- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Harald Hoppe; Roland Rösch; David M. Tanenbaum; Frederik C. Krebs;Abstract We applied complementary imaging methods to investigate processing failures of roll-to-roll solution processed polymer solar modules based on polymer:fullerene bulk heterojunctions. For investigation of processing deficiencies in solar modules we employed dark lock-in thermography (DLIT), electroluminescence (ELI) and photoluminescence/reflection imaging (PLI/RI) complemented by optical imaging (OI). The combination of all high resolution images allowed us to allocate the origin of processing errors to a specific deposition process, i.e. the insufficient coverage of an electrode interlayer. The investigation can be divided into a fast DLIT overview of the module and a successive more detailed analysis of the suspicious region by all imaging methods.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Spain, United KingdomPublisher:Wiley Funded by:UKRI | Photovoltaic Technology b..., EC | APOLO, UKRI | SPECIFIC IKC Phase 2 +3 projectsUKRI| Photovoltaic Technology based on Earth Abundant Materials - PVTEAM ,EC| APOLO ,UKRI| SPECIFIC IKC Phase 2 ,UKRI| High resolution mapping of performance and degradation mechanisms in printable photovoltaic devices ,EC| MAESTRO ,UKRI| Self-assembling Perovskite Absorbers - Cells Engineered into Modules (SPACE-Modules)John Chircop; Trystan Watson; Brian Azzopardi; Luigi Angelo Castriotta; Francesca De Rossi; Francesca De Rossi; David M. Tanenbaum; David M. Tanenbaum; Artem Sadula; Jérémy Barbé; Aldo Di Carlo; Vasil Stoichkov; Francesca Brunetti; Monica Lira-Cantu; Lucio Cinà; Wing C. Tsoi; Jeff Kettle; Eugene A. Katz; Haibing Xie; Zhengfei Wei;handle: 2108/267635
Comparisons between different laboratories on long‐term stability analyses of perovskite solar cells (PSCs) is still lacking in the literature. This work presents the results of an interlaboratory study conducted between five laboratories from four countries. Carbon‐based PSCs are prepared by screen printing, encapsulated, and sent to different laboratories across Europe to assess their stability by the application of three ISOS aging protocols: (a) in the dark (ISOS‐D), (b) under simulated sunlight (ISOS‐L), and (c) outdoors (ISOS‐O). Over 1000 h stability is reported for devices in the dark, both at room temperature and at 65 °C. Under continuous illumination at open circuit, cells survive only for few hours, although they recover after being stored in the dark. Better stability is observed for cells biased at maximum power point under illumination. Finally, devices operate in outdoors for 30 days, with minor degradation, in two different locations (Barcelona, Spain and Paola, Malta). The findings demonstrate that open‐circuit conditions are too severe for stability assessment and that the diurnal variation of the photovoltaic parameters reveals performance to be strongly limited by the fill factor, in the central hours of the day, due to the high series resistance of the carbon electrode.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/267635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 23 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/267635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Spain, United Kingdom, United Kingdom, Australia, Spain, FrancePublisher:Elsevier BV Funded by:EC | LARGECELLSEC| LARGECELLSMadsen, Morten V; Gevorgyan, Suren A; Pacios, R; Ajuria, J; Etxebarria, I; Kettle, Jeff; Bristow, Noel D; Neophytou, Marios; Choulis, Stelios A; Stolz Roman, Lucimara; Yohannes, Teketel; Cester, Andrea; Cheng, Pei; Zhan, Xiaowei; Wu, Jiang; Xie, Zhiyuan; Tu, Wei-Chen; He, Jr-Hau; Fell, Christopher J; Anderson, Kenrick; Hermenau, Martin; Bartesaghi, Davide; Jan Anton Koster, L; Machui, Florian; Gonzalez-Valls, Irene; Lira-Cantu, Monica; Khlyabich, Petr P; Thompson, Barry C; Gupta, Ritu; Shanmugam, Kiruthika; Kulkarni, Giridhar U; Galagan, Yulia; Urbina, Antonio; Abad, Jose; Roesch, Roland; Hoppe, Harald; Morvillo, P; Bobeico, E; Panaitescu, Eugen; Menon, Latika; Luo, Qun; Wu, Zhenwu; Ma, Changqii; Hambarian, Artak; Melikyan, Varuzhan; Hambsch, M; Burn, Paul L; Meredith, Paul; Rath, Thomas; Dunst, Sebastian; Trimmel, Gregor; Bardizza, Giorgio; Mullejans, Harald; Goryachev, A E; Misra, Ravi K; Katz, Eugene A; Takagi, Katsuhiko; Magaino, Shinichi; Saito, Hidenori; Aoki, Daisuke; Sommeling, Paul M; Kroon, Jan M; Vangerven, Tim; Manca, Jean; Kesters, Jurgen; Maes, Wouter; Bobkova, Olga D; Trukhanov, Vasily A; Paraschuk, Dmitry Yu; Castro, Fernando A; Blakesley, James; Tuladhar, Sachetan M; Rohr, Jason Alexander; Nelson, Jenny; Xia, Jiangbin; Parlak, Elif Alturk; Tumay, Tulay Alsi; Egelhaaf, Hans-Joachim; Tanenbaum, David M; Ferguson, Gretta Mae; Carpenter, Robert; Chen, Hongzheng; Zimmermann, Birger; Hirsch, Lionel; Wantz, Guillaume; Sun, Ziqi; Singh, Pradeep; Bapat, Chaitnya; Offermans, Ton; Krebs, Frederik C;Accurate characterization and reporting of organic photovoltaic (OPV) device performance reniains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using "suitcase sample" approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner. (C) 2014 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2014License: CC BY NC NDData sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 15 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2014License: CC BY NC NDData sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Spain, Denmark, FrancePublisher:Royal Society of Chemistry (RSC) Funded by:EC | ROTROT, EC | HIFLEX, EC | LARGECELLSEC| ROTROT ,EC| HIFLEX ,EC| LARGECELLSDavid S. Germack; Agnès Rivaton; Agnès Rivaton; Uli Würfel; Birgitta Andreasen; Martin Hermenau; Laurence Lutsen; Mikkel Jørgensen; Matthew T. Lloyd; Harald Hoppe; Gerardo Teran-Escobar; Yulia Galagan; Henrik Friis Dam; Kion Norrman; Roland Rösch; Eszter Voroshazi; Marco Seeland; David M. Tanenbaum; David M. Tanenbaum; Birger Zimmermann; Monica Lira-Cantu; Frederik C. Krebs; Suleyman Kudret; Markus Hösel; Maik Bärenklau; Suren A. Gevorgyan; Wouter Maes; Dirk Vanderzande; Gülsah Y. Uzunoglu; Morten Vesterager Madsen; Ronn Andriessen;doi: 10.1039/c2ee03508a
handle: 10261/51030
The investigation of degradation of seven distinct sets (with a number of individual cells of n $ 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Risø DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imaging techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results—hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.
Energy & Environment... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03508a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 136 citations 136 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 11visibility views 11 download downloads 12 Powered bymore_vert Energy & Environment... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03508a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | HIFLEX, EC | LARGECELLSEC| HIFLEX ,EC| LARGECELLSKrebs, Frederik C; Fyenbo, Jan; Tanenbaum, David M.; Gevorgyan, Suren; Andriessen, Ronn; van Remoortere, Bart; Galagan, Yulia; Jørgensen, Mikkel;doi: 10.1039/c1ee01891d
Polymer solar cells were prepared in large numbers using roll-to-roll methods and were subsequently integrated into the Organic Electronics Association (OE-A) demonstrator in the year 2011 and presented as a small credit card sized lamp with a flat outline. The lamp comprised the polymer solar cell together with printed circuitry, discrete components and flexible lithium polymer batteries. The number of discrete steps required for the manufacture of the lamp was 35 and more than 10000 units of the demonstrator was manufactured. We describe the efforts towards increasing the technical yield which was 89% overall and discuss the compromises that had to be made to achieve the high technical yield for a process that was as automated as possible. All the steps in the preparation of the solar cell, the circuitry and the overlays were performed using full roll-to-roll methods. The mounting of the discrete components, such as LED, diode and Zener diode, was performed in sheets of 15 units using a fully automated SMD mounting machine. The mounting of the batteries, contacts and final testing was done manually. The lamination into the final lamp and the final laser cutting into the discrete lamps were performed using automated systems. © 2011 The Royal Society of Chemistry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01891d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 179 citations 179 popularity Top 10% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01891d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Funded by:EC | LARGECELLSEC| LARGECELLSDavid M. Tanenbaum; Henrik Friis Dam; Harald Hoppe; Roland Rösch; Mikkel Jørgensen; Frederik C. Krebs;Abstract Fully roll-to-roll processed polymer solar cell modules were prepared, characterized, and laminated. Cell modules were cut from the roll and matched pairs were selected, one module with exposed cut edges, the other laminated again with the same materials and adhesive sealing fully around the cut edges. The edge sealing rim was 10 mm wide. Cell modules were characterized by periodic measurements of IV curves over extended periods in a variety of conditions, as well as by a variety of spatial imaging techniques. Data show significant stability benefits of the edge sealing process. The results of the imaging experiments show that the ingress of atmospheric reactants from the edges leads to degradation. In the case of edge sealed devices the same effects are observed but significantly slowed down. In particular, the fast nonlinear degradation is eliminated.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2012Data sources: SESAM Publication Database - FP7 ENERGYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 87 citations 87 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2012Data sources: SESAM Publication Database - FP7 ENERGYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, SwitzerlandPublisher:Royal Society of Chemistry (RSC) Funded by:EC | EPFL Fellows, EC | GOTSolarEC| EPFL Fellows ,EC| GOTSolarAmador Pérez-Tomás; Michael Saliba; Hui-Seon Kim; Benedicte Saliba; Michael Grätzel; Silver-Hamill Turren-Cruz; David M. Tanenbaum; Zaiwei Wang; Haibing Xie; Ian Shirley; Monica Lira-Cantu; Monica Lira-Cantu; Shaik M. Zakeeruddin; Anna Morales-Melgares; Anders Hagfeldt;doi: 10.1039/c8se00451j
handle: 10261/200734
Ferroelectric oxides as new electron extraction layers.
Sustainable Energy &... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABSustainable Energy & FuelsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00451j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 39 Powered bymore_vert Sustainable Energy &... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABSustainable Energy & FuelsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00451j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018 SpainPublisher:Elsevier BV Authors: Pérez-Tomás, Amador; Mingorance, Alba; Tanenbaum, David M.; Lira-Cantú, Mónica;handle: 10261/161382
Semiconductor oxides have been applied in photovoltaic technologies for many years. The remarkable versatility of their properties and the feasibility to be fabricated by simple, low-cost and easily scalable fabrication methods confers oxides a unique place in next generation photovoltaics (NGPVs). Their outstanding ability to preserve or improve device characteristics, even as a noncrystalline (amorphous) material, allows their application in flexible and semitransparent PVs devices and printed electronics. Basic (doped and undoped) semiconductor oxides have demonstrated to provide enhanced lifetime stability to state-of-the-art PVs such as Organic (OPV) and halide perovskite solar cells (PSCs), which is a significant step toward NGPVs industrialization and commercialization. But semiconductor oxides, in their more complex form, can also provide properties like magnetism, ferroelectricity, or pyroelectricity (among others), that collectively with the most classical materials, can deliver novel and innovative features. This chapter documents the most recent results observed when semiconductor oxides are applied in different NGPVs technologies. The chapter covers technologies like all-oxide solar cells where the oxide is not only part of the device but also acts as the main light harvesting material. The chapter also describes the application of oxides as part of OPV and PSCs where semiconductor oxides are mostly applied as barrier layers eliminating the use of expensive and unstable organic semiconductors, enhancing device lifetime. A.P.T. acknowledges Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under contract ENE2015-74275-JIN. To the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grant SEV-2013-0295 for the predoctoral contract to A.M; for the grant ENE2013-48816-C5-4-R, ENE2016-79282-C5-2-R and the Nanoselect Excelence Network MAT2015-68994-REDC. To the Agència de Gestiód'Ajuts Universitaris i de Recerca for the support to the consolidated Catalonia research group 2014SGR-1212 and the Xarxa de Referència en Materials Avançats per a l'Energia (Xarmae). To the COST Action StableNextSol project MP1307. Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-811165-9.00008-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 29visibility views 29 download downloads 44 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-811165-9.00008-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Harald Hoppe; Roland Rösch; David M. Tanenbaum; Frederik C. Krebs;Abstract We applied complementary imaging methods to investigate processing failures of roll-to-roll solution processed polymer solar modules based on polymer:fullerene bulk heterojunctions. For investigation of processing deficiencies in solar modules we employed dark lock-in thermography (DLIT), electroluminescence (ELI) and photoluminescence/reflection imaging (PLI/RI) complemented by optical imaging (OI). The combination of all high resolution images allowed us to allocate the origin of processing errors to a specific deposition process, i.e. the insufficient coverage of an electrode interlayer. The investigation can be divided into a fast DLIT overview of the module and a successive more detailed analysis of the suspicious region by all imaging methods.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Spain, United KingdomPublisher:Wiley Funded by:UKRI | Photovoltaic Technology b..., EC | APOLO, UKRI | SPECIFIC IKC Phase 2 +3 projectsUKRI| Photovoltaic Technology based on Earth Abundant Materials - PVTEAM ,EC| APOLO ,UKRI| SPECIFIC IKC Phase 2 ,UKRI| High resolution mapping of performance and degradation mechanisms in printable photovoltaic devices ,EC| MAESTRO ,UKRI| Self-assembling Perovskite Absorbers - Cells Engineered into Modules (SPACE-Modules)John Chircop; Trystan Watson; Brian Azzopardi; Luigi Angelo Castriotta; Francesca De Rossi; Francesca De Rossi; David M. Tanenbaum; David M. Tanenbaum; Artem Sadula; Jérémy Barbé; Aldo Di Carlo; Vasil Stoichkov; Francesca Brunetti; Monica Lira-Cantu; Lucio Cinà; Wing C. Tsoi; Jeff Kettle; Eugene A. Katz; Haibing Xie; Zhengfei Wei;handle: 2108/267635
Comparisons between different laboratories on long‐term stability analyses of perovskite solar cells (PSCs) is still lacking in the literature. This work presents the results of an interlaboratory study conducted between five laboratories from four countries. Carbon‐based PSCs are prepared by screen printing, encapsulated, and sent to different laboratories across Europe to assess their stability by the application of three ISOS aging protocols: (a) in the dark (ISOS‐D), (b) under simulated sunlight (ISOS‐L), and (c) outdoors (ISOS‐O). Over 1000 h stability is reported for devices in the dark, both at room temperature and at 65 °C. Under continuous illumination at open circuit, cells survive only for few hours, although they recover after being stored in the dark. Better stability is observed for cells biased at maximum power point under illumination. Finally, devices operate in outdoors for 30 days, with minor degradation, in two different locations (Barcelona, Spain and Paola, Malta). The findings demonstrate that open‐circuit conditions are too severe for stability assessment and that the diurnal variation of the photovoltaic parameters reveals performance to be strongly limited by the fill factor, in the central hours of the day, due to the high series resistance of the carbon electrode.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/267635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 23 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/267635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Spain, United Kingdom, United Kingdom, Australia, Spain, FrancePublisher:Elsevier BV Funded by:EC | LARGECELLSEC| LARGECELLSMadsen, Morten V; Gevorgyan, Suren A; Pacios, R; Ajuria, J; Etxebarria, I; Kettle, Jeff; Bristow, Noel D; Neophytou, Marios; Choulis, Stelios A; Stolz Roman, Lucimara; Yohannes, Teketel; Cester, Andrea; Cheng, Pei; Zhan, Xiaowei; Wu, Jiang; Xie, Zhiyuan; Tu, Wei-Chen; He, Jr-Hau; Fell, Christopher J; Anderson, Kenrick; Hermenau, Martin; Bartesaghi, Davide; Jan Anton Koster, L; Machui, Florian; Gonzalez-Valls, Irene; Lira-Cantu, Monica; Khlyabich, Petr P; Thompson, Barry C; Gupta, Ritu; Shanmugam, Kiruthika; Kulkarni, Giridhar U; Galagan, Yulia; Urbina, Antonio; Abad, Jose; Roesch, Roland; Hoppe, Harald; Morvillo, P; Bobeico, E; Panaitescu, Eugen; Menon, Latika; Luo, Qun; Wu, Zhenwu; Ma, Changqii; Hambarian, Artak; Melikyan, Varuzhan; Hambsch, M; Burn, Paul L; Meredith, Paul; Rath, Thomas; Dunst, Sebastian; Trimmel, Gregor; Bardizza, Giorgio; Mullejans, Harald; Goryachev, A E; Misra, Ravi K; Katz, Eugene A; Takagi, Katsuhiko; Magaino, Shinichi; Saito, Hidenori; Aoki, Daisuke; Sommeling, Paul M; Kroon, Jan M; Vangerven, Tim; Manca, Jean; Kesters, Jurgen; Maes, Wouter; Bobkova, Olga D; Trukhanov, Vasily A; Paraschuk, Dmitry Yu; Castro, Fernando A; Blakesley, James; Tuladhar, Sachetan M; Rohr, Jason Alexander; Nelson, Jenny; Xia, Jiangbin; Parlak, Elif Alturk; Tumay, Tulay Alsi; Egelhaaf, Hans-Joachim; Tanenbaum, David M; Ferguson, Gretta Mae; Carpenter, Robert; Chen, Hongzheng; Zimmermann, Birger; Hirsch, Lionel; Wantz, Guillaume; Sun, Ziqi; Singh, Pradeep; Bapat, Chaitnya; Offermans, Ton; Krebs, Frederik C;Accurate characterization and reporting of organic photovoltaic (OPV) device performance reniains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using "suitcase sample" approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner. (C) 2014 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2014License: CC BY NC NDData sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 15 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2014License: CC BY NC NDData sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Spain, Denmark, FrancePublisher:Royal Society of Chemistry (RSC) Funded by:EC | ROTROT, EC | HIFLEX, EC | LARGECELLSEC| ROTROT ,EC| HIFLEX ,EC| LARGECELLSDavid S. Germack; Agnès Rivaton; Agnès Rivaton; Uli Würfel; Birgitta Andreasen; Martin Hermenau; Laurence Lutsen; Mikkel Jørgensen; Matthew T. Lloyd; Harald Hoppe; Gerardo Teran-Escobar; Yulia Galagan; Henrik Friis Dam; Kion Norrman; Roland Rösch; Eszter Voroshazi; Marco Seeland; David M. Tanenbaum; David M. Tanenbaum; Birger Zimmermann; Monica Lira-Cantu; Frederik C. Krebs; Suleyman Kudret; Markus Hösel; Maik Bärenklau; Suren A. Gevorgyan; Wouter Maes; Dirk Vanderzande; Gülsah Y. Uzunoglu; Morten Vesterager Madsen; Ronn Andriessen;doi: 10.1039/c2ee03508a
handle: 10261/51030
The investigation of degradation of seven distinct sets (with a number of individual cells of n $ 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Risø DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imaging techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results—hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.
Energy & Environment... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03508a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 136 citations 136 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 11visibility views 11 download downloads 12 Powered bymore_vert Energy & Environment... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03508a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | HIFLEX, EC | LARGECELLSEC| HIFLEX ,EC| LARGECELLSKrebs, Frederik C; Fyenbo, Jan; Tanenbaum, David M.; Gevorgyan, Suren; Andriessen, Ronn; van Remoortere, Bart; Galagan, Yulia; Jørgensen, Mikkel;doi: 10.1039/c1ee01891d
Polymer solar cells were prepared in large numbers using roll-to-roll methods and were subsequently integrated into the Organic Electronics Association (OE-A) demonstrator in the year 2011 and presented as a small credit card sized lamp with a flat outline. The lamp comprised the polymer solar cell together with printed circuitry, discrete components and flexible lithium polymer batteries. The number of discrete steps required for the manufacture of the lamp was 35 and more than 10000 units of the demonstrator was manufactured. We describe the efforts towards increasing the technical yield which was 89% overall and discuss the compromises that had to be made to achieve the high technical yield for a process that was as automated as possible. All the steps in the preparation of the solar cell, the circuitry and the overlays were performed using full roll-to-roll methods. The mounting of the discrete components, such as LED, diode and Zener diode, was performed in sheets of 15 units using a fully automated SMD mounting machine. The mounting of the batteries, contacts and final testing was done manually. The lamination into the final lamp and the final laser cutting into the discrete lamps were performed using automated systems. © 2011 The Royal Society of Chemistry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01891d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 179 citations 179 popularity Top 10% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01891d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Funded by:EC | LARGECELLSEC| LARGECELLSDavid M. Tanenbaum; Henrik Friis Dam; Harald Hoppe; Roland Rösch; Mikkel Jørgensen; Frederik C. Krebs;Abstract Fully roll-to-roll processed polymer solar cell modules were prepared, characterized, and laminated. Cell modules were cut from the roll and matched pairs were selected, one module with exposed cut edges, the other laminated again with the same materials and adhesive sealing fully around the cut edges. The edge sealing rim was 10 mm wide. Cell modules were characterized by periodic measurements of IV curves over extended periods in a variety of conditions, as well as by a variety of spatial imaging techniques. Data show significant stability benefits of the edge sealing process. The results of the imaging experiments show that the ingress of atmospheric reactants from the edges leads to degradation. In the case of edge sealed devices the same effects are observed but significantly slowed down. In particular, the fast nonlinear degradation is eliminated.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2012Data sources: SESAM Publication Database - FP7 ENERGYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 87 citations 87 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2012Data sources: SESAM Publication Database - FP7 ENERGYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, SwitzerlandPublisher:Royal Society of Chemistry (RSC) Funded by:EC | EPFL Fellows, EC | GOTSolarEC| EPFL Fellows ,EC| GOTSolarAmador Pérez-Tomás; Michael Saliba; Hui-Seon Kim; Benedicte Saliba; Michael Grätzel; Silver-Hamill Turren-Cruz; David M. Tanenbaum; Zaiwei Wang; Haibing Xie; Ian Shirley; Monica Lira-Cantu; Monica Lira-Cantu; Shaik M. Zakeeruddin; Anna Morales-Melgares; Anders Hagfeldt;doi: 10.1039/c8se00451j
handle: 10261/200734
Ferroelectric oxides as new electron extraction layers.
Sustainable Energy &... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABSustainable Energy & FuelsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00451j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 39 Powered bymore_vert Sustainable Energy &... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABSustainable Energy & FuelsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00451j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018 SpainPublisher:Elsevier BV Authors: Pérez-Tomás, Amador; Mingorance, Alba; Tanenbaum, David M.; Lira-Cantú, Mónica;handle: 10261/161382
Semiconductor oxides have been applied in photovoltaic technologies for many years. The remarkable versatility of their properties and the feasibility to be fabricated by simple, low-cost and easily scalable fabrication methods confers oxides a unique place in next generation photovoltaics (NGPVs). Their outstanding ability to preserve or improve device characteristics, even as a noncrystalline (amorphous) material, allows their application in flexible and semitransparent PVs devices and printed electronics. Basic (doped and undoped) semiconductor oxides have demonstrated to provide enhanced lifetime stability to state-of-the-art PVs such as Organic (OPV) and halide perovskite solar cells (PSCs), which is a significant step toward NGPVs industrialization and commercialization. But semiconductor oxides, in their more complex form, can also provide properties like magnetism, ferroelectricity, or pyroelectricity (among others), that collectively with the most classical materials, can deliver novel and innovative features. This chapter documents the most recent results observed when semiconductor oxides are applied in different NGPVs technologies. The chapter covers technologies like all-oxide solar cells where the oxide is not only part of the device but also acts as the main light harvesting material. The chapter also describes the application of oxides as part of OPV and PSCs where semiconductor oxides are mostly applied as barrier layers eliminating the use of expensive and unstable organic semiconductors, enhancing device lifetime. A.P.T. acknowledges Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under contract ENE2015-74275-JIN. To the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grant SEV-2013-0295 for the predoctoral contract to A.M; for the grant ENE2013-48816-C5-4-R, ENE2016-79282-C5-2-R and the Nanoselect Excelence Network MAT2015-68994-REDC. To the Agència de Gestiód'Ajuts Universitaris i de Recerca for the support to the consolidated Catalonia research group 2014SGR-1212 and the Xarxa de Referència en Materials Avançats per a l'Energia (Xarmae). To the COST Action StableNextSol project MP1307. Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-811165-9.00008-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 29visibility views 29 download downloads 44 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAPart of book or chapter of book . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-811165-9.00008-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu