- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors:Tao Wu;
Ashak Mahmud Parvez;
Ashak Mahmud Parvez;Ashak Mahmud Parvez
Ashak Mahmud Parvez in OpenAIRETianbiao He;
+3 AuthorsTianbiao He
Tianbiao He in OpenAIRETao Wu;
Ashak Mahmud Parvez;
Ashak Mahmud Parvez;Ashak Mahmud Parvez
Ashak Mahmud Parvez in OpenAIRETianbiao He;
Muhammad T. Afzal;Tianbiao He
Tianbiao He in OpenAIRESannia Mareta;
Sannia Mareta
Sannia Mareta in OpenAIREMing Zhai;
Ming Zhai
Ming Zhai in OpenAIREAbstract The application of microwave energy in biomass pyrolysis has gained increasing interest due to its fast, volumetric, selective and efficient heating. However, the dominance may be levelled off if the energy and exergy efficiencies of overall system are taken into consideration. Hence, based on the lab-scale experimental data (at 600, 700 and 800 °C), energy and exergetic assessment of pyrolysis-derived gas, char and oil from gumwood under conventional and microwave heating were investigated in this work. The results showed that at each temperature, the corresponding energy and exergy rates of gas under microwave heating were found to be 23% and 26%, respectively, higher than those of conventional one. Meanwhile, the values for char were around 46%. This was mostly because microwave-derived pyrolysis product contained more gaseous and char products compared to the conventional process. In contrast, opposite trend was noticed for bio-oil due to the reduction of oil yield in pyrolysis product. It was demonstrated that the total energy and exergy value of individual pyrolysis products were significantly influenced by the energy and exergy content of individual component. For example, the increment rate of energy and exergy values of H2 and CH4 were sufficiently higher than the decrement rate of energy and exergy values of CO and CO2 with the increase of temperature; the total values were consequently increased at the elevated temperature. For the case of char and oil, the energy and exergy rate were decreased with temperature due to the reduction of individual product yield. Pyrolysis system efficiency (PSE), the overall performance indicator used in this study, of the microwave-assisted process was 13.5% higher than that of the conventional process. Moreover, the experimental results were further analysed with the conduct of a hydrogen plant simulation using Aspen Plus™ whose results confirmed that an improved performance of microwave heated system was achieved by producing 120 gH2/kg gumwood, 15% higher compared to that of conventional system.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2018.11.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2018.11.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Jie Ma;
Xudong Song; Ben Zhang; Ning Mao;Jie Ma
Jie Ma in OpenAIRETianbiao He;
Tianbiao He
Tianbiao He in OpenAIREEnergy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:Ponnivalavan Babu;
Zheng Rong Chong;Ponnivalavan Babu
Ponnivalavan Babu in OpenAIRETianbiao He;
Tianbiao He
Tianbiao He in OpenAIREPraveen Linga;
+1 AuthorsPraveen Linga
Praveen Linga in OpenAIREPonnivalavan Babu;
Zheng Rong Chong;Ponnivalavan Babu
Ponnivalavan Babu in OpenAIRETianbiao He;
Tianbiao He
Tianbiao He in OpenAIREPraveen Linga;
Praveen Linga
Praveen Linga in OpenAIREJia-nan Zheng;
Jia-nan Zheng
Jia-nan Zheng in OpenAIREAbstract Water scarcity is viewed as the top global risk for the next decade. One way to resolve water shortage is desalination which expends energy to derive fresh water from the vast amount of saline water. While the current desalination technologies are matured and reliable, desalinating seawater is still an energy intensive process, necessitating research for new generation desalination technology with lower energy consumption. Previously, our group proposed an innovative hydrate based desalination utilizing LNG cold energy (ColdEn-HyDesal) which reported a low specific energy consumption of 0.84 kWh/m3. In this work, we further evaluate the economic feasibility of ColdEn-HyDesal in Singapore. With a regasification rate of 200 t/h, the ColdEn-HyDesal facility simulated in this study produces 260 m3 water per hour. Through a comprehensive evaluation of the capital and operating costs, we observed significant reduction in the levelized cost of water (LCOW) from $9.31/m3 to $1.11/m3 with cold energy integration. The effect of water recovery rate, plant capacity and geological locations were analysed. Finally, the costs of water via the ColdEn-HyDesal process at various scales were benchmarked with matured desalination technologies, revealing that ColdEn-HyDesal technology is economically favourable at larger scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.desal.2019.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.desal.2019.04.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors:Tianbiao He;
Tianbiao He
Tianbiao He in OpenAIREYonglin Ju;
Yonglin Ju
Yonglin Ju in OpenAIREAbstract The utilization of unconventional natural gas is still a great challenge for China due to its distribution locations and small reserves. Thus, liquefying the unconventional natural gas by using small-scale LNG plant in skid-mount packages is a good choice with great economic benefits. A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale plant in skid-mount packages has been proposed. It first designs a process configuration. Then, thermodynamic analysis of the process is conducted. Next, an optimization model with genetic algorithm method is developed to optimize the process. Finally, the flexibilities of the process are tested by two different feed gases. In conclusion, the proposed parallel nitrogen expansion liquefaction process can be used in small-scale LNG plant in skid-mount packages with high exergy efficiency and great economic benefits.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.07.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.07.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors:Tianbiao He;
Tianbiao He
Tianbiao He in OpenAIREYonglin Ju;
Yonglin Ju
Yonglin Ju in OpenAIREAbstract A novel process for small-scale pipeline natural gas liquefaction is designed and presented. The novel process can utilize the pressure exergy of the pipeline to liquefy a part of natural gas without any energy consumption. The thermodynamic analysis including mass, energy balance and exergy analysis are adopted in this paper. The liquefaction rate and exergy utilization rate are chosen as the objective functions. Several key parameters are optimized to approach the maximum liquefaction rate and exergy utilization rate. The optimization results showed that the maximum liquefaction rate is 12.61% and the maximum exergy utilization rate is 0.1961. What is more, the economic performances of the process are also discussed and compared by using the maximum liquefaction rate and exergy utilization rate as indexes. In conclusion, the novel process is suitable for pressure exergy utilization due to its simplicity, zero energy consumption and short payback period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Moonyong Lee; Kinza Qadeer; Sanggyu Lee;Tianbiao He;
+2 AuthorsTianbiao He
Tianbiao He in OpenAIREMoonyong Lee; Kinza Qadeer; Sanggyu Lee;Tianbiao He;
Ning Mao;Tianbiao He
Tianbiao He in OpenAIREMuhammad Abdul Qyyum;
Muhammad Abdul Qyyum
Muhammad Abdul Qyyum in OpenAIREAbstract Typical liquefaction processes are considered to be energy and cost-intensive. The dual mixed refrigerant (DMR) process (with two independent refrigeration cycles for cooling and subcooling) produces liquefied natural gas (LNG) at relatively high energy efficiency. However, it exhibits a high degree of configurational complexity and high sensitivity to operational conditions, and it also incurs a large capital investment. These factors eventually reduce the overall competitiveness of the liquefaction process, particularly for offshore applications. To address these issues, an energy- and cost-efficient dual-effect single mixed refrigerant (DSMR) process is proposed herein, and it employs a single loop refrigeration cycle to generate the dual cooling and subcooling effect, separately. The DMR process and the proposed DSMR process are simulated (with same design parameters) using well-known commercial simulator Aspen Hysys v10. Then, both processes are optimized using modified coordinate descent algorithm. The specific energy consumption of DSMR is 0.284 kWh/kg-NG, which is equivalent to an energy saving of 22.89% when compared to the conventional DMR process. The exergy efficiency of DSMR is 36.62%, which is 29.67% higher than that of the classical DMR process. Furthermore, the economic feasibility of the proposed DSMR process is evaluated in terms of its total annualized cost, which is 18.52% lower than that of the DMR process. Thus, the proposed DSMR process offers remarkable energy and exergy efficiencies with minimal capital investment. Therefore, DSMR could replace the classical DMR process, as well as other complex mixed refrigerant-based liquefaction processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Yuan Wang; Yutao Wang;Tianbiao He;
Tianbiao He
Tianbiao He in OpenAIRENing Mao;
Ning Mao
Ning Mao in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Yonglin Ju;
Yonglin Ju
Yonglin Ju in OpenAIRETianbiao He;
Tianbiao He
Tianbiao He in OpenAIREAbstract The selection of liquefaction process is of great significance for distributed-scale LNG (liquefied natural gas) plant. This paper proposes four configuration strategies of expansion liquefaction cycle for distributed-scale LNG plant, namely multistage expanders, single precooling cycle, regeneration and mixture working fluid. FOM (figure of merit) is applied to evaluate the liquefaction cycles for distributed-scale LNG plant. Sixteen feasible liquefaction cycles are configured based on the configuration strategies and then optimized by genetic algorithm to maximum FOM for optimal synthesis. The cost analysis and exergy analysis of system are investigated. The optimized liquefaction process (Case 8) has two cycles, namely R410A precooling cycle and parallel nitrogen expansion cycle. The results show that the FOM of the optimized liquefaction cycle is 0.566 for distributed-scale LNG plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.05.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.05.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:Tianbiao He;
Moonyong Lee;Tianbiao He
Tianbiao He in OpenAIREAlam Nawaz;
Alam Nawaz
Alam Nawaz in OpenAIREFaisal Ahmed;
+1 AuthorsFaisal Ahmed
Faisal Ahmed in OpenAIRETianbiao He;
Moonyong Lee;Tianbiao He
Tianbiao He in OpenAIREAlam Nawaz;
Alam Nawaz
Alam Nawaz in OpenAIREFaisal Ahmed;
Faisal Ahmed
Faisal Ahmed in OpenAIREMuhammad Abdul Qyyum;
Muhammad Abdul Qyyum
Muhammad Abdul Qyyum in OpenAIREAbstract This study unfolds the advanced process configuration modification in the evolution of a dual mixed refrigerant (DMR) process for natural gas liquefaction, followed by its optimization through a unique approach i.e., teaching–learning self-study optimization (TLSO). The DMR process is improved by replacing Joule Thomson valves with the isentropic cryogenic turbines. To ensure the maximum possible thermodynamic performance of the retrofitted DMR process, the TLSO paradigm is used and evaluated. The energy, exergy, coefficient of performance, and figure of merit are determined and compared with conventional bench-scale DMR process to find the performance improvement opportunities in the proposed cryogenic turbine-retrofitted DMR process. The performance analysis revealed that the proposed optimal retrofitted DMR process could produce LNG using 28.57% less energy than the base case. The detailed thermodynamic evaluation revealed that the proposed DMR process has 64.68% exergy efficiency, 2.42 coefficient of performance, and 41.6% figure of merit, which are 13.37%, 19%, and 11.9%, higher than the conventional DMR process, respectively. This study would significantly help process engineers overcome the challenges of relating energy efficiency of the LNG plants for both onshore and offshore applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Ashak Mahmud Parvez; Ashak Mahmud Parvez;Jun He;
Tianbiao He;
+4 AuthorsTianbiao He
Tianbiao He in OpenAIREAshak Mahmud Parvez; Ashak Mahmud Parvez;Jun He;
Tianbiao He;
Muhammad T. Afzal; Marco Tomatis;Tianbiao He
Tianbiao He in OpenAIRETao Wu;
Sannia Mareta;
Sannia Mareta
Sannia Mareta in OpenAIREAbstract This work aimed to evaluate the environmental performance of single-step dimethyl ether (DME) production system through CO2-enhanced gasification of gumwood. The proposed CO2-enhanced gasification based bio-DME production process was compared systematically with the conventional approach in terms of life cycle assessment (LCA) impacts by using SimaPro software. Overall, the LCA results revealed that bio-DME fuel produced from CO2-enhanced process significantly reduced the burden on climate change, toxicity and eco-toxicity by at least 20%. This decrement was mostly attributed to low feedstock consumption, high-energy recovery and CO2 utilization in the CO2-enhanced process. Over 53% contribution in all impact categories were contributed by the gasifier unit, mainly due to its high energy intensity (over 60% of the total energy requirement). Moreover, the effect of replacing diesel by bio-DME or diesel/DME blend as an automotive fuel was assessed in this study. The scenario of using pure DME resulted on significant reductions of greenhouse gas (GHG) emissions, by 72%, and of its impact on both human health and ecosystem (by 55% and 68%, respectively). The reduction of GHG emissions were caused by the carbon neutrality of bio-DME. Utilization of DME also limited the emissions of carcinogenic particulate such as diesel soot and therefore, decreased the toxicity of traffic emissions. The second scenario was to utilize DME15 (15% DME by wt in diesel) as an automotive fuel. However, only minor decreases, up to 7%, of the environmental impact were observed for DME15 compared to those estimated for pure diesel. Thus, the present study demonstrated that the CO2-enhanced process could greatly reduce GHG emission and environmental burden of DME production compared to the conventional method. Furthermore, bio-DME utilization as fuel for automotive applications can significantly decrease the hazard caused by traffic emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.115627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.115627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu