- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Netherlands, Netherlands, Belgium, France, United States, Germany, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | GHG EUROPEEC| GHG EUROPENiu, S.; Luo, Y.; Fei, S.; Yuan, W.; Schimel, D.; Ammann, C.; Arain, M. A.; Arneth, A.; Aubinet, M.; Bar, A.; Beringer, J.; Bernhofer, C.; Black, A. T.; Buchmann, N.; Cescatti, A.; Chen, J.; Davis, K. J.; Dellwik, E.; Desai, A. R.; Dolman, H.; Etzold, S.; Francois, L.; Gianelle, Damiano; Gielen, B.; Goldstein, A.; Groenendijk, M.; Gu, L.; Hanan, N.; Helfter, C.; Hirano, T.; Hollinger, D. Y.; Jones, M. B.; Kiely, G.; Kolb, T. E.; Kutsch, W. L.; Lafleur, P.; Law, B. E.; Lawrence, D. M.; Li, L.; Lindroth, A.; Litvak, M.; Loustau, D.; Lund, M.; Ma, S.; Marek, M.; Martin, T. A.; Matteucci, G.; Migliavacca, M.; Montagnani, L.; Moors, E.; Munger, J. W.; Noormets, A.; Oechel, W.; Olejnik, J.; Paw, U.; Pilegaard, K.; Rambal, S.; Raschi, A.; Saleska, S.; Scott, R. L.; Seufert, G.; Spano, D.; Stoy, P.; Sutton, M. A.; Varlagin, A.; Vesala, T.; Weng, E.; Wohlfahrt, G.; Yang, B.; Zhang, Z.; Zhou, X.;pmid: 22404566
handle: 20.500.14243/267221 , 11388/46728 , 10067/982430151162165141 , 10449/20975
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Germany, GermanyPublisher:Stockholm University Press Foken, Thomas; Babel, Wolfgang; Munger, J. William; Grönholm, Tiia; Vesala, Timo; Knohl, Alexander;handle: 10138/330559
Extensive studies are available that analyse time series of carbon dioxide and water flux measurements of FLUXNET sites over many years and link these results to climate change such as changes in atmospheric carbon dioxide concentration, air temperature and growing season length and other factors. Many of the sites show trends to a larger carbon uptake. Here we analyse time series of net ecosystem exchange, gross primary production, respiration, and evapotranspiration of four forest sites with particularly long measurement periods of about 20 years. The regular trends shown are interrupted by periods with higher or lower increases of carbon uptake. These breakpoints can be of very different origin and include forest decline, increased vegetation period, drought effects, heat waves, and changes in site heterogeneity. The influence of such breakpoints should be included in long-term studies of land-atmosphere exchange processes.
Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16000889.2021.1915648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16000889.2021.1915648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 France, Belgium, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | ICOS, NSERCEC| ICOS ,NSERCPiao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Peylin, Philippe; Reichstein, Markus; Luyssaert, Sebastiaan; Margolis, Hank; Fang, Jingyun; Barr, Alan; Chen, Anping; Grelle, Achim; Y. Hollinger, David; Laurila, Tuomas; Lindroth, Anders; D. Richardson, Andrew; Vesala, Timo;doi: 10.1038/nature06444
pmid: 18172494
The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring, with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades. A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity. These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future. Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn-to-winter carbon dioxide build-up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process-based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC degrees C(-1), offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2008License: CC BY NCFull-Text: https://cea.hal.science/cea-00945567Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2008License: CC BY NCFull-Text: https://cea.hal.science/cea-00945567Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature06444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 966 citations 966 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2008License: CC BY NCFull-Text: https://cea.hal.science/cea-00945567Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2008License: CC BY NCFull-Text: https://cea.hal.science/cea-00945567Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature06444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 FinlandPublisher:American Geophysical Union (AGU) Funded by:AKA | Carbon Cycle in Lake-Atmo..., EC | RINGO, AKA | ‘Centre of Excellence in ... +1 projectsAKA| Carbon Cycle in Lake-Atmosphere Continuum: Observations and modelling (CarLAC) ,EC| RINGO ,AKA| ‘Centre of Excellence in Atmospheric Science - From Molecular and Biolocigal processes to The Global Climate’ ,AKA| Support for Graduate School Physics, chemistry, biology and meteorology of atmospheric composition and climate changeTimo Vesala; Timo Huttula; Petri Kiuru; Petri Kiuru; Anne Ojala; Matti Kämäräinen; Jouni Heiskanen; Jouni Heiskanen; Ivan Mammarella;doi: 10.1029/2018jg004585
handle: 10138/307110
AbstractClimate change may have notable impacts on carbon cycling in freshwater ecosystems, especially in the boreal zone. Higher atmospheric temperature and changes in annual discharge patterns and carbon loading from the catchment affect the thermal and biogeochemical conditions in a lake. We developed an extension of a one‐dimensional process‐based lake model MyLake for simulating carbon dioxide (CO2) dynamics of a boreal lake. We calibrated the model for Lake Kuivajärvi, a small humic boreal lake, for the years 2013–2014, using the extensive data available on carbon inflow and concentrations of water column CO2 and dissolved organic carbon. The lake is a constant source of CO2 to the atmosphere in the present climate. We studied the potential effects of climate change‐induced warming on lake CO2 concentration and air‐water flux using downscaled air temperature data from three recent‐generation global climate models with two alternative representative concentration pathway forcing scenarios. Literature estimates were used for climate change impacts on the lake inflow. The scenario simulations showed a 20–35% increase in the CO2 flux from the lake to the atmosphere in the scenario period 2070–2099 compared to the control period 1980–2009. In addition, we estimated possible implications of different changes in terrestrial inorganic and organic carbon loadings to the lake. The scenarios with plausible increases of 10% and 20% in CO2 and dissolved organic carbon loadings, respectively, produced increases of 2.1–2.5% and 2.2–2.3% in the annual CO2 flux.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesConference objectData sources: OpenAPC Global InitiativeHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiJournal of Geophysical Research BiogeosciencesArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesConference objectData sources: OpenAPC Global InitiativeHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiJournal of Geophysical Research BiogeosciencesArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of), China (People's Republic of), China (People's Republic of), Finland, DenmarkPublisher:IOP Publishing Funded by:NSERC, AKA | Role of upland forest soi..., AKA | Centre of Excellence in A... +3 projectsNSERC ,AKA| Role of upland forest soils in regional methane balance: from catchment to global scales / Consortium: UPFORMET ,AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,NSF| LTER: Comparative Study of a Suite of Lakes in Wisconsin ,AKA| Carbon dynamics across Arctic landscape gradients: past, present and future (CAPTURE) / Consortium: CAPTURE ,EC| RINGOPavel Alekseychik; Daniel F. Nadeau; Brian D. Amiro; Vyacheslav Zyrianov; Allison L. Dunn; Manuel Helbig; Manuel Helbig; Mats Nilsson; Elena D. Lapshina; Annalea Lohila; Mika Korkiakoski; Mikaell Ottosson Löfvenius; Silvie Harder; Hiroki Ikawa; Christopher Schulze; Timo Vesala; Elyn Humphreys; Matthias Peichl; William L. Quinton; Nigel T. Roulet; Erin M. Nicholls; Anders Lindroth; Andrej Varlagin; Sean K. Carey; Ian B. Strachan; Richard M. Petrone; Eugénie S. Euskirchen; Lars Kutzbach; Oliver Sonnentag; Masahito Ueyama; Juha-Pekka Tuovinen; Michelle Garneau; Hiroki Iwata; Takeshi Ohta; Trofim C. Maximov; Ankur R. Desai; Alan G. Barr; Anatoly S. Prokushkin; Philip Marsh; Lawrence B. Flanagan; Pierre-Erik Isabelle; Paul A. Moore; Juliya Kurbatova; T. Andrew Black; Eeva-Stiina Tuittila; Mika Aurela; Jinshu Chi; Thomas Friborg; Martin Wilmking; Pierre Taillardat; Jiquan Chen; Benjamin R. K. Runkle; Benjamin R. K. Runkle; Rachhpal S. Jassal; Ivan Mammarella; Jessica Turner; James M. Waddington; Michal Heliasz; Achim Grelle;handle: 10138/321067
Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests—the dominant boreal forest type—and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.
Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 Germany, France, France, France, France, France, France, Italy, France, ItalyPublisher:Wiley Giorgio Matteucci; Alexander Knohl; Alexander Knohl; Nina Buchmann; M. Aubinet; Markus Reichstein; Markus Reichstein; Philippe Ciais; Arnaud Carrara; Sibyll Schaphoff; Jean-François Soussana; Kim Pilegaard; Jukka Pumpanen; Bernard Heinesch; Wolfgang Cramer; Riccardo Valentini; Franco Miglietta; Denis Loustau; Thomas Grünwald; Ch. Bernhofer; Guenther Seufert; Timo Vesala; Dario Papale; Jérôme Ogée; Werner L. Kutsch; Serge Rambal; Giovanni Manca; María José Sanz; Maosheng Zhao; Vincent Allard; Nicolas Viovy; Steven W. Running; Jean-Marc Ourcival; André Granier; Martin Heimann;handle: 20.500.14243/154540
AbstractThe European CARBOEUROPE/FLUXNET monitoring sites, spatial remote sensing observations via the EOS‐MODIS sensor and ecosystem modelling provide independent and complementary views on the effect of the 2003 heatwave on the European biosphere's productivity and carbon balance. In our analysis, these data streams consistently demonstrate a strong negative anomaly of the primary productivity during the summer of 2003. FLUXNET eddy‐covariance data indicate that the drop in productivity was not primarily caused by high temperatures (‘heat stress’) but rather by limitation of water (drought stress) and that, contrary to the classical expectation about a heat wave, not only gross primary productivity but also ecosystem respiration declined by up to more than to 80 gC m−2 month−1. Anomalies of carbon and water fluxes were strongly correlated. While there are large between‐site differences in water‐use efficiency (WUE, 1–6 kg C kg−1 H2O) here defined as gross carbon uptake divided by evapotranspiration (WUE=GPP/ET), the year‐to‐year changes in WUE were small (<1 g kg−1) and quite similar for most sites (i.e. WUE decreased during the year of the heatwave). Remote sensing data from MODIS and AVHRR both indicate a strong negative anomaly of the fraction of absorbed photosynthetically active radiation in summer 2003, at more than five standard deviations of the previous years. The spatial differentiation of this anomaly follows climatic and land‐use patterns: Largest anomalies occur in the centre of the meteorological anomaly (central Western Europe) and in areas dominated by crops or grassland. A preliminary model intercomparison along a gradient from data‐oriented models to process‐oriented models indicates that all approaches are similarly describing the spatial pattern of ecosystem sensitivity to the climatic 2003 event with major exceptions in the Alps and parts of Eastern Europe, but differed with respect to their interannual variability.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2007License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01224.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 495 citations 495 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2007License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01224.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Germany, Italy, United States, Italy, Italy, Italy, United States, Denmark, United States, United Kingdom, NetherlandsPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:EC | ICE-ARC, AKA | ICOS - Integrated Carbon ..., NSF | CAREER: Contrasting envir... +6 projectsEC| ICE-ARC ,AKA| ICOS - Integrated Carbon Observation System ,NSF| CAREER: Contrasting environmental controls on regional CO2 and CH4 biogeochemistry-Research and education for placing global change in a regional, local context ,RSF| The development of ecosystem spatial-temporal thermodynamics theory and methods of thermodynamic variables measurement ,AKA| Towards comprehensive understanding of surface layer exchange processes of biogenic volatile organic compounds ,NSERC ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| Measurement and Analysis of Methane Fluxes in a Northern Peatland Ecosystem ,NWO| Long term observation of soil carbon and methane fluxes in Siberian tundra.Ana Meijide; Arjan Hensen; Elmar Veenendaal; Magnus Lund; Magnus Lund; A. J. Dolman; Thomas Friborg; Derrick Y.F. Lai; Tuomas Laurila; Barbara Marcolla; Janne Rinne; Janne Rinne; Pertti J. Martikainen; Lawrence B. Flanagan; Alessandro Cescatti; Christian Bernhofer; Annalea Lohila; Andrej Varlagin; Torben R. Christensen; Torben R. Christensen; Dennis D. Baldocchi; Marcin Jackowicz-Korczynski; Narasinha J. Shurpali; Nigel T. Roulet; Thomas Grünwald; Walter C. Oechel; Juha-Pekka Tuovinen; Ute Skiba; Chiara A. R. Corradi; Gerard Kiely; Shashi B. Verma; Mika Aurela; A.P. Schrier-Uijl; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; A.M.R. Petrescu; Matteo Sottocornola; Jacobus van Huissteden; Carsten Grüning; Torsten Sachs; Mikhail Mastepanov; Mikhail Mastepanov; Lutz Merbold; Elyn Humphreys; Ankur R. Desai; Jaclyn Hatala Matthes; Timo Vesala; Donatella Zona; Donatella Zona; Mikkel P. Tamstorf;pmid: 25831506
pmc: PMC4403212
Significance Wetlands are unique ecosystems because they are in general sinks for carbon dioxide and sources of methane. Their climate footprint therefore depends on the relative sign and magnitude of the land–atmosphere exchange of these two major greenhouse gases. This work presents a synthesis of simultaneous measurements of carbon dioxide and methane fluxes to assess the radiative forcing of natural wetlands converted to agricultural or forested land. The net climate impact of wetlands is strongly dependent on whether they are natural or managed. Here we show that the conversion of natural wetlands produces a significant increase of the atmospheric radiative forcing. The findings suggest that management plans for these complex ecosystems should carefully account for the potential biogeochemical effects on climate.
Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/46g0003pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Copenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2015eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 189 citations 189 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/46g0003pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Copenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2015eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 FinlandPublisher:Stockholm University Press Funded by:EC | ICOS, AKA | Carbon dioxide, heat and ...EC| ICOS ,AKA| Carbon dioxide, heat and water exchanges in urban climateAuthors: Nordbo, Annika; Jarvi, Leena; Vesala, Timo;handle: 10138/162025
Eddy covariance (EC) measurements of turbulent fluxes of momentum, sensible heat and latent heat – in addition to net radiation measurements – were conducted for three consecutive years in an urban environment: Helsinki, Finland. The aims were to: (1) quantify the detection limit and random uncertainty of turbulent fluxes, (2) assess the systematic error caused by EC calculation-procedure choices on the energy balance residual and (3) report the energy balance of the world's northernmost urban flux station. The mean detection limits were about 10% of the observed flux, and the random uncertainty was 9–16%. Of all fluxes, the latent heat flux – as measured with a closed-path gas analyser – was most prone to systematic calculation errors due to water vapour interactions with tube walls: using a lag window that is too small can cause a 15% lack of data (due to the dependency of lag time on relative humidity) and omitting spectral corrections can cause on average a 26% underestimation of the flux. The systematic errors in EC calculation propagate into the energy balance residual and can be larger than the residual itself: for example, omitting spectral corrections overestimates the residual by 13% or 18% on average, depending on the analyser.Keywords: eddy covariance; urban; energy balance; flux uncertainty; flux error(Published: 19 April 2012)Citation: Tellus B 2012, 64, 18184, http://dx.doi.org/10.3402/tellusb.v64i0.18184
Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2012Data sources: Co-Action PublishingTellus: Series B, Chemical and Physical MeteorologyArticle . 2012 . Peer-reviewedData sources: CrossrefTellus: Series B, Chemical and Physical MeteorologyArticleLicense: CC BY NCData sources: UnpayWallHELDA - Digital Repository of the University of HelsinkiArticle . 2016 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkihttp://dx.doi.org/10.3402/tell...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3402/tellusb.v64i0.18184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2012Data sources: Co-Action PublishingTellus: Series B, Chemical and Physical MeteorologyArticle . 2012 . Peer-reviewedData sources: CrossrefTellus: Series B, Chemical and Physical MeteorologyArticleLicense: CC BY NCData sources: UnpayWallHELDA - Digital Repository of the University of HelsinkiArticle . 2016 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkihttp://dx.doi.org/10.3402/tell...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3402/tellusb.v64i0.18184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 FinlandPublisher:Copernicus GmbH Funded by:AKA | Effect of fast cycling ca...AKA| Effect of fast cycling carbon on the decomposition of old soil organic matter (FASTCARBON)Hannele Hakola; Jukka Pumpanen; Sirpa Rasmus; Jaana Bäck; Timo Vesala; Hermanni Aaltonen; Hermanni Aaltonen;handle: 10138/162303
Abstract. Soil forms an important source for volatile organic compounds (VOCs), but in boreal forests these fluxes and their seasonal variations have not been characterized in detail, especially wintertime fluxes, which are almost completely unstudied. In this study, we measured the VOC concentrations inside a snowpack in a boreal Scots pine (Pinus sylvestris L.) forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from the soil surface towards the snow surface, suggesting soil as being the source for terpenoids. Forest damages resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are also active and efficient VOC sources during winter and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, basically plants, have lower activity.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2016 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-527-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2016 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-527-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Netherlands, Netherlands, Belgium, France, United States, Germany, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | GHG EUROPEEC| GHG EUROPENiu, S.; Luo, Y.; Fei, S.; Yuan, W.; Schimel, D.; Ammann, C.; Arain, M. A.; Arneth, A.; Aubinet, M.; Bar, A.; Beringer, J.; Bernhofer, C.; Black, A. T.; Buchmann, N.; Cescatti, A.; Chen, J.; Davis, K. J.; Dellwik, E.; Desai, A. R.; Dolman, H.; Etzold, S.; Francois, L.; Gianelle, Damiano; Gielen, B.; Goldstein, A.; Groenendijk, M.; Gu, L.; Hanan, N.; Helfter, C.; Hirano, T.; Hollinger, D. Y.; Jones, M. B.; Kiely, G.; Kolb, T. E.; Kutsch, W. L.; Lafleur, P.; Law, B. E.; Lawrence, D. M.; Li, L.; Lindroth, A.; Litvak, M.; Loustau, D.; Lund, M.; Ma, S.; Marek, M.; Martin, T. A.; Matteucci, G.; Migliavacca, M.; Montagnani, L.; Moors, E.; Munger, J. W.; Noormets, A.; Oechel, W.; Olejnik, J.; Paw, U.; Pilegaard, K.; Rambal, S.; Raschi, A.; Saleska, S.; Scott, R. L.; Seufert, G.; Spano, D.; Stoy, P.; Sutton, M. A.; Varlagin, A.; Vesala, T.; Weng, E.; Wohlfahrt, G.; Yang, B.; Zhang, Z.; Zhou, X.;pmid: 22404566
handle: 20.500.14243/267221 , 11388/46728 , 10067/982430151162165141 , 10449/20975
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Germany, GermanyPublisher:Stockholm University Press Foken, Thomas; Babel, Wolfgang; Munger, J. William; Grönholm, Tiia; Vesala, Timo; Knohl, Alexander;handle: 10138/330559
Extensive studies are available that analyse time series of carbon dioxide and water flux measurements of FLUXNET sites over many years and link these results to climate change such as changes in atmospheric carbon dioxide concentration, air temperature and growing season length and other factors. Many of the sites show trends to a larger carbon uptake. Here we analyse time series of net ecosystem exchange, gross primary production, respiration, and evapotranspiration of four forest sites with particularly long measurement periods of about 20 years. The regular trends shown are interrupted by periods with higher or lower increases of carbon uptake. These breakpoints can be of very different origin and include forest decline, increased vegetation period, drought effects, heat waves, and changes in site heterogeneity. The influence of such breakpoints should be included in long-term studies of land-atmosphere exchange processes.
Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16000889.2021.1915648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Göttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16000889.2021.1915648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 France, Belgium, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | ICOS, NSERCEC| ICOS ,NSERCPiao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Peylin, Philippe; Reichstein, Markus; Luyssaert, Sebastiaan; Margolis, Hank; Fang, Jingyun; Barr, Alan; Chen, Anping; Grelle, Achim; Y. Hollinger, David; Laurila, Tuomas; Lindroth, Anders; D. Richardson, Andrew; Vesala, Timo;doi: 10.1038/nature06444
pmid: 18172494
The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring, with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades. A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity. These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future. Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn-to-winter carbon dioxide build-up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process-based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC degrees C(-1), offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2008License: CC BY NCFull-Text: https://cea.hal.science/cea-00945567Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2008License: CC BY NCFull-Text: https://cea.hal.science/cea-00945567Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature06444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 966 citations 966 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2008License: CC BY NCFull-Text: https://cea.hal.science/cea-00945567Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2008License: CC BY NCFull-Text: https://cea.hal.science/cea-00945567Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature06444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 FinlandPublisher:American Geophysical Union (AGU) Funded by:AKA | Carbon Cycle in Lake-Atmo..., EC | RINGO, AKA | ‘Centre of Excellence in ... +1 projectsAKA| Carbon Cycle in Lake-Atmosphere Continuum: Observations and modelling (CarLAC) ,EC| RINGO ,AKA| ‘Centre of Excellence in Atmospheric Science - From Molecular and Biolocigal processes to The Global Climate’ ,AKA| Support for Graduate School Physics, chemistry, biology and meteorology of atmospheric composition and climate changeTimo Vesala; Timo Huttula; Petri Kiuru; Petri Kiuru; Anne Ojala; Matti Kämäräinen; Jouni Heiskanen; Jouni Heiskanen; Ivan Mammarella;doi: 10.1029/2018jg004585
handle: 10138/307110
AbstractClimate change may have notable impacts on carbon cycling in freshwater ecosystems, especially in the boreal zone. Higher atmospheric temperature and changes in annual discharge patterns and carbon loading from the catchment affect the thermal and biogeochemical conditions in a lake. We developed an extension of a one‐dimensional process‐based lake model MyLake for simulating carbon dioxide (CO2) dynamics of a boreal lake. We calibrated the model for Lake Kuivajärvi, a small humic boreal lake, for the years 2013–2014, using the extensive data available on carbon inflow and concentrations of water column CO2 and dissolved organic carbon. The lake is a constant source of CO2 to the atmosphere in the present climate. We studied the potential effects of climate change‐induced warming on lake CO2 concentration and air‐water flux using downscaled air temperature data from three recent‐generation global climate models with two alternative representative concentration pathway forcing scenarios. Literature estimates were used for climate change impacts on the lake inflow. The scenario simulations showed a 20–35% increase in the CO2 flux from the lake to the atmosphere in the scenario period 2070–2099 compared to the control period 1980–2009. In addition, we estimated possible implications of different changes in terrestrial inorganic and organic carbon loadings to the lake. The scenarios with plausible increases of 10% and 20% in CO2 and dissolved organic carbon loadings, respectively, produced increases of 2.1–2.5% and 2.2–2.3% in the annual CO2 flux.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesConference objectData sources: OpenAPC Global InitiativeHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiJournal of Geophysical Research BiogeosciencesArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesConference objectData sources: OpenAPC Global InitiativeHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiJournal of Geophysical Research BiogeosciencesArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of), China (People's Republic of), China (People's Republic of), Finland, DenmarkPublisher:IOP Publishing Funded by:NSERC, AKA | Role of upland forest soi..., AKA | Centre of Excellence in A... +3 projectsNSERC ,AKA| Role of upland forest soils in regional methane balance: from catchment to global scales / Consortium: UPFORMET ,AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,NSF| LTER: Comparative Study of a Suite of Lakes in Wisconsin ,AKA| Carbon dynamics across Arctic landscape gradients: past, present and future (CAPTURE) / Consortium: CAPTURE ,EC| RINGOPavel Alekseychik; Daniel F. Nadeau; Brian D. Amiro; Vyacheslav Zyrianov; Allison L. Dunn; Manuel Helbig; Manuel Helbig; Mats Nilsson; Elena D. Lapshina; Annalea Lohila; Mika Korkiakoski; Mikaell Ottosson Löfvenius; Silvie Harder; Hiroki Ikawa; Christopher Schulze; Timo Vesala; Elyn Humphreys; Matthias Peichl; William L. Quinton; Nigel T. Roulet; Erin M. Nicholls; Anders Lindroth; Andrej Varlagin; Sean K. Carey; Ian B. Strachan; Richard M. Petrone; Eugénie S. Euskirchen; Lars Kutzbach; Oliver Sonnentag; Masahito Ueyama; Juha-Pekka Tuovinen; Michelle Garneau; Hiroki Iwata; Takeshi Ohta; Trofim C. Maximov; Ankur R. Desai; Alan G. Barr; Anatoly S. Prokushkin; Philip Marsh; Lawrence B. Flanagan; Pierre-Erik Isabelle; Paul A. Moore; Juliya Kurbatova; T. Andrew Black; Eeva-Stiina Tuittila; Mika Aurela; Jinshu Chi; Thomas Friborg; Martin Wilmking; Pierre Taillardat; Jiquan Chen; Benjamin R. K. Runkle; Benjamin R. K. Runkle; Rachhpal S. Jassal; Ivan Mammarella; Jessica Turner; James M. Waddington; Michal Heliasz; Achim Grelle;handle: 10138/321067
Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests—the dominant boreal forest type—and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.
Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 Germany, France, France, France, France, France, France, Italy, France, ItalyPublisher:Wiley Giorgio Matteucci; Alexander Knohl; Alexander Knohl; Nina Buchmann; M. Aubinet; Markus Reichstein; Markus Reichstein; Philippe Ciais; Arnaud Carrara; Sibyll Schaphoff; Jean-François Soussana; Kim Pilegaard; Jukka Pumpanen; Bernard Heinesch; Wolfgang Cramer; Riccardo Valentini; Franco Miglietta; Denis Loustau; Thomas Grünwald; Ch. Bernhofer; Guenther Seufert; Timo Vesala; Dario Papale; Jérôme Ogée; Werner L. Kutsch; Serge Rambal; Giovanni Manca; María José Sanz; Maosheng Zhao; Vincent Allard; Nicolas Viovy; Steven W. Running; Jean-Marc Ourcival; André Granier; Martin Heimann;handle: 20.500.14243/154540
AbstractThe European CARBOEUROPE/FLUXNET monitoring sites, spatial remote sensing observations via the EOS‐MODIS sensor and ecosystem modelling provide independent and complementary views on the effect of the 2003 heatwave on the European biosphere's productivity and carbon balance. In our analysis, these data streams consistently demonstrate a strong negative anomaly of the primary productivity during the summer of 2003. FLUXNET eddy‐covariance data indicate that the drop in productivity was not primarily caused by high temperatures (‘heat stress’) but rather by limitation of water (drought stress) and that, contrary to the classical expectation about a heat wave, not only gross primary productivity but also ecosystem respiration declined by up to more than to 80 gC m−2 month−1. Anomalies of carbon and water fluxes were strongly correlated. While there are large between‐site differences in water‐use efficiency (WUE, 1–6 kg C kg−1 H2O) here defined as gross carbon uptake divided by evapotranspiration (WUE=GPP/ET), the year‐to‐year changes in WUE were small (<1 g kg−1) and quite similar for most sites (i.e. WUE decreased during the year of the heatwave). Remote sensing data from MODIS and AVHRR both indicate a strong negative anomaly of the fraction of absorbed photosynthetically active radiation in summer 2003, at more than five standard deviations of the previous years. The spatial differentiation of this anomaly follows climatic and land‐use patterns: Largest anomalies occur in the centre of the meteorological anomaly (central Western Europe) and in areas dominated by crops or grassland. A preliminary model intercomparison along a gradient from data‐oriented models to process‐oriented models indicates that all approaches are similarly describing the spatial pattern of ecosystem sensitivity to the climatic 2003 event with major exceptions in the Alps and parts of Eastern Europe, but differed with respect to their interannual variability.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2007License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01224.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 495 citations 495 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2007License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01224.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Germany, Italy, United States, Italy, Italy, Italy, United States, Denmark, United States, United Kingdom, NetherlandsPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:EC | ICE-ARC, AKA | ICOS - Integrated Carbon ..., NSF | CAREER: Contrasting envir... +6 projectsEC| ICE-ARC ,AKA| ICOS - Integrated Carbon Observation System ,NSF| CAREER: Contrasting environmental controls on regional CO2 and CH4 biogeochemistry-Research and education for placing global change in a regional, local context ,RSF| The development of ecosystem spatial-temporal thermodynamics theory and methods of thermodynamic variables measurement ,AKA| Towards comprehensive understanding of surface layer exchange processes of biogenic volatile organic compounds ,NSERC ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| Measurement and Analysis of Methane Fluxes in a Northern Peatland Ecosystem ,NWO| Long term observation of soil carbon and methane fluxes in Siberian tundra.Ana Meijide; Arjan Hensen; Elmar Veenendaal; Magnus Lund; Magnus Lund; A. J. Dolman; Thomas Friborg; Derrick Y.F. Lai; Tuomas Laurila; Barbara Marcolla; Janne Rinne; Janne Rinne; Pertti J. Martikainen; Lawrence B. Flanagan; Alessandro Cescatti; Christian Bernhofer; Annalea Lohila; Andrej Varlagin; Torben R. Christensen; Torben R. Christensen; Dennis D. Baldocchi; Marcin Jackowicz-Korczynski; Narasinha J. Shurpali; Nigel T. Roulet; Thomas Grünwald; Walter C. Oechel; Juha-Pekka Tuovinen; Ute Skiba; Chiara A. R. Corradi; Gerard Kiely; Shashi B. Verma; Mika Aurela; A.P. Schrier-Uijl; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; A.M.R. Petrescu; Matteo Sottocornola; Jacobus van Huissteden; Carsten Grüning; Torsten Sachs; Mikhail Mastepanov; Mikhail Mastepanov; Lutz Merbold; Elyn Humphreys; Ankur R. Desai; Jaclyn Hatala Matthes; Timo Vesala; Donatella Zona; Donatella Zona; Mikkel P. Tamstorf;pmid: 25831506
pmc: PMC4403212
Significance Wetlands are unique ecosystems because they are in general sinks for carbon dioxide and sources of methane. Their climate footprint therefore depends on the relative sign and magnitude of the land–atmosphere exchange of these two major greenhouse gases. This work presents a synthesis of simultaneous measurements of carbon dioxide and methane fluxes to assess the radiative forcing of natural wetlands converted to agricultural or forested land. The net climate impact of wetlands is strongly dependent on whether they are natural or managed. Here we show that the conversion of natural wetlands produces a significant increase of the atmospheric radiative forcing. The findings suggest that management plans for these complex ecosystems should carefully account for the potential biogeochemical effects on climate.
Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/46g0003pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Copenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2015eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 189 citations 189 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/46g0003pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Copenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2015eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 FinlandPublisher:Stockholm University Press Funded by:EC | ICOS, AKA | Carbon dioxide, heat and ...EC| ICOS ,AKA| Carbon dioxide, heat and water exchanges in urban climateAuthors: Nordbo, Annika; Jarvi, Leena; Vesala, Timo;handle: 10138/162025
Eddy covariance (EC) measurements of turbulent fluxes of momentum, sensible heat and latent heat – in addition to net radiation measurements – were conducted for three consecutive years in an urban environment: Helsinki, Finland. The aims were to: (1) quantify the detection limit and random uncertainty of turbulent fluxes, (2) assess the systematic error caused by EC calculation-procedure choices on the energy balance residual and (3) report the energy balance of the world's northernmost urban flux station. The mean detection limits were about 10% of the observed flux, and the random uncertainty was 9–16%. Of all fluxes, the latent heat flux – as measured with a closed-path gas analyser – was most prone to systematic calculation errors due to water vapour interactions with tube walls: using a lag window that is too small can cause a 15% lack of data (due to the dependency of lag time on relative humidity) and omitting spectral corrections can cause on average a 26% underestimation of the flux. The systematic errors in EC calculation propagate into the energy balance residual and can be larger than the residual itself: for example, omitting spectral corrections overestimates the residual by 13% or 18% on average, depending on the analyser.Keywords: eddy covariance; urban; energy balance; flux uncertainty; flux error(Published: 19 April 2012)Citation: Tellus B 2012, 64, 18184, http://dx.doi.org/10.3402/tellusb.v64i0.18184
Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2012Data sources: Co-Action PublishingTellus: Series B, Chemical and Physical MeteorologyArticle . 2012 . Peer-reviewedData sources: CrossrefTellus: Series B, Chemical and Physical MeteorologyArticleLicense: CC BY NCData sources: UnpayWallHELDA - Digital Repository of the University of HelsinkiArticle . 2016 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkihttp://dx.doi.org/10.3402/tell...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3402/tellusb.v64i0.18184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2012Data sources: Co-Action PublishingTellus: Series B, Chemical and Physical MeteorologyArticle . 2012 . Peer-reviewedData sources: CrossrefTellus: Series B, Chemical and Physical MeteorologyArticleLicense: CC BY NCData sources: UnpayWallHELDA - Digital Repository of the University of HelsinkiArticle . 2016 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkihttp://dx.doi.org/10.3402/tell...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3402/tellusb.v64i0.18184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 FinlandPublisher:Copernicus GmbH Funded by:AKA | Effect of fast cycling ca...AKA| Effect of fast cycling carbon on the decomposition of old soil organic matter (FASTCARBON)Hannele Hakola; Jukka Pumpanen; Sirpa Rasmus; Jaana Bäck; Timo Vesala; Hermanni Aaltonen; Hermanni Aaltonen;handle: 10138/162303
Abstract. Soil forms an important source for volatile organic compounds (VOCs), but in boreal forests these fluxes and their seasonal variations have not been characterized in detail, especially wintertime fluxes, which are almost completely unstudied. In this study, we measured the VOC concentrations inside a snowpack in a boreal Scots pine (Pinus sylvestris L.) forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from the soil surface towards the snow surface, suggesting soil as being the source for terpenoids. Forest damages resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are also active and efficient VOC sources during winter and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, basically plants, have lower activity.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2016 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-527-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2016 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-527-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu