- home
- Advanced Search
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2025Publisher:Zenodo Authors: Khojasteh, Danial;This dataset contains the curated data required to reproduce all figures presented in the manuscript: Khojasteh D, Rao S, McSweeney S, Ibaceta R, Nicholls RJ, et al. Intermittent estuaries deserve global attention as vulnerable and vital ecosystems. Communications Earth & Environment. 2025. The dataset includes information on the global distribution of intermittent estuaries and their associated populations, the spatial and temporal evolution of research activity, dominant research themes, and patterns of international collaboration. Each file is structured to directly support the figures presented in the published article and to underpin the core findings on global estuary distribution, research trends, and collaboration networks in intermittent estuary scholarship. Readers are encouraged to refer to the Supplementary Information and Supplementary Data provided with the published article for additional context and extended datasets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15525709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15525709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Publicly fundedSeyed Mahmood Mousavi; William Glamore; Danial Khojasteh; Gregorio Iglesias; Gregorio Iglesias;Abstract Climate change can bring about destructive effects (e.g., rising temperatures, heavy rains and droughts) to countries worldwide, severely influencing future growth and degrading the quality of life. Asia, which is home to the majority of the world's population, is particularly vulnerable to these impacts. Asian countries are responsible for more than half of the global CO2 output and renewable energy production is limited. Unabated climate change may endanger previous economic developments and place the region's future at serious risk. Therefore, there is a clear need to increase the share of renewable energy via various sources. Importantly, the continent has extensive coastlines, with abundant wave energy in many areas. The main objectives of this study are to review the current status of wave energy in Asia and to provide an overview of the areas that may be considered for future development. For this purpose, Asia is divided into four regions: East, Southeast, South and West. Active wave energy projects are highlighted, and the wave energy potential is discussed country by country based on the data available in the literature, including suggested sites for development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2018.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2018.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, United Kingdom, FinlandPublisher:Elsevier BV Publicly fundedDanial Khojasteh; Abbas Shamsipour; Luofeng Huang; Sasan Tavakoli; Milad Haghani; Francois Flocard; Maryam Farzadkhoo; Gregorio Iglesias; Mark Hemer; Matthew Lewis; Simon Neill; Michael M. Bernitsas; William Glamore;Publisher Copyright: © 2023 The Authors Over the last two decades, a large body of academic scholarship has been generated on wave and tidal energy related topics. It is therefore important to assess and analyse the research direction and development through horizon scanning processes. To synthesise such large-scale literature, this review adopts a bibliometric method and scrutinises over 8000 wave/tidal energy related documents published during 2003–2021. Overall, 98 countries contributed to the literature, with the top ten mainly developed countries plus China produced nearly two-thirds of the research. A thorough analysis on documents marked the emergence of four broad research themes (dominated by wave energy subjects): (A) resource assessment, site selection, and environmental impacts/benefits; (B) wave energy converters, hybrid systems, and hydrodynamic performance; (C) vibration energy harvesting and piezoelectric nanogenerators; and (D) flow dynamics, tidal turbines, and turbine design. Further, nineteen research sub-clusters, corresponding to broader themes, were identified, highlighting the trending research topics. An interesting observation was a recent shift in research focus from solely evaluating energy resources and ideal sites to integrating wave/tidal energy schemes into wider coastal/estuarine management plans by developing multicriteria decision-making frameworks and promoting novel designs and cost-sharing practices. The method and results presented may provide insights into the evolution of wave/tidal energy science and its multiple research topics, thus helping to inform future management decisions. Peer reviewed
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2023.114995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2023.114995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Springer Science and Business Media LLC Thomas Dunlop; Danial Khojasteh; Emmanuelle Cohen-Shacham; William Glamore; Milad Haghani; Matilda van den Bosch; Daniela Rizzi; Peter Greve; Stefan Felder;handle: 10230/60616
AbstractNature-based Solutions are recognised for their potential to address the biodiversity and climate crises, and less extensively, other societal challenges. However, this nature-society relationship is becoming more important as available food and water resources, income, and human health, are increasingly impacted by environmental changes. Here, we utilise the seven major societal challenges addressed by Nature-based Solutions according to the International Union for Conservation of Nature, to identify the primary themes of the Nature-based Solutions research landscape from 1990-2021. We evaluate how these themes, with respect to the societal challenges, evolved over time, and where. Our findings highlight the under-representation of four societal challenges across the research landscape: economic and social development, human health, food security, and water security. We propose six research pathways to advance the evidence for Nature-based Solutions in these societal challenges, and present opportunities for future research programs to prioritise the needs of society, the environment, and the economy.
Communications Earth... arrow_drop_down Communications Earth & EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-024-01308-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Communications Earth... arrow_drop_down Communications Earth & EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-024-01308-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 FrancePublisher:MDPI AG Danial Khojasteh; Tej Vibhani; Hassan Shafiei; William Glamore; Stefan Felder;doi: 10.3390/jmse11040815
Estuaries worldwide are experiencing increasing threats from climate change, particularly from the compounding effects of sea level rise (SLR) and varying magnitude of river inflows. Understanding the tidal response of estuaries to these effects can guide future management and help assess ecological concerns. However, there is limited existing understanding on how estuarine tidal dynamics may respond to the compounding effects of SLR and altered riverine inflows in different estuaries. To partially address this knowledge gap, this study used data analysis and scrutinised idealised hydrodynamic models of different estuary shapes and boundary conditions to (i) identify broad effects of SLR on estuarine tidal dynamics under various river inflow conditions, (ii) determine how longitudinal cross-sections are impacted by these effects, and (iii) highlight some implications for environmental risk management. Results indicated that short- to moderate-length, high convergent estuaries experience the greatest and short- to moderate-length prismatic and low convergent estuaries experience the least variations in their overall tidal dynamics (i.e., tidal range, current velocity, and asymmetry). These variations were most evident in estuaries with large riverine inflows and macrotidal conditions. Compounding effects of SLR and altered riverine inflows induced spatially heterogenous changes to tidal range, current velocity, and asymmetry, with transects nearest to the estuary mouth/head and at a three-quarter estuary length (measured from estuary mouth) identified as the most and the least vulnerable zones, respectively. These findings provide an initial broad assessment of some effects of climate change in estuaries and may help to prioritise future investigations.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2077-1312/11/4/815/pdfData sources: Multidisciplinary Digital Publishing InstituteNormandie Université: HALArticle . 2023Full-Text: https://hal.science/hal-04290108Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04290108Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11040815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2077-1312/11/4/815/pdfData sources: Multidisciplinary Digital Publishing InstituteNormandie Université: HALArticle . 2023Full-Text: https://hal.science/hal-04290108Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04290108Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11040815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Finland, FinlandPublisher:Elsevier BV Khojasteh, Danial; Haghani, Milad; Hirdaris; Spyros; Tavakoli, Sasan;This paper reviews research in ocean engineering over the last 50+ years with the aim to (I) understand the technological challenges and evolution in the field, (II) investigate whether ocean engineering studies meet present global demands, (III) explore new scientific/engineering tools that may suggest pragmatic solutions to problems, and (IV) identify research and management gaps, and the way forward. Six major research divisions are identified, namely (I) Ocean Hydrodynamics, (II) Risk Assessment and Safety, (III) Ocean Climate and Geophysics: Data and Models, (IV) Control and Automation in the Ocean, (V) Structural Engineering and Manufacturing for the Ocean, and (VI) Ocean Renewable Energy. As much as practically possible research sub-divisions of the field are also identified. It is highlighted that research topics dealing with ocean renewable energy, control and path tracking of ships, as well as computational modelling of wave-induced motions are growing. Updating and forecasting energy resources, developing computational methods for wave generation, and introducing novel methods for the optimised control of energy converters are highlighted as the potential research opportunities. Ongoing studies follow the global needs for environmentally friendly renewable energies, though engineering-based studies often tend to overlook the longer-term potential influence of climate change. Development and exploitation of computational engineering methods with focus on continuum mechanics problems remain relevant. Notwithstanding this, machine learning methods are attracting the attention of researchers. Analysis of COVID-19 transmission onboard is rarely conducted, and 3D printing-based studies still need more attention from researchers. Peer reviewed
Ocean Engineering arrow_drop_down Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2023.113617&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ocean Engineering arrow_drop_down Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2023.113617&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Danial Khojasteh; Reza Kamali;Ever-increasing energy demand has motivated the energy researchers to seek alternative sources. Ocean wave energy is a promising candidate of renewable energy, holding great potential for contribution to power demands when converted to different forms of usable energy. Iran has long marine boundaries and hence, has excellent marine energy resources which makes it a suitable place for harvesting wave energy in near future. According to previous studies, the point absorber systems are the most appropriate converting systems to be applied in Iran seas. Consequently, two different geometries of point absorbers are investigated at different energy hot spots in Iran seas with the aim of finding out the best location for utilizing the point absorber system. The effects of the buoy draft and diameter are also studied to determine the maximum power absorption. In this context, hydrodynamic parameters are obtained using a boundary element solver package, ANSYS AQWA. After validating the numerical method, it is found that the cone-cylinder buoy slightly performs better than hemisphere-cylinder shape and as the diameter increases, the power absorption enhances. This trend is reverse for the buoy draft.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.05.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.05.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 IrelandPublisher:Elsevier BV Publicly fundedShengyang Chen; Gregorio Iglesias; Gregorio Iglesias; Danial Khojasteh; Stefan Felder; M. Reza Hashemi; William Glamore;handle: 10468/12300
Abstract Worldwide, many estuaries have the potential to harness tidal stream energy via the conversion of current velocities into a consumable energy source. However, the effects of future sea level rise on the tidal stream energy resource within different estuary types are largely unknown. To address this knowledge gap, 978 idealised hydrodynamic simulations were carried out to first identify estuary types and the location of hotspots within them that are promising for tidal energy exploitation in present-day conditions, and then provide insights into the altered tidal stream energy of different estuary types under various future sea level rise and river inflow scenarios. The results indicate that, under sea level rise, the tidal stream energy of prismatic estuaries reduces more than that of converging estuaries. This implies that estuaries that are currently worth exploiting for tidal power may cease to be in the future due to accelerating sea level rise. Further, as sea level rise may bring about geomorphic adjustments, the spatial energy patterns within an estuary may shift and optimal energy sites may be eliminated or displaced. These climate change effects pose a serious challenge for the management of tidal energy generation in future. In this context, the findings of this study are of practical significance for decision-makers in designing long-term strategies for the development of tidal energy installations in estuaries under rising mean sea levels.
Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2021License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2021License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:UKRI | FITS Power Plant - Cambod..., UKRI | Solar2Wave Mid Stage: Dem...UKRI| FITS Power Plant - Cambodia Island Community ,UKRI| Solar2Wave Mid Stage: Demonstration of a Floating Solar Farm in Indonesian Ocean WavesAuthors: Yujia Wei; Danial Khojasteh; Christian Windt; Luofeng Huang;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Reza Kamali; Davood Khojasteh; Asfaw Beyene; Gregorio Iglesias; Danial Khojasteh;Abstract A growing world population and socio-economic development are at the root of an ever-increasing energy demand throughout the world. Much of this demand is met by means of fossil fuels, leading to greenhouse gas emissions and climate change – hence the need for increasing the share of renewable energy sources in the global energy mix. Marine energy is a reliable, high-density source of energy with limited environmental impacts. Iran, with its long coastline, growing population, increasing energy demands and extreme air pollution, has a great potential for the development of marine energy. However, this potential has not received sufficient legislative or entrepreneurial attention so far. This review covers renewable energy resources in Iran in general – including solar, hydropower, wind, biomass and geothermal energy – with a focus on marine resources – wave and tidal energy. On the basis of the review, it can be stated that there are many energy hotspots with a high potential for marine energy development in the Caspian Sea, the Persian Gulf and the Gulf of Oman.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.06.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.06.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2025Publisher:Zenodo Authors: Khojasteh, Danial;This dataset contains the curated data required to reproduce all figures presented in the manuscript: Khojasteh D, Rao S, McSweeney S, Ibaceta R, Nicholls RJ, et al. Intermittent estuaries deserve global attention as vulnerable and vital ecosystems. Communications Earth & Environment. 2025. The dataset includes information on the global distribution of intermittent estuaries and their associated populations, the spatial and temporal evolution of research activity, dominant research themes, and patterns of international collaboration. Each file is structured to directly support the figures presented in the published article and to underpin the core findings on global estuary distribution, research trends, and collaboration networks in intermittent estuary scholarship. Readers are encouraged to refer to the Supplementary Information and Supplementary Data provided with the published article for additional context and extended datasets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15525709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15525709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Publicly fundedSeyed Mahmood Mousavi; William Glamore; Danial Khojasteh; Gregorio Iglesias; Gregorio Iglesias;Abstract Climate change can bring about destructive effects (e.g., rising temperatures, heavy rains and droughts) to countries worldwide, severely influencing future growth and degrading the quality of life. Asia, which is home to the majority of the world's population, is particularly vulnerable to these impacts. Asian countries are responsible for more than half of the global CO2 output and renewable energy production is limited. Unabated climate change may endanger previous economic developments and place the region's future at serious risk. Therefore, there is a clear need to increase the share of renewable energy via various sources. Importantly, the continent has extensive coastlines, with abundant wave energy in many areas. The main objectives of this study are to review the current status of wave energy in Asia and to provide an overview of the areas that may be considered for future development. For this purpose, Asia is divided into four regions: East, Southeast, South and West. Active wave energy projects are highlighted, and the wave energy potential is discussed country by country based on the data available in the literature, including suggested sites for development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2018.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2018.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, United Kingdom, FinlandPublisher:Elsevier BV Publicly fundedDanial Khojasteh; Abbas Shamsipour; Luofeng Huang; Sasan Tavakoli; Milad Haghani; Francois Flocard; Maryam Farzadkhoo; Gregorio Iglesias; Mark Hemer; Matthew Lewis; Simon Neill; Michael M. Bernitsas; William Glamore;Publisher Copyright: © 2023 The Authors Over the last two decades, a large body of academic scholarship has been generated on wave and tidal energy related topics. It is therefore important to assess and analyse the research direction and development through horizon scanning processes. To synthesise such large-scale literature, this review adopts a bibliometric method and scrutinises over 8000 wave/tidal energy related documents published during 2003–2021. Overall, 98 countries contributed to the literature, with the top ten mainly developed countries plus China produced nearly two-thirds of the research. A thorough analysis on documents marked the emergence of four broad research themes (dominated by wave energy subjects): (A) resource assessment, site selection, and environmental impacts/benefits; (B) wave energy converters, hybrid systems, and hydrodynamic performance; (C) vibration energy harvesting and piezoelectric nanogenerators; and (D) flow dynamics, tidal turbines, and turbine design. Further, nineteen research sub-clusters, corresponding to broader themes, were identified, highlighting the trending research topics. An interesting observation was a recent shift in research focus from solely evaluating energy resources and ideal sites to integrating wave/tidal energy schemes into wider coastal/estuarine management plans by developing multicriteria decision-making frameworks and promoting novel designs and cost-sharing practices. The method and results presented may provide insights into the evolution of wave/tidal energy science and its multiple research topics, thus helping to inform future management decisions. Peer reviewed
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2023.114995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2023.114995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Springer Science and Business Media LLC Thomas Dunlop; Danial Khojasteh; Emmanuelle Cohen-Shacham; William Glamore; Milad Haghani; Matilda van den Bosch; Daniela Rizzi; Peter Greve; Stefan Felder;handle: 10230/60616
AbstractNature-based Solutions are recognised for their potential to address the biodiversity and climate crises, and less extensively, other societal challenges. However, this nature-society relationship is becoming more important as available food and water resources, income, and human health, are increasingly impacted by environmental changes. Here, we utilise the seven major societal challenges addressed by Nature-based Solutions according to the International Union for Conservation of Nature, to identify the primary themes of the Nature-based Solutions research landscape from 1990-2021. We evaluate how these themes, with respect to the societal challenges, evolved over time, and where. Our findings highlight the under-representation of four societal challenges across the research landscape: economic and social development, human health, food security, and water security. We propose six research pathways to advance the evidence for Nature-based Solutions in these societal challenges, and present opportunities for future research programs to prioritise the needs of society, the environment, and the economy.
Communications Earth... arrow_drop_down Communications Earth & EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-024-01308-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Communications Earth... arrow_drop_down Communications Earth & EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-024-01308-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 FrancePublisher:MDPI AG Danial Khojasteh; Tej Vibhani; Hassan Shafiei; William Glamore; Stefan Felder;doi: 10.3390/jmse11040815
Estuaries worldwide are experiencing increasing threats from climate change, particularly from the compounding effects of sea level rise (SLR) and varying magnitude of river inflows. Understanding the tidal response of estuaries to these effects can guide future management and help assess ecological concerns. However, there is limited existing understanding on how estuarine tidal dynamics may respond to the compounding effects of SLR and altered riverine inflows in different estuaries. To partially address this knowledge gap, this study used data analysis and scrutinised idealised hydrodynamic models of different estuary shapes and boundary conditions to (i) identify broad effects of SLR on estuarine tidal dynamics under various river inflow conditions, (ii) determine how longitudinal cross-sections are impacted by these effects, and (iii) highlight some implications for environmental risk management. Results indicated that short- to moderate-length, high convergent estuaries experience the greatest and short- to moderate-length prismatic and low convergent estuaries experience the least variations in their overall tidal dynamics (i.e., tidal range, current velocity, and asymmetry). These variations were most evident in estuaries with large riverine inflows and macrotidal conditions. Compounding effects of SLR and altered riverine inflows induced spatially heterogenous changes to tidal range, current velocity, and asymmetry, with transects nearest to the estuary mouth/head and at a three-quarter estuary length (measured from estuary mouth) identified as the most and the least vulnerable zones, respectively. These findings provide an initial broad assessment of some effects of climate change in estuaries and may help to prioritise future investigations.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2077-1312/11/4/815/pdfData sources: Multidisciplinary Digital Publishing InstituteNormandie Université: HALArticle . 2023Full-Text: https://hal.science/hal-04290108Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04290108Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11040815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2077-1312/11/4/815/pdfData sources: Multidisciplinary Digital Publishing InstituteNormandie Université: HALArticle . 2023Full-Text: https://hal.science/hal-04290108Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04290108Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11040815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Finland, FinlandPublisher:Elsevier BV Khojasteh, Danial; Haghani, Milad; Hirdaris; Spyros; Tavakoli, Sasan;This paper reviews research in ocean engineering over the last 50+ years with the aim to (I) understand the technological challenges and evolution in the field, (II) investigate whether ocean engineering studies meet present global demands, (III) explore new scientific/engineering tools that may suggest pragmatic solutions to problems, and (IV) identify research and management gaps, and the way forward. Six major research divisions are identified, namely (I) Ocean Hydrodynamics, (II) Risk Assessment and Safety, (III) Ocean Climate and Geophysics: Data and Models, (IV) Control and Automation in the Ocean, (V) Structural Engineering and Manufacturing for the Ocean, and (VI) Ocean Renewable Energy. As much as practically possible research sub-divisions of the field are also identified. It is highlighted that research topics dealing with ocean renewable energy, control and path tracking of ships, as well as computational modelling of wave-induced motions are growing. Updating and forecasting energy resources, developing computational methods for wave generation, and introducing novel methods for the optimised control of energy converters are highlighted as the potential research opportunities. Ongoing studies follow the global needs for environmentally friendly renewable energies, though engineering-based studies often tend to overlook the longer-term potential influence of climate change. Development and exploitation of computational engineering methods with focus on continuum mechanics problems remain relevant. Notwithstanding this, machine learning methods are attracting the attention of researchers. Analysis of COVID-19 transmission onboard is rarely conducted, and 3D printing-based studies still need more attention from researchers. Peer reviewed
Ocean Engineering arrow_drop_down Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2023.113617&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ocean Engineering arrow_drop_down Aaltodoc Publication ArchiveArticle . 2023 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2023.113617&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Danial Khojasteh; Reza Kamali;Ever-increasing energy demand has motivated the energy researchers to seek alternative sources. Ocean wave energy is a promising candidate of renewable energy, holding great potential for contribution to power demands when converted to different forms of usable energy. Iran has long marine boundaries and hence, has excellent marine energy resources which makes it a suitable place for harvesting wave energy in near future. According to previous studies, the point absorber systems are the most appropriate converting systems to be applied in Iran seas. Consequently, two different geometries of point absorbers are investigated at different energy hot spots in Iran seas with the aim of finding out the best location for utilizing the point absorber system. The effects of the buoy draft and diameter are also studied to determine the maximum power absorption. In this context, hydrodynamic parameters are obtained using a boundary element solver package, ANSYS AQWA. After validating the numerical method, it is found that the cone-cylinder buoy slightly performs better than hemisphere-cylinder shape and as the diameter increases, the power absorption enhances. This trend is reverse for the buoy draft.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.05.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.05.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 IrelandPublisher:Elsevier BV Publicly fundedShengyang Chen; Gregorio Iglesias; Gregorio Iglesias; Danial Khojasteh; Stefan Felder; M. Reza Hashemi; William Glamore;handle: 10468/12300
Abstract Worldwide, many estuaries have the potential to harness tidal stream energy via the conversion of current velocities into a consumable energy source. However, the effects of future sea level rise on the tidal stream energy resource within different estuary types are largely unknown. To address this knowledge gap, 978 idealised hydrodynamic simulations were carried out to first identify estuary types and the location of hotspots within them that are promising for tidal energy exploitation in present-day conditions, and then provide insights into the altered tidal stream energy of different estuary types under various future sea level rise and river inflow scenarios. The results indicate that, under sea level rise, the tidal stream energy of prismatic estuaries reduces more than that of converging estuaries. This implies that estuaries that are currently worth exploiting for tidal power may cease to be in the future due to accelerating sea level rise. Further, as sea level rise may bring about geomorphic adjustments, the spatial energy patterns within an estuary may shift and optimal energy sites may be eliminated or displaced. These climate change effects pose a serious challenge for the management of tidal energy generation in future. In this context, the findings of this study are of practical significance for decision-makers in designing long-term strategies for the development of tidal energy installations in estuaries under rising mean sea levels.
Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2021License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2021License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:UKRI | FITS Power Plant - Cambod..., UKRI | Solar2Wave Mid Stage: Dem...UKRI| FITS Power Plant - Cambodia Island Community ,UKRI| Solar2Wave Mid Stage: Demonstration of a Floating Solar Farm in Indonesian Ocean WavesAuthors: Yujia Wei; Danial Khojasteh; Christian Windt; Luofeng Huang;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Reza Kamali; Davood Khojasteh; Asfaw Beyene; Gregorio Iglesias; Danial Khojasteh;Abstract A growing world population and socio-economic development are at the root of an ever-increasing energy demand throughout the world. Much of this demand is met by means of fossil fuels, leading to greenhouse gas emissions and climate change – hence the need for increasing the share of renewable energy sources in the global energy mix. Marine energy is a reliable, high-density source of energy with limited environmental impacts. Iran, with its long coastline, growing population, increasing energy demands and extreme air pollution, has a great potential for the development of marine energy. However, this potential has not received sufficient legislative or entrepreneurial attention so far. This review covers renewable energy resources in Iran in general – including solar, hydropower, wind, biomass and geothermal energy – with a focus on marine resources – wave and tidal energy. On the basis of the review, it can be stated that there are many energy hotspots with a high potential for marine energy development in the Caspian Sea, the Persian Gulf and the Gulf of Oman.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.06.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.06.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu