- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Fabio Matera; Alessandro Stassi; Vincenzo Antonucci; Antonino S. Aricò; A. Di Blasi; Vincenzo Baglio;Abstract An investigation of properties and operating parameters of a passive DMFC monopolar mini-stack, such as catalyst loading and methanol concentration, was carried out. From this analysis, it was derived that a proper Pt loading is necessary to achieve the best compromise between electrode thickness and number of catalytic sites for the anode and cathode reactions to occur at suitable rates. Methanol concentrations ranging from 1 M up to 10 M and an air-breathing operation mode were investigated. A maximum power of 225 mW was obtained at ambient conditions for a three-cell stack, with an active single cell area of 4 cm 2 , corresponding to a power density of about 20 mW cm −2 .
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Fabio Matera; Alessandro Stassi; Vincenzo Antonucci; Antonino S. Aricò; A. Di Blasi; Vincenzo Baglio;Abstract An investigation of properties and operating parameters of a passive DMFC monopolar mini-stack, such as catalyst loading and methanol concentration, was carried out. From this analysis, it was derived that a proper Pt loading is necessary to achieve the best compromise between electrode thickness and number of catalytic sites for the anode and cathode reactions to occur at suitable rates. Methanol concentrations ranging from 1 M up to 10 M and an air-breathing operation mode were investigated. A maximum power of 225 mW was obtained at ambient conditions for a three-cell stack, with an active single cell area of 4 cm 2 , corresponding to a power density of about 20 mW cm −2 .
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ItalyPublisher:MDPI AG Funded by:EC | IMPACTEC| IMPACTStassi Alessandro; Gatto Irene; Saccà Ada; Baglio Vincenzo; Aricò Antonino S;doi: 10.3390/en8087805
handle: 20.500.14243/295155
The use of Cs0.5H0.5PW12O40 insoluble salt as a superacid promoter in the catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC) has been investigated. An increase of performance has been recorded at intermediate temperatures (110–130 °C) and under low relative humidity (R.H.). The promoter appears to mitigate the ionomer dry-out effects in the catalytic layer and produces an increase of the extent of the catalyst-electrolyte interface as demonstrated by cyclic voltammetry analysis. These effects are also corroborated by a significant decrease of polarization resistance at intermediate temperatures. Such characteristics have been demonstrated for a conventional membrane-electrode assembly based on a Pt-Co alloy and a Nafion 115 membrane.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/7805/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en80...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8087805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/7805/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en80...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8087805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ItalyPublisher:MDPI AG Funded by:EC | IMPACTEC| IMPACTStassi Alessandro; Gatto Irene; Saccà Ada; Baglio Vincenzo; Aricò Antonino S;doi: 10.3390/en8087805
handle: 20.500.14243/295155
The use of Cs0.5H0.5PW12O40 insoluble salt as a superacid promoter in the catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC) has been investigated. An increase of performance has been recorded at intermediate temperatures (110–130 °C) and under low relative humidity (R.H.). The promoter appears to mitigate the ionomer dry-out effects in the catalytic layer and produces an increase of the extent of the catalyst-electrolyte interface as demonstrated by cyclic voltammetry analysis. These effects are also corroborated by a significant decrease of polarization resistance at intermediate temperatures. Such characteristics have been demonstrated for a conventional membrane-electrode assembly based on a Pt-Co alloy and a Nafion 115 membrane.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/7805/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en80...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8087805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/7805/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en80...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8087805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG Funded by:EC | DURAMETEC| DURAMETSgroi MF; Zedde F; Barbera O; Stassi A; Sebastian D; Lufrano F; Baglio V; Arico AS; Bonde JL; Schuster M;doi: 10.3390/en9121008
handle: 20.500.14243/328880 , 2318/1887002
Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs). The concept of a direct methanol fuel cell (DMFC) is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs). In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET) was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1008/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1008/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG Funded by:EC | DURAMETEC| DURAMETSgroi MF; Zedde F; Barbera O; Stassi A; Sebastian D; Lufrano F; Baglio V; Arico AS; Bonde JL; Schuster M;doi: 10.3390/en9121008
handle: 20.500.14243/328880 , 2318/1887002
Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs). The concept of a direct methanol fuel cell (DMFC) is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs). In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET) was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1008/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1008/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2005 ItalyPublisher:Elsevier BV DUrso C; Baglio V; Di Blasi A; Stassi A; Aricò AS; Antonucci V; Licoccia S; Traversa E;handle: 20.500.14243/73157 , 20.500.14243/90694 , 2108/15189
TiO2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350mWcm-2 was achieved under oxygen feed at 145 oC in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO2 nano-particles based composite membranes.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2005Full-Text: http://hdl.handle.net/2108/15189Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2004.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 208 citations 208 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2005Full-Text: http://hdl.handle.net/2108/15189Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2004.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2005 ItalyPublisher:Elsevier BV DUrso C; Baglio V; Di Blasi A; Stassi A; Aricò AS; Antonucci V; Licoccia S; Traversa E;handle: 20.500.14243/73157 , 20.500.14243/90694 , 2108/15189
TiO2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350mWcm-2 was achieved under oxygen feed at 145 oC in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO2 nano-particles based composite membranes.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2005Full-Text: http://hdl.handle.net/2108/15189Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2004.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 208 citations 208 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2005Full-Text: http://hdl.handle.net/2108/15189Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2004.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:Elsevier BV Baglio V; Stassi A; Matera FV; Antonucci V; Aricò AS;handle: 20.500.14243/76469
Two designs of flow fields/current collectors for a passive direct methanol fuel cell (DMFC) monopolar three-cell stack were investigated. The first one (A) consisted of two plastic plates covered by thin gold film current collectors in the area of electrodes with a distribution of holes through which methanol (from a reservoir) and air (from ambient) could diffuse into the electrodes. The second design (B) consisted of thin gold film deposited on the external borders of the fuel and oxidant apertures where the electrodes were placed in contact. A big central hole allowed a direct exposure of electrodes to ambient air (for the cathodes) and methanol solution (for the anodes). An investigation of the performance and discharge behaviour of the two designs was carried out. The advantages and disadvantages of each configuration were analysed. Similar performances in terms of maximum power were recorded; whereas, better mass transport characteristics were obtained with the design B. On the contrary, open circuit voltage (OCV) and stack voltage at low current were higher for the design A as a consequence of lower methanol cross-over. A longer discharge time (17 h) with a unique MeOH charge was recorded with design B at 250 mA compared to the design A (5 h). This was attributed to an easier CO2 removal from the anode and better mass transport properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2008.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2008.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:Elsevier BV Baglio V; Stassi A; Matera FV; Antonucci V; Aricò AS;handle: 20.500.14243/76469
Two designs of flow fields/current collectors for a passive direct methanol fuel cell (DMFC) monopolar three-cell stack were investigated. The first one (A) consisted of two plastic plates covered by thin gold film current collectors in the area of electrodes with a distribution of holes through which methanol (from a reservoir) and air (from ambient) could diffuse into the electrodes. The second design (B) consisted of thin gold film deposited on the external borders of the fuel and oxidant apertures where the electrodes were placed in contact. A big central hole allowed a direct exposure of electrodes to ambient air (for the cathodes) and methanol solution (for the anodes). An investigation of the performance and discharge behaviour of the two designs was carried out. The advantages and disadvantages of each configuration were analysed. Similar performances in terms of maximum power were recorded; whereas, better mass transport characteristics were obtained with the design B. On the contrary, open circuit voltage (OCV) and stack voltage at low current were higher for the design A as a consequence of lower methanol cross-over. A longer discharge time (17 h) with a unique MeOH charge was recorded with design B at 250 mA compared to the design A (5 h). This was attributed to an easier CO2 removal from the anode and better mass transport properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2008.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2008.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2006 ItalyPublisher:The Electrochemical Society Di Blasi A; Baglio V; Stassi A; D'Urso C; Antonucci V; Arico AS;handle: 20.500.14243/224360
High surface area carbon supported bimetallic Pt-Fe and Pt-Ru alloy catalysts have been investigated for the oxygen electro- reduction and methanol oxidation , respectively, in low temperature direct methanol fuel cells (30-60 {degree sign}C). The cathode electrocatalyst was prepared by using a combination of colloidal and incipient wetness methods. For both anode and cathode catalysts, carbon supported bimetallic nanoparticles with particle size of 2-3 nm were obtained. These materials were studied in terms of structure, morphology and composition by using XRD, XRF and TEM techniques. The oxygen reduction and methanol oxidation processes were in-situ investigated in a DMFC device. For the oxygen reduction, the electrochemical data obtained with the Pt-Fe/C catalyst were compared to those obtained in the presence of a Pt/C catalyst characterised by the same concentration of active phase on carbon and similar particle size. An enhancement of the DMFC single cell performance was recorded with the Pt-Fe/C catalyst. It was observed that the ionomer loading play a significant role in determining the performance of the DMFC. The highest power density was recorded with electrodes containing 25% Nafion loading (~90 mW cm-2 at 60 {degree sign}C).
ECS Transactions arrow_drop_down ECS TransactionsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.2214499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ECS Transactions arrow_drop_down ECS TransactionsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.2214499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2006 ItalyPublisher:The Electrochemical Society Di Blasi A; Baglio V; Stassi A; D'Urso C; Antonucci V; Arico AS;handle: 20.500.14243/224360
High surface area carbon supported bimetallic Pt-Fe and Pt-Ru alloy catalysts have been investigated for the oxygen electro- reduction and methanol oxidation , respectively, in low temperature direct methanol fuel cells (30-60 {degree sign}C). The cathode electrocatalyst was prepared by using a combination of colloidal and incipient wetness methods. For both anode and cathode catalysts, carbon supported bimetallic nanoparticles with particle size of 2-3 nm were obtained. These materials were studied in terms of structure, morphology and composition by using XRD, XRF and TEM techniques. The oxygen reduction and methanol oxidation processes were in-situ investigated in a DMFC device. For the oxygen reduction, the electrochemical data obtained with the Pt-Fe/C catalyst were compared to those obtained in the presence of a Pt/C catalyst characterised by the same concentration of active phase on carbon and similar particle size. An enhancement of the DMFC single cell performance was recorded with the Pt-Fe/C catalyst. It was observed that the ionomer loading play a significant role in determining the performance of the DMFC. The highest power density was recorded with electrodes containing 25% Nafion loading (~90 mW cm-2 at 60 {degree sign}C).
ECS Transactions arrow_drop_down ECS TransactionsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.2214499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ECS Transactions arrow_drop_down ECS TransactionsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.2214499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2015 ItalyA Stassi; V Baglio; D Sebastian; I Gatto; AS Aricò;handle: 20.500.14243/300909
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5e5d167982c58185abcde8958eca7611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5e5d167982c58185abcde8958eca7611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2015 ItalyA Stassi; V Baglio; D Sebastian; I Gatto; AS Aricò;handle: 20.500.14243/300909
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5e5d167982c58185abcde8958eca7611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5e5d167982c58185abcde8958eca7611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, NetherlandsPublisher:MDPI AG Negro E; Stassi A; Baglio V; Arico AS; Koper GJM;doi: 10.3390/catal5031622
handle: 20.500.14243/306576
Carbon graphitic structures that differ in morphology, graphiticity and specific surface area were used as support for platinum for Oxygen Reduction Reaction (ORR) in low temperature fuel cells. Graphitic supports were first non-covalently functionalized with pyrene carboxylic acid (PCA) and, subsequently, platinum nanoparticles were nucleated on the surface following procedures found in previous studies. Non-covalent functionalization has been proven to be advantageous because it allows for a better control of particle size and monodispersity, it prevents particle agglomeration since particles are bonded to the surface, and it does not affect the chemical and physical resistance of the support. Synthesized electrocatalysts were characterized by electrochemical half-cell studies, in order to evaluate the Electrochemically Active Surface Area (ECSA), ORR activity, and durability to potential cycling and corrosion resistance.
Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/3/1622/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5031622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/3/1622/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5031622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, NetherlandsPublisher:MDPI AG Negro E; Stassi A; Baglio V; Arico AS; Koper GJM;doi: 10.3390/catal5031622
handle: 20.500.14243/306576
Carbon graphitic structures that differ in morphology, graphiticity and specific surface area were used as support for platinum for Oxygen Reduction Reaction (ORR) in low temperature fuel cells. Graphitic supports were first non-covalently functionalized with pyrene carboxylic acid (PCA) and, subsequently, platinum nanoparticles were nucleated on the surface following procedures found in previous studies. Non-covalent functionalization has been proven to be advantageous because it allows for a better control of particle size and monodispersity, it prevents particle agglomeration since particles are bonded to the surface, and it does not affect the chemical and physical resistance of the support. Synthesized electrocatalysts were characterized by electrochemical half-cell studies, in order to evaluate the Electrochemically Active Surface Area (ECSA), ORR activity, and durability to potential cycling and corrosion resistance.
Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/3/1622/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5031622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/3/1622/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5031622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Funded by:MIURMIURDi Blasi A; Andaloro L; Siracusano S; Briguglio N; Brunaccini G; Stassi A; Arico AS; Antonucci V;handle: 20.500.14243/260896
[object Object]
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Funded by:MIURMIURDi Blasi A; Andaloro L; Siracusano S; Briguglio N; Brunaccini G; Stassi A; Arico AS; Antonucci V;handle: 20.500.14243/260896
[object Object]
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Italy, Argentina, ArgentinaPublisher:Springer Science and Business Media LLC Castro Luna AM; Bonesi A; Triaca WE; Di Blasi A; Stassi A; Baglio V; Antonucci V; Aricò AS;handle: 20.500.14243/224357 , 20.500.14243/77258
Three cathode catalysts (60% Pt/C, 30% Pt/C and 60% Pt–Fe/C), with a particle size of about 2–3 nm, were prepared to investigate the effect of ethanol cross-over on cathode surfaces. All samples were studied in terms of structure and morphology by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Their electrocatalytic behavior in terms of oxygen reduction reaction (ORR) was investigated and compared using a rotating disk electrode (RDE). The tolerance of cathode catalysts in the presence of ethanol was evaluated. The Pt–Fe/C catalyst showed both higher ORR activity and tolerance to ethanol cross-over than Pt/C catalysts. Moreover, the more promising catalysts were tested in 5 cm2 DEFC single cells at 60 and 80 °C. An improvement in single cell performance was observed in the presence of the Pt–Fe catalyst, due to an enhancement in the oxygen reduction kinetics. The maximum power density was 53 mW cm−2 at 2 bar rel. cathode pressure and 80 °C.
LAReferencia - Red F... arrow_drop_down Journal of Nanoparticle ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefServicio de Difusión de la Creación IntelectualArticle . 2010Data sources: Servicio de Difusión de la Creación Intelectualadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11051-009-9726-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Journal of Nanoparticle ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefServicio de Difusión de la Creación IntelectualArticle . 2010Data sources: Servicio de Difusión de la Creación Intelectualadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11051-009-9726-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Italy, Argentina, ArgentinaPublisher:Springer Science and Business Media LLC Castro Luna AM; Bonesi A; Triaca WE; Di Blasi A; Stassi A; Baglio V; Antonucci V; Aricò AS;handle: 20.500.14243/224357 , 20.500.14243/77258
Three cathode catalysts (60% Pt/C, 30% Pt/C and 60% Pt–Fe/C), with a particle size of about 2–3 nm, were prepared to investigate the effect of ethanol cross-over on cathode surfaces. All samples were studied in terms of structure and morphology by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Their electrocatalytic behavior in terms of oxygen reduction reaction (ORR) was investigated and compared using a rotating disk electrode (RDE). The tolerance of cathode catalysts in the presence of ethanol was evaluated. The Pt–Fe/C catalyst showed both higher ORR activity and tolerance to ethanol cross-over than Pt/C catalysts. Moreover, the more promising catalysts were tested in 5 cm2 DEFC single cells at 60 and 80 °C. An improvement in single cell performance was observed in the presence of the Pt–Fe catalyst, due to an enhancement in the oxygen reduction kinetics. The maximum power density was 53 mW cm−2 at 2 bar rel. cathode pressure and 80 °C.
LAReferencia - Red F... arrow_drop_down Journal of Nanoparticle ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefServicio de Difusión de la Creación IntelectualArticle . 2010Data sources: Servicio de Difusión de la Creación Intelectualadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11051-009-9726-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Journal of Nanoparticle ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefServicio de Difusión de la Creación IntelectualArticle . 2010Data sources: Servicio de Difusión de la Creación Intelectualadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11051-009-9726-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Fabio Matera; Alessandro Stassi; Vincenzo Antonucci; Antonino S. Aricò; A. Di Blasi; Vincenzo Baglio;Abstract An investigation of properties and operating parameters of a passive DMFC monopolar mini-stack, such as catalyst loading and methanol concentration, was carried out. From this analysis, it was derived that a proper Pt loading is necessary to achieve the best compromise between electrode thickness and number of catalytic sites for the anode and cathode reactions to occur at suitable rates. Methanol concentrations ranging from 1 M up to 10 M and an air-breathing operation mode were investigated. A maximum power of 225 mW was obtained at ambient conditions for a three-cell stack, with an active single cell area of 4 cm 2 , corresponding to a power density of about 20 mW cm −2 .
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Fabio Matera; Alessandro Stassi; Vincenzo Antonucci; Antonino S. Aricò; A. Di Blasi; Vincenzo Baglio;Abstract An investigation of properties and operating parameters of a passive DMFC monopolar mini-stack, such as catalyst loading and methanol concentration, was carried out. From this analysis, it was derived that a proper Pt loading is necessary to achieve the best compromise between electrode thickness and number of catalytic sites for the anode and cathode reactions to occur at suitable rates. Methanol concentrations ranging from 1 M up to 10 M and an air-breathing operation mode were investigated. A maximum power of 225 mW was obtained at ambient conditions for a three-cell stack, with an active single cell area of 4 cm 2 , corresponding to a power density of about 20 mW cm −2 .
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ItalyPublisher:MDPI AG Funded by:EC | IMPACTEC| IMPACTStassi Alessandro; Gatto Irene; Saccà Ada; Baglio Vincenzo; Aricò Antonino S;doi: 10.3390/en8087805
handle: 20.500.14243/295155
The use of Cs0.5H0.5PW12O40 insoluble salt as a superacid promoter in the catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC) has been investigated. An increase of performance has been recorded at intermediate temperatures (110–130 °C) and under low relative humidity (R.H.). The promoter appears to mitigate the ionomer dry-out effects in the catalytic layer and produces an increase of the extent of the catalyst-electrolyte interface as demonstrated by cyclic voltammetry analysis. These effects are also corroborated by a significant decrease of polarization resistance at intermediate temperatures. Such characteristics have been demonstrated for a conventional membrane-electrode assembly based on a Pt-Co alloy and a Nafion 115 membrane.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/7805/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en80...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8087805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/7805/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en80...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8087805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ItalyPublisher:MDPI AG Funded by:EC | IMPACTEC| IMPACTStassi Alessandro; Gatto Irene; Saccà Ada; Baglio Vincenzo; Aricò Antonino S;doi: 10.3390/en8087805
handle: 20.500.14243/295155
The use of Cs0.5H0.5PW12O40 insoluble salt as a superacid promoter in the catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC) has been investigated. An increase of performance has been recorded at intermediate temperatures (110–130 °C) and under low relative humidity (R.H.). The promoter appears to mitigate the ionomer dry-out effects in the catalytic layer and produces an increase of the extent of the catalyst-electrolyte interface as demonstrated by cyclic voltammetry analysis. These effects are also corroborated by a significant decrease of polarization resistance at intermediate temperatures. Such characteristics have been demonstrated for a conventional membrane-electrode assembly based on a Pt-Co alloy and a Nafion 115 membrane.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/7805/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en80...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8087805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/8/7805/pdfData sources: Multidisciplinary Digital Publishing Institutehttp://dx.doi.org/10.3390/en80...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8087805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG Funded by:EC | DURAMETEC| DURAMETSgroi MF; Zedde F; Barbera O; Stassi A; Sebastian D; Lufrano F; Baglio V; Arico AS; Bonde JL; Schuster M;doi: 10.3390/en9121008
handle: 20.500.14243/328880 , 2318/1887002
Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs). The concept of a direct methanol fuel cell (DMFC) is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs). In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET) was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1008/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1008/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG Funded by:EC | DURAMETEC| DURAMETSgroi MF; Zedde F; Barbera O; Stassi A; Sebastian D; Lufrano F; Baglio V; Arico AS; Bonde JL; Schuster M;doi: 10.3390/en9121008
handle: 20.500.14243/328880 , 2318/1887002
Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs). The concept of a direct methanol fuel cell (DMFC) is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs). In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET) was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1008/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1008/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2005 ItalyPublisher:Elsevier BV DUrso C; Baglio V; Di Blasi A; Stassi A; Aricò AS; Antonucci V; Licoccia S; Traversa E;handle: 20.500.14243/73157 , 20.500.14243/90694 , 2108/15189
TiO2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350mWcm-2 was achieved under oxygen feed at 145 oC in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO2 nano-particles based composite membranes.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2005Full-Text: http://hdl.handle.net/2108/15189Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2004.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 208 citations 208 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2005Full-Text: http://hdl.handle.net/2108/15189Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2004.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2005 ItalyPublisher:Elsevier BV DUrso C; Baglio V; Di Blasi A; Stassi A; Aricò AS; Antonucci V; Licoccia S; Traversa E;handle: 20.500.14243/73157 , 20.500.14243/90694 , 2108/15189
TiO2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350mWcm-2 was achieved under oxygen feed at 145 oC in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO2 nano-particles based composite membranes.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2005Full-Text: http://hdl.handle.net/2108/15189Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2004.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 208 citations 208 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2005Full-Text: http://hdl.handle.net/2108/15189Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2004.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:Elsevier BV Baglio V; Stassi A; Matera FV; Antonucci V; Aricò AS;handle: 20.500.14243/76469
Two designs of flow fields/current collectors for a passive direct methanol fuel cell (DMFC) monopolar three-cell stack were investigated. The first one (A) consisted of two plastic plates covered by thin gold film current collectors in the area of electrodes with a distribution of holes through which methanol (from a reservoir) and air (from ambient) could diffuse into the electrodes. The second design (B) consisted of thin gold film deposited on the external borders of the fuel and oxidant apertures where the electrodes were placed in contact. A big central hole allowed a direct exposure of electrodes to ambient air (for the cathodes) and methanol solution (for the anodes). An investigation of the performance and discharge behaviour of the two designs was carried out. The advantages and disadvantages of each configuration were analysed. Similar performances in terms of maximum power were recorded; whereas, better mass transport characteristics were obtained with the design B. On the contrary, open circuit voltage (OCV) and stack voltage at low current were higher for the design A as a consequence of lower methanol cross-over. A longer discharge time (17 h) with a unique MeOH charge was recorded with design B at 250 mA compared to the design A (5 h). This was attributed to an easier CO2 removal from the anode and better mass transport properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2008.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2008.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:Elsevier BV Baglio V; Stassi A; Matera FV; Antonucci V; Aricò AS;handle: 20.500.14243/76469
Two designs of flow fields/current collectors for a passive direct methanol fuel cell (DMFC) monopolar three-cell stack were investigated. The first one (A) consisted of two plastic plates covered by thin gold film current collectors in the area of electrodes with a distribution of holes through which methanol (from a reservoir) and air (from ambient) could diffuse into the electrodes. The second design (B) consisted of thin gold film deposited on the external borders of the fuel and oxidant apertures where the electrodes were placed in contact. A big central hole allowed a direct exposure of electrodes to ambient air (for the cathodes) and methanol solution (for the anodes). An investigation of the performance and discharge behaviour of the two designs was carried out. The advantages and disadvantages of each configuration were analysed. Similar performances in terms of maximum power were recorded; whereas, better mass transport characteristics were obtained with the design B. On the contrary, open circuit voltage (OCV) and stack voltage at low current were higher for the design A as a consequence of lower methanol cross-over. A longer discharge time (17 h) with a unique MeOH charge was recorded with design B at 250 mA compared to the design A (5 h). This was attributed to an easier CO2 removal from the anode and better mass transport properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2008.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2008.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2006 ItalyPublisher:The Electrochemical Society Di Blasi A; Baglio V; Stassi A; D'Urso C; Antonucci V; Arico AS;handle: 20.500.14243/224360
High surface area carbon supported bimetallic Pt-Fe and Pt-Ru alloy catalysts have been investigated for the oxygen electro- reduction and methanol oxidation , respectively, in low temperature direct methanol fuel cells (30-60 {degree sign}C). The cathode electrocatalyst was prepared by using a combination of colloidal and incipient wetness methods. For both anode and cathode catalysts, carbon supported bimetallic nanoparticles with particle size of 2-3 nm were obtained. These materials were studied in terms of structure, morphology and composition by using XRD, XRF and TEM techniques. The oxygen reduction and methanol oxidation processes were in-situ investigated in a DMFC device. For the oxygen reduction, the electrochemical data obtained with the Pt-Fe/C catalyst were compared to those obtained in the presence of a Pt/C catalyst characterised by the same concentration of active phase on carbon and similar particle size. An enhancement of the DMFC single cell performance was recorded with the Pt-Fe/C catalyst. It was observed that the ionomer loading play a significant role in determining the performance of the DMFC. The highest power density was recorded with electrodes containing 25% Nafion loading (~90 mW cm-2 at 60 {degree sign}C).
ECS Transactions arrow_drop_down ECS TransactionsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.2214499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ECS Transactions arrow_drop_down ECS TransactionsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.2214499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2006 ItalyPublisher:The Electrochemical Society Di Blasi A; Baglio V; Stassi A; D'Urso C; Antonucci V; Arico AS;handle: 20.500.14243/224360
High surface area carbon supported bimetallic Pt-Fe and Pt-Ru alloy catalysts have been investigated for the oxygen electro- reduction and methanol oxidation , respectively, in low temperature direct methanol fuel cells (30-60 {degree sign}C). The cathode electrocatalyst was prepared by using a combination of colloidal and incipient wetness methods. For both anode and cathode catalysts, carbon supported bimetallic nanoparticles with particle size of 2-3 nm were obtained. These materials were studied in terms of structure, morphology and composition by using XRD, XRF and TEM techniques. The oxygen reduction and methanol oxidation processes were in-situ investigated in a DMFC device. For the oxygen reduction, the electrochemical data obtained with the Pt-Fe/C catalyst were compared to those obtained in the presence of a Pt/C catalyst characterised by the same concentration of active phase on carbon and similar particle size. An enhancement of the DMFC single cell performance was recorded with the Pt-Fe/C catalyst. It was observed that the ionomer loading play a significant role in determining the performance of the DMFC. The highest power density was recorded with electrodes containing 25% Nafion loading (~90 mW cm-2 at 60 {degree sign}C).
ECS Transactions arrow_drop_down ECS TransactionsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.2214499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ECS Transactions arrow_drop_down ECS TransactionsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2006 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.2214499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2015 ItalyA Stassi; V Baglio; D Sebastian; I Gatto; AS Aricò;handle: 20.500.14243/300909
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5e5d167982c58185abcde8958eca7611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5e5d167982c58185abcde8958eca7611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2015 ItalyA Stassi; V Baglio; D Sebastian; I Gatto; AS Aricò;handle: 20.500.14243/300909
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5e5d167982c58185abcde8958eca7611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5e5d167982c58185abcde8958eca7611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, NetherlandsPublisher:MDPI AG Negro E; Stassi A; Baglio V; Arico AS; Koper GJM;doi: 10.3390/catal5031622
handle: 20.500.14243/306576
Carbon graphitic structures that differ in morphology, graphiticity and specific surface area were used as support for platinum for Oxygen Reduction Reaction (ORR) in low temperature fuel cells. Graphitic supports were first non-covalently functionalized with pyrene carboxylic acid (PCA) and, subsequently, platinum nanoparticles were nucleated on the surface following procedures found in previous studies. Non-covalent functionalization has been proven to be advantageous because it allows for a better control of particle size and monodispersity, it prevents particle agglomeration since particles are bonded to the surface, and it does not affect the chemical and physical resistance of the support. Synthesized electrocatalysts were characterized by electrochemical half-cell studies, in order to evaluate the Electrochemically Active Surface Area (ECSA), ORR activity, and durability to potential cycling and corrosion resistance.
Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/3/1622/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5031622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/3/1622/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5031622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, NetherlandsPublisher:MDPI AG Negro E; Stassi A; Baglio V; Arico AS; Koper GJM;doi: 10.3390/catal5031622
handle: 20.500.14243/306576
Carbon graphitic structures that differ in morphology, graphiticity and specific surface area were used as support for platinum for Oxygen Reduction Reaction (ORR) in low temperature fuel cells. Graphitic supports were first non-covalently functionalized with pyrene carboxylic acid (PCA) and, subsequently, platinum nanoparticles were nucleated on the surface following procedures found in previous studies. Non-covalent functionalization has been proven to be advantageous because it allows for a better control of particle size and monodispersity, it prevents particle agglomeration since particles are bonded to the surface, and it does not affect the chemical and physical resistance of the support. Synthesized electrocatalysts were characterized by electrochemical half-cell studies, in order to evaluate the Electrochemically Active Surface Area (ECSA), ORR activity, and durability to potential cycling and corrosion resistance.
Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/3/1622/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5031622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert Catalysts arrow_drop_down CatalystsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4344/5/3/1622/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal5031622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Funded by:MIURMIURDi Blasi A; Andaloro L; Siracusano S; Briguglio N; Brunaccini G; Stassi A; Arico AS; Antonucci V;handle: 20.500.14243/260896
[object Object]
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Funded by:MIURMIURDi Blasi A; Andaloro L; Siracusano S; Briguglio N; Brunaccini G; Stassi A; Arico AS; Antonucci V;handle: 20.500.14243/260896
[object Object]
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2012.10.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Italy, Argentina, ArgentinaPublisher:Springer Science and Business Media LLC Castro Luna AM; Bonesi A; Triaca WE; Di Blasi A; Stassi A; Baglio V; Antonucci V; Aricò AS;handle: 20.500.14243/224357 , 20.500.14243/77258
Three cathode catalysts (60% Pt/C, 30% Pt/C and 60% Pt–Fe/C), with a particle size of about 2–3 nm, were prepared to investigate the effect of ethanol cross-over on cathode surfaces. All samples were studied in terms of structure and morphology by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Their electrocatalytic behavior in terms of oxygen reduction reaction (ORR) was investigated and compared using a rotating disk electrode (RDE). The tolerance of cathode catalysts in the presence of ethanol was evaluated. The Pt–Fe/C catalyst showed both higher ORR activity and tolerance to ethanol cross-over than Pt/C catalysts. Moreover, the more promising catalysts were tested in 5 cm2 DEFC single cells at 60 and 80 °C. An improvement in single cell performance was observed in the presence of the Pt–Fe catalyst, due to an enhancement in the oxygen reduction kinetics. The maximum power density was 53 mW cm−2 at 2 bar rel. cathode pressure and 80 °C.
LAReferencia - Red F... arrow_drop_down Journal of Nanoparticle ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefServicio de Difusión de la Creación IntelectualArticle . 2010Data sources: Servicio de Difusión de la Creación Intelectualadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11051-009-9726-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Journal of Nanoparticle ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefServicio de Difusión de la Creación IntelectualArticle . 2010Data sources: Servicio de Difusión de la Creación Intelectualadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11051-009-9726-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Italy, Argentina, ArgentinaPublisher:Springer Science and Business Media LLC Castro Luna AM; Bonesi A; Triaca WE; Di Blasi A; Stassi A; Baglio V; Antonucci V; Aricò AS;handle: 20.500.14243/224357 , 20.500.14243/77258
Three cathode catalysts (60% Pt/C, 30% Pt/C and 60% Pt–Fe/C), with a particle size of about 2–3 nm, were prepared to investigate the effect of ethanol cross-over on cathode surfaces. All samples were studied in terms of structure and morphology by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Their electrocatalytic behavior in terms of oxygen reduction reaction (ORR) was investigated and compared using a rotating disk electrode (RDE). The tolerance of cathode catalysts in the presence of ethanol was evaluated. The Pt–Fe/C catalyst showed both higher ORR activity and tolerance to ethanol cross-over than Pt/C catalysts. Moreover, the more promising catalysts were tested in 5 cm2 DEFC single cells at 60 and 80 °C. An improvement in single cell performance was observed in the presence of the Pt–Fe catalyst, due to an enhancement in the oxygen reduction kinetics. The maximum power density was 53 mW cm−2 at 2 bar rel. cathode pressure and 80 °C.
LAReferencia - Red F... arrow_drop_down Journal of Nanoparticle ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefServicio de Difusión de la Creación IntelectualArticle . 2010Data sources: Servicio de Difusión de la Creación Intelectualadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11051-009-9726-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Journal of Nanoparticle ResearchArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefServicio de Difusión de la Creación IntelectualArticle . 2010Data sources: Servicio de Difusión de la Creación Intelectualadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11051-009-9726-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu