crucial factors of uncertainty with regards to future estimates of water demand. These estimates varied substantially across models in scenarios where the effects of decarbonisation on the electricity mix were less clear-cut. Future thermal and water efficiency improvements of power generation technologies and demand-side energy efficiency improvements were also identified to be important factors of uncertainty. We conclude that in order to ensure positive effects of decarbonisation on water resources, climate policy should be combined with technology-specific energy and/or water policies.
Climatic Change arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-017-2117-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climatic Change arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-017-2117-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 France, United States, France, United Kingdom, United States, Germany, France, Sweden, Netherlands, Spain, Netherlands, United Kingdom, United States, NetherlandsPublisher:Copernicus GmbH Funded by:EC | SIM4NEXUS, EC | CD-LINKS, NWO | Multi-scale and self-cons... +6 projectsEC| SIM4NEXUS ,EC| CD-LINKS ,NWO| Multi-scale and self-consistent observations of recent sea level change ,EC| IMBALANCE-P ,EC| GREEN-WIN ,NSF| Collaborative Research: EaSM2--Wildfires and Regional Climate Variability - Mechanisms, Modeling, and Prediction ,EC| RISES-AM- ,EC| CRESCENDO ,EC| HELIXK. Frieler; S. Lange; F. Piontek; C. P. O. Reyer; J. Schewe; L. Warszawski; F. Zhao; L. Chini; S. Denvil; K. Emanuel; T. Geiger; K. Halladay; G. Hurtt; M. Mengel; D. Murakami; S. Ostberg; S. Ostberg; A. Popp; R. Riva; R. Riva; M. Stevanovic; T. Suzuki; J. Volkholz; E. Burke; P. Ciais; K. Ebi; T. D. Eddy; T. D. Eddy; J. Elliott; J. Elliott; E. Galbraith; E. Galbraith; S. N. Gosling; F. Hattermann; T. Hickler; J. Hinkel; J. Hinkel; C. Hof; V. Huber; J. Jägermeyr; V. Krysanova; R. Marcé; H. Müller Schmied; H. Müller Schmied; I. Mouratiadou; I. Mouratiadou; D. Pierson; D. P. Tittensor; D. P. Tittensor; R. Vautard; M. van Vliet; M. F. Biber; R. A. Betts; R. A. Betts; B. L. Bodirsky; D. Deryng; D. Deryng; S. Frolking; C. D. Jones; H. K. Lotze; H. Lotze-Campen; H. Lotze-Campen; R. Sahajpal; K. Thonicke; H. Tian; H. Tian; Y. Yamagata;handle: 1721.1/119493
Abstract. In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5 °C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).
Nottingham Research ... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BYFull-Text: https://scholars.unh.edu/ersc/203Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2017License: CC BYFull-Text: https://doi.org/10.5194/gmd-10-4321-2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02922298Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02922298Data sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model DevelopmentArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABFachrepositorium LebenswissenschaftenArticle . 2017License: CC BYData sources: Fachrepositorium LebenswissenschaftenPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2017 . Peer-reviewedGeoscientific Model DevelopmentArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Knowledge@UChicago (University of Chicago)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-10-4321-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 467 citations 467 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 6visibility views 6 download downloads 18 Powered bymore_vert Nottingham Research ... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BYFull-Text: https://scholars.unh.edu/ersc/203Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2017License: CC BYFull-Text: https://doi.org/10.5194/gmd-10-4321-2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02922298Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02922298Data sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model DevelopmentArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABFachrepositorium LebenswissenschaftenArticle . 2017License: CC BYData sources: Fachrepositorium LebenswissenschaftenPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2017 . Peer-reviewedGeoscientific Model DevelopmentArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Knowledge@UChicago (University of Chicago)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-10-4321-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Germany, United States, United StatesPublisher:Springer Science and Business Media LLC Bauer, Nico; Mouratiadou, Ioanna; Luderer, Gunnar; Baumstark, Lavinia; Brecha, Robert J.; Edenhofer, Ottmar; Kriegler, Elmar;We analyze the dynamics of global fossil resource markets under different assumptions for the supply of fossil fuel resources, development pathways for energy demand, and climate policy settings. Resource markets, in particular the oil market, are characterized by a large discrepancy between costs of resource extraction and commodity prices on international markets. We explain this observation in terms of (a) the intertemporal scarcity rent, (b) regional price differentials arising from trade and transport costs, (c) heterogeneity and inertia in the extraction sector. These effects are captured by the REMIND model. We use the model to explore economic effects of changes in coal, oil and gas markets induced by climate-change mitigation policies. A large share of fossil fuel reserves and resources will be used in the absence of climate policy leading to atmospheric GHG concentrations well beyond a level of 550 ppm CO2-eq. This result holds independently of different assumptions about energy demand and fossil fuel availability. Achieving ambitious climate targets will drastically reduce fossil fuel consumption, in particular the consumption of coal. Conventional oil and gas as well as non-conventional oil reserves are still exhausted. We find the net present value of fossil fuel rent until 2100 at 30tril.US$ with a large share of oil and a small share of coal. This is reduced by 9 and 12tril.US$ to achieve climate stabilization at 550 and 450 ppm CO2-eq, respectively. This loss is, however, overcompensated by revenues from carbon pricing that are 21 and 32tril.US$, respectively. The overcompensation also holds under variations of energy demand and fossil fuel supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-0901-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 198 citations 198 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-013-0901-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Preprint 2014 GermanyPublisher:Elsevier BV Authors: Grunewald, N.; Jakob, M.; Mouratiadou, I.;Emission inequality across countries and the contribution of the energy mix and the sectoral composition of a country's energy use are of central importance to the climate debate. We analyze the evolution of inequality in global CO2 per-capita emissions using both historical data on energy-related CO2 emissions and future emission scenarios generated with the integrated assessment model REMIND. Within our sample of 90 countries the results indicate that the Gini index declined from about 0.6 in 1971 to slightly above 0.4 in 2008. A decomposition of the Gini index of total emissions into primary energy carriers indicates that this reduction is mainly attributed to declining shares of emissions from coal/peat and oil in total emissions, and decreasing emission inequality within all fossil primary energy sources. From the perspective of economic sectors, the decline in overall inequality is almost entirely due to a decline of the contribution of emissions from manufacturing & construction. Our analysis also suggests that an equally spread emission reduction from any one source would not have a major impact on overall emission inequality. The analysis of future scenario data indicates that climate policy reduces absolute emission inequality, while inducing drastic progressive emission reductions in all regions.
Research Papers in E... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolecon.2014.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolecon.2014.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Netherlands, FrancePublisher:Wiley Funded by:EC | FACCE SURPLUS, NWO | SUSTAG - Assessing option...EC| FACCE SURPLUS ,NWO| SUSTAG - Assessing options for the SUSTainable intensification of Agriculture for integrated production of food and non-food products at different scalesMouratiadou, Ioanna; Stella, Tommaso; Gaiser, Thomas; Wicke, Birka; Nendel, Claas; Ewert, Frank; Hilst, Floor;AbstractCrop residue exploitation for bioenergy can play an important role in climate change mitigation without jeopardizing food security, but it may be constrained by impacts on soil organic carbon (SOC) stocks, and market, logistic and conversion challenges. We explore opportunities to increase bioenergy potentials from residues while reducing environmental impacts, in line with sustainable intensification. Using the case study of North Rhine‐Westphalia in Germany, we employ a spatiotemporally explicit approach combined with stakeholder interviews. First, the interviews identify agronomic and environmental impacts due to the potential reduction in SOC as the most critical challenge associated with enhanced crop residue exploitation. Market and technological challenges and competition with other residue uses are also identified as significant barriers. Second, with the use of agroecosystem modelling and estimations of bioenergy potentials and greenhouse gas emissions till mid‐century, we evaluate the ability of agricultural management to tackle the identified agronomic and environmental challenges. Integrated site‐specific management based on (a) humus balancing, (b) optimized fertilization and (c) winter soil cover performs better than our reference scenario with respect to all investigated variables. At the regional level, we estimate (a) a 5% increase in technical residue potentials and displaced emissions from substituting fossil fuels by bioethanol, (b) an 8% decrease in SOC losses and associated emissions, (c) an 18% decrease in nitrous oxide emissions, (d) a 37% decrease in mineral fertilizer requirements and emissions from their production and (e) a 16% decrease in nitrate leaching. Results are spatially variable and, despite improvements induced by management, limited amounts of crop residues are exploitable for bioenergy in areas prone to SOC decline. In order to sustainably intensify crop residue exploitation for bioenergy and reconcile climate change mitigation with other sustainability objectives, such as those on soil and water quality, residue management needs to be designed in an integrated and site‐specific manner.
GCB Bioenergy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2019Data sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2019Data sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, GermanyPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEIoanna Mouratiadou; Anne Biewald; Michaja Pehl; Markus Bonsch; Lavinia Baumstark; David Klein; Alexander Popp; Gunnar Luderer; Elmar Kriegler;Abstract Climate change mitigation, in the context of growing population and ever increasing economic activity, will require a transformation of energy and agricultural systems, posing significant challenges to global water resources. We use an integrated modelling framework of the water-energy-land-climate systems to assess how changes in electricity and land use, induced by climate change mitigation, impact on water demand under alternative socioeconomic (Shared Socioeconomic Pathways) and water policy assumptions (irrigation of bioenergy crops, cooling technologies for electricity generation). The impacts of climate change mitigation on cumulated global water demand across the century are highly uncertain, and depending on socioeconomic and water policy conditions, they range from a reduction of 15,000 km3 to an increase of more than 160,000 km3. The impact of irrigation of bioenergy crops is the most prominent factor, leading to significantly higher water requirements under climate change mitigation if bioenergy crops are irrigated. Differences in socioeconomic drivers and fossil fuel availability result in significant differences in electricity and bioenergy demands, in the associated electricity and primary energy mixes, and consequently in water demand. Economic affluence and abundance of fossil fuels aggravate pressures on water resources due to higher energy demand and greater deployment of water intensive technologies such as bioenergy and nuclear power. The evolution of future cooling systems is also identified as an important determinant of electricity water demand. Climate policy can result in a reduction of water demand if combined with policies on irrigation of bioenergy, and the deployment of non-water-intensive electricity sources and cooling types.
Publication Database... arrow_drop_down Environmental Science & PolicyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2016.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down Environmental Science & PolicyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2016.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, GermanyPublisher:Springer Science and Business Media LLC Elmar Kriegler; Gunnar Luderer; Ottmar Edenhofer; Ottmar Edenhofer; Jae Edmonds; Ioanna Mouratiadou;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-016-1667-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-016-1667-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 France, Netherlands, Netherlands, France, France, United Kingdom, Netherlands, Germany, Netherlands, AustriaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSF | WSC-Category 3: A Nationa..., EC | ENERGYA, EC | ENGAGE +2 projectsNSF| WSC-Category 3: A National Energy-Water System Assessment Framework (NEWS): Stage I Development ,EC| ENERGYA ,EC| ENGAGE ,EC| AXIS ,SFI| Multi-model innovations in Integrated Assessment Modelling of Global, Chinese, and Irish energy-economy-environment-climate systems investigating deep decarbonisation pathways from the Paris Agreement to the United Nations sustainable development goalsAuthors: Michelle T. H. van Vliet; Michelle T. H. van Vliet; Shinichiro Fujimori; Shinichiro Fujimori; +30 AuthorsMichelle T. H. van Vliet; Michelle T. H. van Vliet; Shinichiro Fujimori; Shinichiro Fujimori; A. Miara; A. Miara; Ioanna Mouratiadou; Detlef P. van Vuuren; Detlef P. van Vuuren; Vaibhav Chaturvedi; Fulco Ludwig; David E.H.J. Gernaat; David E.H.J. Gernaat; Enrica De Cian; Enrica De Cian; Robert C. Pietzcker; Pedro Rochedo; Olivier Dessens; James Glynn; Silvia R. Santos da Silva; Silvia R. Santos da Silva; Seleshi Yalew; Seleshi Yalew; Seleshi Yalew; Roberto Schaeffer; Mohamad Hejazi; Shouro Dasgupta; Shouro Dasgupta; Gokul Iyer; Silvana Mima; Chan Park; Franziska Piontek; Edward Byers; Robert Vautard;Although our knowledge of climate change impacts on energy systems has increased substantially over the past few decades, there remains a lack of comprehensive overview of impacts across spatial scales. Here, we analyse results of 220 studies projecting climate impacts on energy systems globally and at the regional scale. Globally, a potential increase in cooling demand and decrease in heating demand can be anticipated, in contrast to slight decreases in hydropower and thermal energy capacity. Impacts at the regional scale are more mixed and relatively uncertain across regions, but strongest impacts are reported for South Asia and Latin America. Our assessment shows that climate impacts on energy systems at regional and global scales are uncertain due partly to the wide range of methods and non-harmonized datasets used. For a comprehensive assessment of climate impacts on energy, we propose a consistent multi-model assessment framework to support regional-to-global-scale energy planning.
Nature Energy arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature Energy arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, Netherlands, Netherlands, AustriaPublisher:Elsevier BV M. Strubegger; Ioanna Mouratiadou; Detlef P. van Vuuren; Detlef P. van Vuuren; Marshall Wise; Samuel Carrara; Samuel Carrara; Robert C. Pietzcker; Nico Bauer; Keywan Riahi; Laurent Drouet; Laurent Drouet; Oliver Fricko; Nils Johnson; Elmar Kriegler; Jiyong Eom; Jiyong Eom; David E.H.J. Gernaat; Harmen Sytze de Boer; Shinichiro Fujimori; Toshihiko Masui; Volker Krey; Petr Havlik; David Klein; Katherine Calvin; Page Kyle; Maarten van den Berg; Vassilis Daioglou; Johannes Emmerling; Johannes Emmerling; Jérôme Hilaire; Giacomo Marangoni; Giacomo Marangoni; James E. Edmonds;Abstract Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomic Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy sector SSPs with and without emissions mitigation policies are introduced and analyzed here in order to contribute to future research in climate sciences, mitigation analysis, and studies on impacts, adaptation and vulnerability.
IIASA DARE arrow_drop_down Global Environmental ChangeArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 279 citations 279 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Global Environmental ChangeArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2022 FrancePublisher:Springer Science and Business Media LLC Authors: Macpherson, Joseph; Voglhuber-Slavinsky, Ariane; Olbrisch, Mathias; Schöbel, Philipp; +3 AuthorsMacpherson, Joseph; Voglhuber-Slavinsky, Ariane; Olbrisch, Mathias; Schöbel, Philipp; Dönitz, Ewa; Mouratiadou, Ioanna; Helming, Katharina;AbstractBy leveraging a wide range of novel, data-driven technologies for agricultural production and agri-food value chains, digital agriculture presents potential enhancements to sustainability across food systems. Accordingly, digital agriculture has received considerable attention in policy in recent years, with emphasis mostly placed on the potential of digital agriculture to improve efficiency, productivity and food security, and less attention given to how digitalization may impact other principles of sustainable development, such as biodiversity conservation, soil protection, and human health, for example. Here, we review high-level policy and law in the German and European context to highlight a number of important institutional, societal, and legal preconditions for leveraging digital agriculture to achieve diverse sustainability targets. Additionally, we combine foresight analysis with our review to reflect on how future frame conditions influencing agricultural digitalization and sustainability could conceivably arise. The major points are the following: (1) some polices consider the benefits of digital agriculture, although only to a limited extent and mostly in terms of resource use efficiency; (2) law as it applies to digital agriculture is emerging but is highly fragmented; and (3) the adoption of digital agriculture and if it is used to enhance sustainability will be dependent on future data ownership regimes.
Agronomy for Sustain... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-022-00792-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agronomy for Sustain... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-022-00792-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Netherlands, France, France, France, Netherlands, Germany, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | ADVANCEEC| ADVANCELaurent Drouet; Mohamad Hejazi; David L. Bijl; M. Bevione; Silvana Mima; Michaja Pehl; Gunnar Luderer; Ioanna Mouratiadou; Ioanna Mouratiadou;This study assesses the effects of deep electricity decarbonisation and shifts in the choice of power plant cooling technologies on global electricity water demand, using a suite of five integrated assessment models. We find that electricity sector decarbonisation results in co-benefits for water resources primarily due to the phase-out of water-intensive coal-based thermoelectric power generation, although these co-benefits vary substantially across decarbonisation scenarios. Wind and solar photovoltaic power represent a win-win option for both climate and water resources, but further expansion of nuclear or fossil- and biomass-fuelled power plants with carbon capture and storage may result in increased pressures on the water environment. Further to these results, the paper provides insights on the most crucial factors of uncertainty with regards to future estimates of water demand. These estimates varied substantially across models in scenarios where the effects of decarbonisation on the electricity mix were less clear-cut. Future thermal and water efficiency improvements of power generation technologies and demand-side energy efficiency improvements were also identified to be important factors of uncertainty. We conclude that in order to ensure positive effects of decarbonisation on water resources, climate policy should be combined with technology-specific energy and/or water policies.
Climatic Change arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-017-2117-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Climatic Change arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-017-2117-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 France, United States, France, United Kingdom, United States, Germany, France, Sweden, Netherlands, Spain, Netherlands, United Kingdom, United States, NetherlandsPublisher:Copernicus GmbH Funded by:EC | SIM4NEXUS, EC | CD-LINKS, NWO | Multi-scale and self-cons... +6 projectsEC| SIM4NEXUS ,EC| CD-LINKS ,NWO| Multi-scale and self-consistent observations of recent sea level change ,EC| IMBALANCE-P ,EC| GREEN-WIN ,NSF| Collaborative Research: EaSM2--Wildfires and Regional Climate Variability - Mechanisms, Modeling, and Prediction ,EC| RISES-AM- ,EC| CRESCENDO ,EC| HELIXK. Frieler; S. Lange; F. Piontek; C. P. O. Reyer; J. Schewe; L. Warszawski; F. Zhao; L. Chini; S. Denvil; K. Emanuel; T. Geiger; K. Halladay; G. Hurtt; M. Mengel; D. Murakami; S. Ostberg; S. Ostberg; A. Popp; R. Riva; R. Riva; M. Stevanovic; T. Suzuki; J. Volkholz; E. Burke; P. Ciais; K. Ebi; T. D. Eddy; T. D. Eddy; J. Elliott; J. Elliott; E. Galbraith; E. Galbraith; S. N. Gosling; F. Hattermann; T. Hickler; J. Hinkel; J. Hinkel; C. Hof; V. Huber; J. Jägermeyr; V. Krysanova; R. Marcé; H. Müller Schmied; H. Müller Schmied; I. Mouratiadou; I. Mouratiadou; D. Pierson; D. P. Tittensor; D. P. Tittensor; R. Vautard; M. van Vliet; M. F. Biber; R. A. Betts; R. A. Betts; B. L. Bodirsky; D. Deryng; D. Deryng; S. Frolking; C. D. Jones; H. K. Lotze; H. Lotze-Campen; H. Lotze-Campen; R. Sahajpal; K. Thonicke; H. Tian; H. Tian; Y. Yamagata;handle: 1721.1/119493
Abstract. In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5 °C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).
Nottingham Research ... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BYFull-Text: https://scholars.unh.edu/ersc/203Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2017License: CC BYFull-Text: https://doi.org/10.5194/gmd-10-4321-2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02922298Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02922298Data sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model DevelopmentArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABFachrepositorium LebenswissenschaftenArticle . 2017License: CC BYData sources: Fachrepositorium LebenswissenschaftenPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2017 . Peer-reviewedGeoscientific Model DevelopmentArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Knowledge@UChicago (University of Chicago)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-10-4321-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 467 citations 467 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 6visibility views 6 download downloads 18 Powered bymore_vert Nottingham Research ... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2017License: CC BYFull-Text: https://scholars.unh.edu/ersc/203Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2017License: CC BYFull-Text: https://doi.org/10.5194/gmd-10-4321-2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02922298Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02922298Data sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model DevelopmentArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABFachrepositorium LebenswissenschaftenArticle . 2017License: CC BYData sources: Fachrepositorium LebenswissenschaftenPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2017 . Peer-reviewedGeoscientific Model DevelopmentArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Knowledge@UChicago (University of Chicago)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-10-4321-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu