- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 Russian FederationPublisher:Elsevier BV Gururani P.; Bhatnagar P.; Bisht B.; Jaiswal K.K.; Kumar V.; Kumar S.; Vlaskin M.S.; Grigorenko A.V.; Rindin K.G.;Thermochemical methods are regarded as promising approach for managing sludge, that can achieve resources and energy recovery, volume reduction followed by efficient elimination of microorganisms. This review highlights an extensive description of the implementation of thermochemical technologies involving pyrolysis, gasification and hydrothermal liquefaction for valorisation of sludge into bio-fuel thus reducing the issues related to surplus generation and accumulation of sludge in environment affecting human health followed by rapid depletion of energy resources. The paper addresses working mechanism of thermochemical processes, their implementation for sludge conversion to bio-fuel and common factors affecting the process efficiency. Various studies have proved possible potential of thermochemical techniques for conversion of sludge to bio-fuel obtaining a high yield of bio-fuel and syngas. However, few technical challenges are still there that requires further studies and understanding for a better commercialization on industrial-scale and subsequently the future perspectives have also been analysed. Data collected from existing studies revealed that hydrothermal liquefaction has the efficiency to be proved better than other thermochemical technologies for proper valorisation of sludge resulting in high bio-fuel yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Russian FederationPublisher:Elsevier BV Bisht Bhawna; Gururani Prateek; Pandey Shivam; Kumar Jaiswal Krishna; Kumar Sanjay; Vlaskin Mikhail S.; Verma Monu; Kim Hyunook; Kumar Vinod;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Elsevier BV Naveen Chandra Joshi; Somya Sinha; Pooja Bhatnagar; Yogesh Nath; Bhavya Negi; Vinod Kumar; Prateek Gururani;Due to an increase in industrialization and urbanization, massive amounts of solid waste biomass are speedily accumulating in our environment, which poses several adverse effects on habitat and human health thus becoming a matter of discussion in the environmental community. With reference to the circular economy, continuous efforts have been put forward for setting up an organised management approach in combination with an efficient treatment technique for increasing the profitable utilization of solid waste. This review aims to provide a systematic discussion on the recent thermochemical technologies employed for converting waste biomass generated from different sources into valuable products like biochar, bio-oil, heat, energy and syngas. The article further focuses on a few important aspects of thermochemical conversion of waste biomass to useful products like technical factors affecting thermochemical processes, applications of by-products of thermochemical conversion, and biological pretreatment of waste biomass. The review assists interesting recent and scientific trends for boosting up the systematic management and valorization of solid waste through low-cost, efficient, environment-friendly and sustainable technologies.
Current Research in ... arrow_drop_down Current Research in Microbial SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crmicr.2024.100237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Current Research in ... arrow_drop_down Current Research in Microbial SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crmicr.2024.100237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Informa UK Limited Vinod Kumar; Krishna Kumar Jaiswal; Mikhail S. Vlaskin; Manisha Nanda; M. K. Tripathi; Prateek Gururani; Sanjay Kumar; Harish Chandra Joshi;The hydrothermal liquefaction of municipal sludge was investigated under isothermal conditions (255 °C, 45 min) with TiO2 as a catalyst. In this study, we used two separation methods (an organic solvent-assisted extraction method and the Soxhlet extraction method) for the production of bio-crude oil. The maximum yield of bio-crude oil was 20.7 wt. % reported with the Soxhlet extraction method. The aqueous phase was examined for TN, TP, COD, and TOC to determine the suitability of this phase for microalgae cultivation. Four strains of oleaginous microalgae were cultivated in the aqueous phase. The results show that the growth of microalgae in the aqueous phase was lower compared to the control medium; this may be due to the high COD value. Microalgae and yeast co-cultivation increases biomass and lipid productivity using nutrients in the aqueous phase.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17597269.2020.1863627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17597269.2020.1863627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Saloni Kunwar; Neha Pandey; Pooja Bhatnagar; Gurasees Chadha; Neha Rawat; Naveen Chandra Joshi; Mahipal Singh Tomar; Murat Eyvaz; Prateek Gururani;pmid: 38158529
Research for alternative sources for producing renewable energy is rising exponentially, and consequently, microbial fuel cells (MFCs) can be seen as a promising approach for sustainable energy production and wastewater purification. In recent years, MFC is widely utilized for wastewater treatment in which the removal efficiency of heavy metal ranges from 75-95%. They are considered as green and sustainable technology that contributes to environmental safety by reducing the demand for fossil fuels, diminishes carbon emissions, and reverses the trend of global warming. Moreover, significant reduction potential can be seen for other parameters such as total carbon oxygen demand (TCOD), soluble carbon oxygen demand (SCOD), total suspended solids (TSS), and total nitrogen (TN). Furthermore, certain problems like economic aspects, model and design of MFCs, type of electrode material, electrode cost, and concept of electro-microbiology limit the commercialization of MFC technology. As a result, MFC has never been accepted as an appreciable competitor in the area of treating wastewater or renewable energy. Therefore, more efforts are still required to develop a useful model for generating safe, clean, and CO2 emission-free renewable energy along with wastewater treatment. The purpose of this review is to provide a deep understanding of the working mechanism and design of MFC technology responsible for the removal of different pollutants from wastewater and generate power density. Existing studies related to the implementation of MFC technology in the wastewater treatment process along with the factors affecting its functioning and power outcomes have also been highlighted.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-023-31696-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-023-31696-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Russian FederationPublisher:Elsevier BV Sanjay Kumar; Makhail S. Vlaskin; Prateek Gururani; Vinod Kumar; Vinod Kumar; Bhawna Bisht; A I Kurbatova; Mahipal Singh Tomar; Manisha Nanda;pmid: 34260946
Microalgae biotechnology has made it possible to derive secondary bioactive metabolites from microalgae strains that have opened up their entire potential to uncover a wide range of novel metabolic capabilities and turn these into bio-products for the development of sustainable bio-refineries. Nuclear Magnetic Resonance Technology (NMR) has been one of the most successful and functional research technology over the past two decades to analyse the composition, structure and functionality of distinct metabolites in the different microalgae strains. This technology offers qualitative as well as quantitative knowledge about the endogenous metabolites and lipids of low molecular mass to offer a good picture of the physiological state of biological samples in metabolomics and lipidomics studies. Henceforth, this review is aimed at introducing the metabolomics and lipidomics studies into the field of NMR technology and also highlights the protocols for the isolation and metabolic measurements of metabolites from microalgae that should be redirected to resource recovery and value-added products with a systematic and holistic approach for scalability or sustainability.
Archives of Biochemi... arrow_drop_down Archives of Biochemistry and BiophysicsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.abb.2021.108987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archives of Biochemi... arrow_drop_down Archives of Biochemistry and BiophysicsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.abb.2021.108987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 Russian FederationPublisher:Elsevier BV Gururani P.; Bhatnagar P.; Bisht B.; Jaiswal K.K.; Kumar V.; Kumar S.; Vlaskin M.S.; Grigorenko A.V.; Rindin K.G.;Thermochemical methods are regarded as promising approach for managing sludge, that can achieve resources and energy recovery, volume reduction followed by efficient elimination of microorganisms. This review highlights an extensive description of the implementation of thermochemical technologies involving pyrolysis, gasification and hydrothermal liquefaction for valorisation of sludge into bio-fuel thus reducing the issues related to surplus generation and accumulation of sludge in environment affecting human health followed by rapid depletion of energy resources. The paper addresses working mechanism of thermochemical processes, their implementation for sludge conversion to bio-fuel and common factors affecting the process efficiency. Various studies have proved possible potential of thermochemical techniques for conversion of sludge to bio-fuel obtaining a high yield of bio-fuel and syngas. However, few technical challenges are still there that requires further studies and understanding for a better commercialization on industrial-scale and subsequently the future perspectives have also been analysed. Data collected from existing studies revealed that hydrothermal liquefaction has the efficiency to be proved better than other thermochemical technologies for proper valorisation of sludge resulting in high bio-fuel yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Russian FederationPublisher:Elsevier BV Bisht Bhawna; Gururani Prateek; Pandey Shivam; Kumar Jaiswal Krishna; Kumar Sanjay; Vlaskin Mikhail S.; Verma Monu; Kim Hyunook; Kumar Vinod;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Elsevier BV Naveen Chandra Joshi; Somya Sinha; Pooja Bhatnagar; Yogesh Nath; Bhavya Negi; Vinod Kumar; Prateek Gururani;Due to an increase in industrialization and urbanization, massive amounts of solid waste biomass are speedily accumulating in our environment, which poses several adverse effects on habitat and human health thus becoming a matter of discussion in the environmental community. With reference to the circular economy, continuous efforts have been put forward for setting up an organised management approach in combination with an efficient treatment technique for increasing the profitable utilization of solid waste. This review aims to provide a systematic discussion on the recent thermochemical technologies employed for converting waste biomass generated from different sources into valuable products like biochar, bio-oil, heat, energy and syngas. The article further focuses on a few important aspects of thermochemical conversion of waste biomass to useful products like technical factors affecting thermochemical processes, applications of by-products of thermochemical conversion, and biological pretreatment of waste biomass. The review assists interesting recent and scientific trends for boosting up the systematic management and valorization of solid waste through low-cost, efficient, environment-friendly and sustainable technologies.
Current Research in ... arrow_drop_down Current Research in Microbial SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crmicr.2024.100237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Current Research in ... arrow_drop_down Current Research in Microbial SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crmicr.2024.100237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Informa UK Limited Vinod Kumar; Krishna Kumar Jaiswal; Mikhail S. Vlaskin; Manisha Nanda; M. K. Tripathi; Prateek Gururani; Sanjay Kumar; Harish Chandra Joshi;The hydrothermal liquefaction of municipal sludge was investigated under isothermal conditions (255 °C, 45 min) with TiO2 as a catalyst. In this study, we used two separation methods (an organic solvent-assisted extraction method and the Soxhlet extraction method) for the production of bio-crude oil. The maximum yield of bio-crude oil was 20.7 wt. % reported with the Soxhlet extraction method. The aqueous phase was examined for TN, TP, COD, and TOC to determine the suitability of this phase for microalgae cultivation. Four strains of oleaginous microalgae were cultivated in the aqueous phase. The results show that the growth of microalgae in the aqueous phase was lower compared to the control medium; this may be due to the high COD value. Microalgae and yeast co-cultivation increases biomass and lipid productivity using nutrients in the aqueous phase.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17597269.2020.1863627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17597269.2020.1863627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Saloni Kunwar; Neha Pandey; Pooja Bhatnagar; Gurasees Chadha; Neha Rawat; Naveen Chandra Joshi; Mahipal Singh Tomar; Murat Eyvaz; Prateek Gururani;pmid: 38158529
Research for alternative sources for producing renewable energy is rising exponentially, and consequently, microbial fuel cells (MFCs) can be seen as a promising approach for sustainable energy production and wastewater purification. In recent years, MFC is widely utilized for wastewater treatment in which the removal efficiency of heavy metal ranges from 75-95%. They are considered as green and sustainable technology that contributes to environmental safety by reducing the demand for fossil fuels, diminishes carbon emissions, and reverses the trend of global warming. Moreover, significant reduction potential can be seen for other parameters such as total carbon oxygen demand (TCOD), soluble carbon oxygen demand (SCOD), total suspended solids (TSS), and total nitrogen (TN). Furthermore, certain problems like economic aspects, model and design of MFCs, type of electrode material, electrode cost, and concept of electro-microbiology limit the commercialization of MFC technology. As a result, MFC has never been accepted as an appreciable competitor in the area of treating wastewater or renewable energy. Therefore, more efforts are still required to develop a useful model for generating safe, clean, and CO2 emission-free renewable energy along with wastewater treatment. The purpose of this review is to provide a deep understanding of the working mechanism and design of MFC technology responsible for the removal of different pollutants from wastewater and generate power density. Existing studies related to the implementation of MFC technology in the wastewater treatment process along with the factors affecting its functioning and power outcomes have also been highlighted.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-023-31696-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-023-31696-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Russian FederationPublisher:Elsevier BV Sanjay Kumar; Makhail S. Vlaskin; Prateek Gururani; Vinod Kumar; Vinod Kumar; Bhawna Bisht; A I Kurbatova; Mahipal Singh Tomar; Manisha Nanda;pmid: 34260946
Microalgae biotechnology has made it possible to derive secondary bioactive metabolites from microalgae strains that have opened up their entire potential to uncover a wide range of novel metabolic capabilities and turn these into bio-products for the development of sustainable bio-refineries. Nuclear Magnetic Resonance Technology (NMR) has been one of the most successful and functional research technology over the past two decades to analyse the composition, structure and functionality of distinct metabolites in the different microalgae strains. This technology offers qualitative as well as quantitative knowledge about the endogenous metabolites and lipids of low molecular mass to offer a good picture of the physiological state of biological samples in metabolomics and lipidomics studies. Henceforth, this review is aimed at introducing the metabolomics and lipidomics studies into the field of NMR technology and also highlights the protocols for the isolation and metabolic measurements of metabolites from microalgae that should be redirected to resource recovery and value-added products with a systematic and holistic approach for scalability or sustainability.
Archives of Biochemi... arrow_drop_down Archives of Biochemistry and BiophysicsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.abb.2021.108987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archives of Biochemi... arrow_drop_down Archives of Biochemistry and BiophysicsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.abb.2021.108987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu