Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Marine Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Marine Science and Engineering
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2023
License: CC BY
Data sources: HAL-INSU
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of Idealised Modelling and Data Analysis for Assessing the Compounding Effects of Sea Level Rise and Altered Riverine Inflows on Estuarine Tidal Dynamics

Authors: Danial Khojasteh; Tej Vibhani; Hassan Shafiei; William Glamore; Stefan Felder;

Application of Idealised Modelling and Data Analysis for Assessing the Compounding Effects of Sea Level Rise and Altered Riverine Inflows on Estuarine Tidal Dynamics

Abstract

Estuaries worldwide are experiencing increasing threats from climate change, particularly from the compounding effects of sea level rise (SLR) and varying magnitude of river inflows. Understanding the tidal response of estuaries to these effects can guide future management and help assess ecological concerns. However, there is limited existing understanding on how estuarine tidal dynamics may respond to the compounding effects of SLR and altered riverine inflows in different estuaries. To partially address this knowledge gap, this study used data analysis and scrutinised idealised hydrodynamic models of different estuary shapes and boundary conditions to (i) identify broad effects of SLR on estuarine tidal dynamics under various river inflow conditions, (ii) determine how longitudinal cross-sections are impacted by these effects, and (iii) highlight some implications for environmental risk management. Results indicated that short- to moderate-length, high convergent estuaries experience the greatest and short- to moderate-length prismatic and low convergent estuaries experience the least variations in their overall tidal dynamics (i.e., tidal range, current velocity, and asymmetry). These variations were most evident in estuaries with large riverine inflows and macrotidal conditions. Compounding effects of SLR and altered riverine inflows induced spatially heterogenous changes to tidal range, current velocity, and asymmetry, with transects nearest to the estuary mouth/head and at a three-quarter estuary length (measured from estuary mouth) identified as the most and the least vulnerable zones, respectively. These findings provide an initial broad assessment of some effects of climate change in estuaries and may help to prioritise future investigations.

Country
France
Keywords

Naval architecture. Shipbuilding. Marine engineering, [SDU.STU]Sciences of the Universe [physics]/Earth Sciences, VM1-989, GC1-1581, 551, Oceanography, 333, coastal management, estuary, flooding, coastal engineering, estuary; hydrodynamics; flooding; compound hazards; Pearson correlation; coastal engineering; coastal management; estuary management; climate change, compound hazards, 500, estuary management, climate change, Pearson correlation, hydrodynamics, [SDU.STU] Sciences of the Universe [physics]/Earth Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold