- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Zafirovska, I; Juhl, MK; Ciesla, A; Evans, R; Trupke, T;handle: 1959.4/unsworks_58228
Abstract Performance monitoring of crystalline silicon solar cells often requires terminal voltage measurements, which are strongly influenced by the sample temperature via the large temperature dependence of the intrinsic carrier density. The impact of sample temperature variations can be corrected for by using the temperature coefficient of the terminal voltage, however this relies on having both accurate values for the temperature coefficient and accurate measurements of the sample temperature. This paper demonstrates that in situations where the sample temperature cannot be accurately measured, for example in some high volume production facilities or during module degradation experiments, implied voltages determined from either electroluminescence or photoluminescence provide a more accurate measure of sample performance than the terminal voltage. The results presented here show that implied voltages exhibit a temperature sensitivity that is one order of magnitude lower than that of the terminal voltage. This is largely due to the fact that luminescence intensity is not strongly temperature dependent around room temperature. This is confirmed by experimental temperature dependent measurements on four different crystalline silicon solar cell types. The benefit of using implied voltage measurements over temperature corrected terminal voltage measurements for the monitoring of light and elevated temperature induced degradation in silicon solar modules is demonstrated.
UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_58228Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_58228Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Early Career Re..., ARC | Innovative high-efficienc...ARC| Discovery Early Career Researcher Award - Grant ID: DE150100268 ,ARC| Innovative high-efficiency hybrid technology for commercial solar cellsWang, S; Mai, L; Wenham, A; Hameiri, Z; Payne, D; Chan, C; Hallam, B; Sugianto, A; Chong, CM; Ji, J; Shi, Z; Wenham, S;handle: 1959.4/unsworks_45506
Abstract Both buried contact solar cells (BCSC) and laser doped selective emitter (LDSE) solar cells have achieved considerable success in large-scale manufacturing. Both technologies are based on plated contacts. High metal aspect ratios achieved by BCSC allow low shading loss while the buried metal contacts in the grooves provide good contact adhesion strength. In comparison, although the LDSE cell achieves significantly higher efficiencies and is a much simpler approach for forming the selective emitter region and self-aligned metal plating, the metal adhesion strength falls well short of that achieved by the BCSC. Recent studies show that plated contacts based on the latter can be more durable than screen-printed contacts. This work introduces a new concept of laser doping with grooving to form narrow grooves with heavily doped walls in a simultaneous step, with the self-aligned metal contact subsequently formed by plating. This process capitalizes on the benefits of both BCSC and LDSE cells. The laser-doped grooves are only 3–5 µm wide and 10–15 µm deep; the very steep walls of these grooves remain exposed even after the subsequent deposition of the antireflection coating (ARC). This unique feature significantly reduces the formation of laser-induced defects since the stress due to the thermal expansion mismatch between the ARC and silicon is avoided. Furthermore, the exposed walls allow nucleation of the subsequent metal plating. This novel structure also benefits from greatly enhanced adhesion of the plated contact due to it being buried underneath the silicon surface in the same way as the BCSC. Cell efficiencies over 19% are achieved by using this technology on p -type Czochralski (Cz) wafers with a full area aluminum (Al) back surface field (BSF) rear contact. It is expected that much higher voltages and consequently higher efficiencies could be achieved if this technology is combined with a passivated rear approach.
UNSWorks arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170100620Ran Chen; Hongbo Tong; Haitao Zhu; Chao Ding; Hua Li; Daniel Chen; Brett Hallam; Chee Mun Chong; Stuart Wenham; Alison Ciesla;doi: 10.1002/pip.3243
AbstractLONGi Solar Energy Technology Co. Ltd. has achieved 23.83% for a commercial p‐type Cz PERC cell. From a batch of over 40 000 cells, the average line efficiency achieved was 22.5%. R&D studies investigating hydrogenation and degradation show the importance of hydrogenation processes for efficiency improvements and controlling the hydrogen to prevent light‐induced degradation. Such degradation is shown to appear very differently under different illumination and temperature conditions. This degradation impacts VOC, ISC, and especially fill factor. Current injection and thermal anneal can be used to recover the degradation, but the recovery may not be stable. Reducing the hydrogen content within the cell is shown to minimise degradation without sacrificing performance, provided that enough hydrogen is retained to passivate boron‐oxygen defects.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Ran Chen; Matthew Wright; Daniel Chen; Jie Yang; Peiting Zheng; Xinyu Zhang; Stuart Wenham; Alison Ciesla;doi: 10.1002/pip.3464
AbstractTunnelling oxide passivated contact (TOPCon) solar cells are gaining significant commercial interest, due to the potential for high efficiency. Industrially, this passivated contact scheme is typically coupled with an n‐type Czochralski (Cz) wafer. JinkoSolar Holding Co., Ltd. is one of the leading manufacturers that are producing n‐type TOPCon solar cells (referred to as ‘HOT’ cells) on a commercial scale. In this work, the influence of a post‐cell hydrogenation step, using illumination from an LED light source, on the performance and stability of n‐type TOPCon solar cells is investigated. The incorporation of this additional hydrogenation treatment led to an average efficiency enhancement of 0.64%abs on a batch of 50 cells made in an industrial environment. This significant improvement was caused by a 6.9 mV and 1.04%abs increase in open‐circuit voltage (VOC) and fill factor (FF), respectively. We also assessed the stability and found almost no light‐ and elevated temperature‐induced degradation (LeTID) in hydrogenated n‐type TOPCon cells. Testing at 70 ± 5°C under 1‐sun illumination revealed that the maximum degradation is limited to 0.06%rel. Following further stability testing, the efficiency increased beyond the initial value, up to 0.4%rel increase after 120 h. By incorporating this hydrogenation process into the production, an average line efficiency of 24.08% and VOC of 707.5 mV was achieved. The champion cell from the batch displayed an efficiency of 24.58%, as certified by measurement at the Chinese Academy of Sciences.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Alison Ciesla; Moonyong Kim; Matthew Wright; Iskra Zafirovska; Daniel Chen; Brett Hallam; Catherine Chan;doi: 10.1002/pip.3455
AbstractLight‐ and elevated temperature‐induced degradation (LeTID) can have significant and long‐lasting effects on silicon photovoltaic modules. Its behaviour is complex, showing highly variable degradation under different conditions or due to minor changes in device fabrication. Here, we show the large difference in LeTID kinetics and extents in multi‐crystalline passivated emitter and rear cell (multi‐PERC) modules from four different manufacturers. Varied accelerated testing conditions are found to impact the maximum extent of degradation in different ways for different manufacturers complicating the ability to develop a universal predictive model for field degradation. Relative changes in the open‐circuit voltage (VOC) have previously been used to assess extents of LeTID; however, due to the greater impact of the defect at lower injection, the VOC is shown to degrade less than half as much as the voltage at maximum power point (VMPP). The MPP current (IMPP) and fill factor (FF) also degrade significantly, having an even larger overall impact on the power output. These observations imply that currently employed methodologies for testing LeTID are inadequate, which limits the reliability of future predictive models. In light of this, the field must develop a more holistic approach to analysing LeTID‐impacted modules, which incorporates information about changes under MPP conditions. This will allow for a much clearer understanding of LeTID in the field, which will assist the performance of future PV systems.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170100620Varshney, U; Chan, C; Hoex, B; Hallam, B; Hamer, P; Ciesla, A; Chen, D; Liu, S; Sen, C; Samadi, A; Abbott, M;handle: 1959.4/unsworks_65333
In this article, we investigate the extent of lifetime degradation attributed to light- and elevated-temperature-induced degradation (LeTID) in p- type multicrystalline silicon wafers passivated with different configurations of hydrogenated silicon nitride (SiNx:H) and aluminum oxide (AlOx:H). We also demonstrate a significant difference between AlOx:H layers grown by atomic layer deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD) with respect to the extent of LeTID. When ALD AlOx:H is placed underneath a PECVD SiNx:H layer, as used in a passivated emitter and rear solar cell, a lower extent of LeTID is observed compared with the case when a single PECVD SiNx:H layer is used. On the other hand, the LeTID extent is significantly increased when an ALD AlOx:H is grown on top of the PECVD SiNx:H film. Remarkably, when a PECVD AlOx:H is used underneath the PECVD SiNx:H film, an increase in the LeTID extent is observed. Building on our current understanding of LeTID, we explain these results with the role of ALD AlOx:H in impeding the hydrogen diffusion from the dielectric stack into the c-Si bulk, while PECVD AlOx:H seems to act as an additional hydrogen source. These observations support the hypothesis that hydrogen is playing a key role in LeTID and provide solar cell manufacturers with a new method to reduce LeTID in their solar cells.
UNSWorks arrow_drop_down UNSWorksArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_65333Data sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2945199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_65333Data sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2945199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170100620Daniel Chen; Michelle Vaqueiro Contreras; Alison Ciesla; Phillip Hamer; Brett Hallam; Malcolm Abbott; Catherine Chan;doi: 10.1002/pip.3362
handle: 1959.4/unsworks_73331
AbstractAt present, the commercially dominant and rapidly expanding PV‐device technology is based on the passivated emitter and rear cell (PERC) design developed at UNSW. However, this technology has been found to suffer from a carrier‐induced degradation commonly referred to as ‘light‐ and elevated temperature‐induced degradation’ (LeTID) and can result in up to 16% relative performance losses. LeTID was recently shown to occur in almost every type of silicon wafer, independent of the doping material. Even though the degradation mechanism is known to recover under normal operation conditions, it is a lengthy process that drastically affects the energy yield, stability and, ultimately, the levelized cost of electricity (LCOE) of installed systems. Despite the joint effort of many research groups, the root cause of the degradation is still unknown. Here, we provide an overview of the existing literature and describe key LeTID characteristics and how these have led to the development of various theories of the underlying mechanism. Further, given the continuously appearing and strong evidence of hydrogen involvement in LeTID, many mitigation methods concerning hydrogenation have been suggested. We discuss such reported methods, bearing in mind crucial consumer necessities in terms of sustained cell performance and minimised LCOE.
UNSWorks arrow_drop_down UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_73331Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_73331Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Wang, S; Mai, L; Ciesla, A; Hameiri, Z; Payne, D; Chan, C; Hallam, B; Chong, CM; Ji, J; Shi, Z; Wenham, S;handle: 1959.4/unsworks_57026
Abstract In this work, we investigate the use of advanced hydrogenation and low-temperature diffusion processes (a 3 h 700 °C process after emitter diffusion) for the electrical neutralization of laser-induced defects for laser doped and grooved solar cells. Despite the laser doping and grooving (LDG) process being performed before silicon nitride passivation to avoid thermal expansion mismatch between the silicon and the silicon nitride layer, some crystallographic defects are still formed during the process. The application of a low-temperature diffusion process increases implied open circuit voltages by 14 mV, potentially due to phosphorus diffusion of dislocated regions induced during laser processing. Laser hydrogenation is shown to be capable of passivating the majority of the remaining laser-induced defects. Over 1% absolute improvement in efficiency is achieved on cells with a full area aluminum back surface field. Preliminary results with minimal optimization demonstrate efficiencies of over 19% with a full area Al back contact cell. The potential to achieve much higher voltages when used with a passivated rear is also demonstrated.
UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_57026Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_57026Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170100620Authors: Brett J. Hallam; Phill G. Hamer; Alison M. Ciesla née Wenham; Catherine E. Chan; +2 AuthorsBrett J. Hallam; Phill G. Hamer; Alison M. Ciesla née Wenham; Catherine E. Chan; Bruno Vicari Stefani; Stuart Wenham;doi: 10.1002/pip.3240
AbstractThe understanding and development of advanced hydrogenation processes for silicon solar cells are presented. Hydrogen passivation is incorporated into virtually all silicon solar cells, yet the properties of hydrogen in silicon are still poorly understood. This is largely due to the complex behaviour of hydrogen in silicon and its ability to exist in many different forms in the lattice. For commercial solar cells, hydrogen is introduced into the device through the deposition of hydrogen‐containing dielectric layers and the subsequent metallisation firing process. This process can readily passivate structural defects such as grain boundaries but is ineffective at passivating numerous defects in silicon solar cells such as the boron‐oxygen complex, responsible for light‐induced degradation in p‐type Czochralski silicon. This difficulty is due to the need to first form the boron‐oxygen defect and also due to atomic hydrogen naturally occupying low‐mobility and low‐reactivity charge states. However, these challenges can be overcome using advanced hydrogenation processes incorporating excess carrier generation from illumination or current injection that increase the concentration of the highly mobile and reactive neutral charge state. As a result, after fast firing, additional low‐temperature advanced hydrogenation processes incorporating illumination can be implemented to enable the passivation of difficult defects like the boron‐oxygen complex. With the implementation of such processes for industrial silicon solar cells, efficiency improvements of 1.1% absolute can be obtained.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Alison Ciesla; Ran Chen; Sisi Wang; Jingjia Ji; Zhengrong Shi; Ly Mai; Catherine Chan; Brett Hallam; CheeMun Chong; Stuart Wenham; Martin Green;doi: 10.1002/pip.2986
AbstractA common concern regarding plated contacts to solar cells is the adhesion strength. In this work, laser‐formed anchor points have been applied to Suntech Power's PLUTO passivated emitter and rear cells. Voltages as high as 696 mV have been achieved, showing the ability of a laser‐doped selective emitter at the front surface and localized contacts at the rear when combined with the hydrogenation of defects to reduce the device dark saturation current to well below current norms for commercial passivated emitter and rear cells. The simple hydrogen passivation process applied during sintering appears to facilitate the high voltages by significantly reducing recombination associated with the p‐type Cz wafer and laser‐induced defects formed during laser doping. The same hydrogenation process almost entirely eliminates the damage caused by laser ablation in forming the anchor points. With 50% anchor point coverage (more than necessary for adhesion equivalent to or stronger than screen‐printed contacts), an average VOC of 693 mV was achieved, with an average current of 40.5 mA/cm2, average device efficiency of 20.2%, and a single best cell of 20.5% efficiency. These cells also exhibit excellent contact adhesion and pass all thermal cycling and damp‐heat testing according to IEC 61215.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallProgress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallProgress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Zafirovska, I; Juhl, MK; Ciesla, A; Evans, R; Trupke, T;handle: 1959.4/unsworks_58228
Abstract Performance monitoring of crystalline silicon solar cells often requires terminal voltage measurements, which are strongly influenced by the sample temperature via the large temperature dependence of the intrinsic carrier density. The impact of sample temperature variations can be corrected for by using the temperature coefficient of the terminal voltage, however this relies on having both accurate values for the temperature coefficient and accurate measurements of the sample temperature. This paper demonstrates that in situations where the sample temperature cannot be accurately measured, for example in some high volume production facilities or during module degradation experiments, implied voltages determined from either electroluminescence or photoluminescence provide a more accurate measure of sample performance than the terminal voltage. The results presented here show that implied voltages exhibit a temperature sensitivity that is one order of magnitude lower than that of the terminal voltage. This is largely due to the fact that luminescence intensity is not strongly temperature dependent around room temperature. This is confirmed by experimental temperature dependent measurements on four different crystalline silicon solar cell types. The benefit of using implied voltage measurements over temperature corrected terminal voltage measurements for the monitoring of light and elevated temperature induced degradation in silicon solar modules is demonstrated.
UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_58228Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_58228Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Early Career Re..., ARC | Innovative high-efficienc...ARC| Discovery Early Career Researcher Award - Grant ID: DE150100268 ,ARC| Innovative high-efficiency hybrid technology for commercial solar cellsWang, S; Mai, L; Wenham, A; Hameiri, Z; Payne, D; Chan, C; Hallam, B; Sugianto, A; Chong, CM; Ji, J; Shi, Z; Wenham, S;handle: 1959.4/unsworks_45506
Abstract Both buried contact solar cells (BCSC) and laser doped selective emitter (LDSE) solar cells have achieved considerable success in large-scale manufacturing. Both technologies are based on plated contacts. High metal aspect ratios achieved by BCSC allow low shading loss while the buried metal contacts in the grooves provide good contact adhesion strength. In comparison, although the LDSE cell achieves significantly higher efficiencies and is a much simpler approach for forming the selective emitter region and self-aligned metal plating, the metal adhesion strength falls well short of that achieved by the BCSC. Recent studies show that plated contacts based on the latter can be more durable than screen-printed contacts. This work introduces a new concept of laser doping with grooving to form narrow grooves with heavily doped walls in a simultaneous step, with the self-aligned metal contact subsequently formed by plating. This process capitalizes on the benefits of both BCSC and LDSE cells. The laser-doped grooves are only 3–5 µm wide and 10–15 µm deep; the very steep walls of these grooves remain exposed even after the subsequent deposition of the antireflection coating (ARC). This unique feature significantly reduces the formation of laser-induced defects since the stress due to the thermal expansion mismatch between the ARC and silicon is avoided. Furthermore, the exposed walls allow nucleation of the subsequent metal plating. This novel structure also benefits from greatly enhanced adhesion of the plated contact due to it being buried underneath the silicon surface in the same way as the BCSC. Cell efficiencies over 19% are achieved by using this technology on p -type Czochralski (Cz) wafers with a full area aluminum (Al) back surface field (BSF) rear contact. It is expected that much higher voltages and consequently higher efficiencies could be achieved if this technology is combined with a passivated rear approach.
UNSWorks arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170100620Ran Chen; Hongbo Tong; Haitao Zhu; Chao Ding; Hua Li; Daniel Chen; Brett Hallam; Chee Mun Chong; Stuart Wenham; Alison Ciesla;doi: 10.1002/pip.3243
AbstractLONGi Solar Energy Technology Co. Ltd. has achieved 23.83% for a commercial p‐type Cz PERC cell. From a batch of over 40 000 cells, the average line efficiency achieved was 22.5%. R&D studies investigating hydrogenation and degradation show the importance of hydrogenation processes for efficiency improvements and controlling the hydrogen to prevent light‐induced degradation. Such degradation is shown to appear very differently under different illumination and temperature conditions. This degradation impacts VOC, ISC, and especially fill factor. Current injection and thermal anneal can be used to recover the degradation, but the recovery may not be stable. Reducing the hydrogen content within the cell is shown to minimise degradation without sacrificing performance, provided that enough hydrogen is retained to passivate boron‐oxygen defects.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Ran Chen; Matthew Wright; Daniel Chen; Jie Yang; Peiting Zheng; Xinyu Zhang; Stuart Wenham; Alison Ciesla;doi: 10.1002/pip.3464
AbstractTunnelling oxide passivated contact (TOPCon) solar cells are gaining significant commercial interest, due to the potential for high efficiency. Industrially, this passivated contact scheme is typically coupled with an n‐type Czochralski (Cz) wafer. JinkoSolar Holding Co., Ltd. is one of the leading manufacturers that are producing n‐type TOPCon solar cells (referred to as ‘HOT’ cells) on a commercial scale. In this work, the influence of a post‐cell hydrogenation step, using illumination from an LED light source, on the performance and stability of n‐type TOPCon solar cells is investigated. The incorporation of this additional hydrogenation treatment led to an average efficiency enhancement of 0.64%abs on a batch of 50 cells made in an industrial environment. This significant improvement was caused by a 6.9 mV and 1.04%abs increase in open‐circuit voltage (VOC) and fill factor (FF), respectively. We also assessed the stability and found almost no light‐ and elevated temperature‐induced degradation (LeTID) in hydrogenated n‐type TOPCon cells. Testing at 70 ± 5°C under 1‐sun illumination revealed that the maximum degradation is limited to 0.06%rel. Following further stability testing, the efficiency increased beyond the initial value, up to 0.4%rel increase after 120 h. By incorporating this hydrogenation process into the production, an average line efficiency of 24.08% and VOC of 707.5 mV was achieved. The champion cell from the batch displayed an efficiency of 24.58%, as certified by measurement at the Chinese Academy of Sciences.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Alison Ciesla; Moonyong Kim; Matthew Wright; Iskra Zafirovska; Daniel Chen; Brett Hallam; Catherine Chan;doi: 10.1002/pip.3455
AbstractLight‐ and elevated temperature‐induced degradation (LeTID) can have significant and long‐lasting effects on silicon photovoltaic modules. Its behaviour is complex, showing highly variable degradation under different conditions or due to minor changes in device fabrication. Here, we show the large difference in LeTID kinetics and extents in multi‐crystalline passivated emitter and rear cell (multi‐PERC) modules from four different manufacturers. Varied accelerated testing conditions are found to impact the maximum extent of degradation in different ways for different manufacturers complicating the ability to develop a universal predictive model for field degradation. Relative changes in the open‐circuit voltage (VOC) have previously been used to assess extents of LeTID; however, due to the greater impact of the defect at lower injection, the VOC is shown to degrade less than half as much as the voltage at maximum power point (VMPP). The MPP current (IMPP) and fill factor (FF) also degrade significantly, having an even larger overall impact on the power output. These observations imply that currently employed methodologies for testing LeTID are inadequate, which limits the reliability of future predictive models. In light of this, the field must develop a more holistic approach to analysing LeTID‐impacted modules, which incorporates information about changes under MPP conditions. This will allow for a much clearer understanding of LeTID in the field, which will assist the performance of future PV systems.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170100620Varshney, U; Chan, C; Hoex, B; Hallam, B; Hamer, P; Ciesla, A; Chen, D; Liu, S; Sen, C; Samadi, A; Abbott, M;handle: 1959.4/unsworks_65333
In this article, we investigate the extent of lifetime degradation attributed to light- and elevated-temperature-induced degradation (LeTID) in p- type multicrystalline silicon wafers passivated with different configurations of hydrogenated silicon nitride (SiNx:H) and aluminum oxide (AlOx:H). We also demonstrate a significant difference between AlOx:H layers grown by atomic layer deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD) with respect to the extent of LeTID. When ALD AlOx:H is placed underneath a PECVD SiNx:H layer, as used in a passivated emitter and rear solar cell, a lower extent of LeTID is observed compared with the case when a single PECVD SiNx:H layer is used. On the other hand, the LeTID extent is significantly increased when an ALD AlOx:H is grown on top of the PECVD SiNx:H film. Remarkably, when a PECVD AlOx:H is used underneath the PECVD SiNx:H film, an increase in the LeTID extent is observed. Building on our current understanding of LeTID, we explain these results with the role of ALD AlOx:H in impeding the hydrogen diffusion from the dielectric stack into the c-Si bulk, while PECVD AlOx:H seems to act as an additional hydrogen source. These observations support the hypothesis that hydrogen is playing a key role in LeTID and provide solar cell manufacturers with a new method to reduce LeTID in their solar cells.
UNSWorks arrow_drop_down UNSWorksArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_65333Data sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2945199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_65333Data sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2945199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170100620Daniel Chen; Michelle Vaqueiro Contreras; Alison Ciesla; Phillip Hamer; Brett Hallam; Malcolm Abbott; Catherine Chan;doi: 10.1002/pip.3362
handle: 1959.4/unsworks_73331
AbstractAt present, the commercially dominant and rapidly expanding PV‐device technology is based on the passivated emitter and rear cell (PERC) design developed at UNSW. However, this technology has been found to suffer from a carrier‐induced degradation commonly referred to as ‘light‐ and elevated temperature‐induced degradation’ (LeTID) and can result in up to 16% relative performance losses. LeTID was recently shown to occur in almost every type of silicon wafer, independent of the doping material. Even though the degradation mechanism is known to recover under normal operation conditions, it is a lengthy process that drastically affects the energy yield, stability and, ultimately, the levelized cost of electricity (LCOE) of installed systems. Despite the joint effort of many research groups, the root cause of the degradation is still unknown. Here, we provide an overview of the existing literature and describe key LeTID characteristics and how these have led to the development of various theories of the underlying mechanism. Further, given the continuously appearing and strong evidence of hydrogen involvement in LeTID, many mitigation methods concerning hydrogenation have been suggested. We discuss such reported methods, bearing in mind crucial consumer necessities in terms of sustained cell performance and minimised LCOE.
UNSWorks arrow_drop_down UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_73331Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_73331Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Wang, S; Mai, L; Ciesla, A; Hameiri, Z; Payne, D; Chan, C; Hallam, B; Chong, CM; Ji, J; Shi, Z; Wenham, S;handle: 1959.4/unsworks_57026
Abstract In this work, we investigate the use of advanced hydrogenation and low-temperature diffusion processes (a 3 h 700 °C process after emitter diffusion) for the electrical neutralization of laser-induced defects for laser doped and grooved solar cells. Despite the laser doping and grooving (LDG) process being performed before silicon nitride passivation to avoid thermal expansion mismatch between the silicon and the silicon nitride layer, some crystallographic defects are still formed during the process. The application of a low-temperature diffusion process increases implied open circuit voltages by 14 mV, potentially due to phosphorus diffusion of dislocated regions induced during laser processing. Laser hydrogenation is shown to be capable of passivating the majority of the remaining laser-induced defects. Over 1% absolute improvement in efficiency is achieved on cells with a full area aluminum back surface field. Preliminary results with minimal optimization demonstrate efficiencies of over 19% with a full area Al back contact cell. The potential to achieve much higher voltages when used with a passivated rear is also demonstrated.
UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_57026Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_57026Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170100620Authors: Brett J. Hallam; Phill G. Hamer; Alison M. Ciesla née Wenham; Catherine E. Chan; +2 AuthorsBrett J. Hallam; Phill G. Hamer; Alison M. Ciesla née Wenham; Catherine E. Chan; Bruno Vicari Stefani; Stuart Wenham;doi: 10.1002/pip.3240
AbstractThe understanding and development of advanced hydrogenation processes for silicon solar cells are presented. Hydrogen passivation is incorporated into virtually all silicon solar cells, yet the properties of hydrogen in silicon are still poorly understood. This is largely due to the complex behaviour of hydrogen in silicon and its ability to exist in many different forms in the lattice. For commercial solar cells, hydrogen is introduced into the device through the deposition of hydrogen‐containing dielectric layers and the subsequent metallisation firing process. This process can readily passivate structural defects such as grain boundaries but is ineffective at passivating numerous defects in silicon solar cells such as the boron‐oxygen complex, responsible for light‐induced degradation in p‐type Czochralski silicon. This difficulty is due to the need to first form the boron‐oxygen defect and also due to atomic hydrogen naturally occupying low‐mobility and low‐reactivity charge states. However, these challenges can be overcome using advanced hydrogenation processes incorporating excess carrier generation from illumination or current injection that increase the concentration of the highly mobile and reactive neutral charge state. As a result, after fast firing, additional low‐temperature advanced hydrogenation processes incorporating illumination can be implemented to enable the passivation of difficult defects like the boron‐oxygen complex. With the implementation of such processes for industrial silicon solar cells, efficiency improvements of 1.1% absolute can be obtained.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3240&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Alison Ciesla; Ran Chen; Sisi Wang; Jingjia Ji; Zhengrong Shi; Ly Mai; Catherine Chan; Brett Hallam; CheeMun Chong; Stuart Wenham; Martin Green;doi: 10.1002/pip.2986
AbstractA common concern regarding plated contacts to solar cells is the adhesion strength. In this work, laser‐formed anchor points have been applied to Suntech Power's PLUTO passivated emitter and rear cells. Voltages as high as 696 mV have been achieved, showing the ability of a laser‐doped selective emitter at the front surface and localized contacts at the rear when combined with the hydrogenation of defects to reduce the device dark saturation current to well below current norms for commercial passivated emitter and rear cells. The simple hydrogen passivation process applied during sintering appears to facilitate the high voltages by significantly reducing recombination associated with the p‐type Cz wafer and laser‐induced defects formed during laser doping. The same hydrogenation process almost entirely eliminates the damage caused by laser ablation in forming the anchor points. With 50% anchor point coverage (more than necessary for adhesion equivalent to or stronger than screen‐printed contacts), an average VOC of 693 mV was achieved, with an average current of 40.5 mA/cm2, average device efficiency of 20.2%, and a single best cell of 20.5% efficiency. These cells also exhibit excellent contact adhesion and pass all thermal cycling and damp‐heat testing according to IEC 61215.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallProgress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallProgress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu