- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2023Embargo end date: 01 Jan 2022 United KingdomPublisher:IEEE Authors: Zhongda Chu; Subhash Lakshminarayana; Balarko Chaudhuri; Fei Teng;handle: 10044/1/110230
Large-scale Load-Altering Attacks (LAAs) against Internet-of-Things (IoT) enabled high-wattage electrical appliances (e.g., wifi-enabled air-conditioners, electric vehicles, etc.) pose a serious threat to power systems' security and stability. In this work, a Cyber-Resilient Economic Dispatch (CRED) framework is presented to mitigate the destabilizing effect of LAAs while minimizing the overall operational cost by dynamically optimizing the frequency droop control gains of Inverter-Based Resources (IBRs). The system frequency dynamics incorporating both LAAs and the IBR droop control are modeled. The system stability constraints are explicitly derived based on parametric sensitivities. To incorporate them into the CRED model and minimize the error of the sensitivity analysis, a recursive linearization method is further proposed. A distributionally robust approach is applied to account for the uncertainty associated with the LAA detection/parameter estimation. The overall performance of the proposed CRED model is demonstrated through simulations in a modified IEEE reliability test system.
https://dx.doi.org/1... arrow_drop_down https://doi.org/10.1109/powert...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/powertech55446.2023.10202796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down https://doi.org/10.1109/powert...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/powertech55446.2023.10202796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 FrancePublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | EAGER: Collaborative Rese...NSF| EAGER: Collaborative Research: Local Topological Properties of Power Flow Networks, and Their Role in Power System FunctionalityAuthors: Subhash Lakshminarayana; E. Veronica Belmega; H. Vincent Poor;This work proposes a moving target defense (MTD) strategy to detect coordinated cyber-physical attacks (CCPAs) against power grids. The main idea of the proposed approach is to invalidate the knowledge that the attackers use to mask the effects of their physical attack by actively perturbing the grid's transmission line reactances via distributed flexible AC transmission system (D-FACTS) devices. The proposed MTD design consists of two parts. First, we identify the subset of links for D-FACTS device deployment that enables the defender to detect CCPAs against any link in the system. Then, in order to minimize the defense cost during the system's operational time, we formulate a zero-sum game to identify the best subset of links to perturb (which will provide adequate protection) against a strategic attacker. The Nash equilibrium robust solution is computed via exponential weights, which does not require complete knowledge of the game but only the observed payoff at each iteration. Extensive simulations performed using the MATPOWER simulator on IEEE bus systems verify the effectiveness of our approach in detecting CCPAs and reducing the operator's defense cost. arXiv admin note: substantial text overlap with arXiv:1908.02392
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3095083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3095083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type , Preprint 2022Embargo end date: 01 Jan 2022 Saudi ArabiaPublisher:IEEE Authors: Subhash Lakshminarayana; Juan Ospina; Charalambos Konstantinou;The COVID-19 pandemic has impacted our society by forcing shutdowns and shifting the way people interacted worldwide. In relation to the impacts on the electric grid, it created a significant decrease in energy demands across the globe. Recent studies have shown that the low demand conditions caused by COVID-19 lockdowns combined with large renewable generation have resulted in extremely low-inertia grid conditions. In this work, we examine how an attacker could exploit these {scenarios} to cause unsafe grid operating conditions by executing load-altering attacks (LAAs) targeted at compromising hundreds of thousands of IoT-connected high-wattage loads in low-inertia power systems. Our study focuses on analyzing the impact of the COVID-19 mitigation measures on U.S. regional transmission operators (RTOs), formulating a plausible and realistic least-effort LAA targeted at transmission systems with low-inertia conditions, and evaluating the probability of these large-scale LAAs. Theoretical and simulation results are presented based on the WSCC 9-bus {and IEEE 118-bus} test systems. Results demonstrate how adversaries could provoke major frequency disturbances by targeting vulnerable load buses in low-inertia systems and offer insights into how the temporal fluctuations of renewable energy sources, considering generation scheduling, impact the grid's vulnerability to LAAs.
CORE arrow_drop_down IEEE Open Access Journal of Power and EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: DataciteKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm52003.2023.10252465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down IEEE Open Access Journal of Power and EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: DataciteKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm52003.2023.10252465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Journal 2018Embargo end date: 01 Jan 2018 United KingdomPublisher:IEEE Authors: Subhash Lakshminarayana; David K.Y. Yau;We study moving-target defense (MTD) that actively perturbs transmission line reactances to thwart stealthy false data injection (FDI) attacks against state estimation in a power grid. Prior work on this topic has proposed MTD based on randomly selected reactance perturbations, but these perturbations cannot guarantee effective attack detection. To address the issue, we present formal design criteria to select MTD reactance perturbations that are truly effective. However, based on a key optimal power flow (OPF) formulation, we find that the effective MTD may incur a non-trivial operational cost that has not hitherto received attention. Accordingly, we characterize important tradeoffs between the MTD's detection capability and its associated required cost. Extensive simulations, using the MATPOWER simulator and benchmark IEEE bus systems, verify and illustrate the proposed design approach that for the first time addresses both key aspects of cost and effectiveness of the MTD. IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) - 2018
CORE arrow_drop_down Warwick Research Archives Portal RepositoryConference object . 2018Data sources: CORE (RIOXX-UK Aggregator)IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/dsn.2018.00026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Warwick Research Archives Portal RepositoryConference object . 2018Data sources: CORE (RIOXX-UK Aggregator)IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/dsn.2018.00026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Research 2025Embargo end date: 01 Jan 2023 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Maldon Patrice Goodridge; Subhash Lakshminarayana; Alessandro Zocca;Load-altering attacks targetting a large number of IoT-based high-wattage devices (e.g., smart electric vehicle charging stations) can lead to serious disruptions of power grid operations. In this work, we aim to uncover spatiotemporal characteristics of LAAs that can lead to serious impact. The problem is challenging since existing protection measures such as $N-1$ security ensures that the power grid is naturally resilient to load changes. Thus, strategically injected load perturbations that lead to network failure can be regarded as \emph{rare events}. To this end, we adopt a rare-event sampling approach to uncover LAAs distributed temporally and spatially across the power network. The key advantage of this sampling method is the ability of sampling efficiently from multi-modal conditional distributions with disconnected support. Furthermore, we systematically compare the impacts of static (one-time manipulation of demand) and dynamic (attack over multiple time periods) LAAs. We perform extensive simulations using benchmark IEEE test simulations. The results show (i) the superiority and the need for rare-event sampling in the context of uncovering LAAs as compared to other sampling methodologies, (ii) statistical analysis of attack characteristics and impacts of static and dynamic LAAs, and (iii) cascade sizes (due to LAA) for different network sizes and load conditions.
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3419725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3419725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Hamidreza Jahangir; Subhash Lakshminarayana; H. Vincent Poor;The widespread deployment of "smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation. The connectivity features of smart EVCSs can be utilized to schedule EV charging operations while respecting user preferences, thus avoiding synchronous charging from a large number of customers and relieving grid congestion. However, the communication and connectivity requirements involved in smart charging raise cybersecurity concerns. In this work, we investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations. The objective of CMAs is to shift the EV aggregator's demand across different times of the day. The proposed CMAs can bypass existing protection mechanisms in EV communication protocols. We quantify the impact of CMAs on the EV aggregator's economic profit by modeling their participation in the day-ahead (DA) and real-time (RT) electricity markets. Finally, we propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging. We extensively analyze the attack impact and the efficiency of the proposed detection on real-world EV charging datasets. The results highlight the vulnerabilities of smart charging operations and the need for a monitoring mechanism to detect malicious CMAs.
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3401090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3401090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institution of Engineering and Technology (IET) Funded by:NSF | EAGER:Collaborative Resea...NSF| EAGER:Collaborative Research: Blockchain Graphs as Testbeds of Power Grid Resiliece and Functionality MetricsSubhash Lakshminarayana; Saurav Sthapit; Hamidreza Jahangir; Carsten Maple; H. Vincent Poor;doi: 10.1049/stg2.12066
AbstractAdvances in edge computing are powering the development and deployment of Internet of Things (IoT) systems to provide advanced services and resource efficiency. However, large‐scale IoT‐based load‐altering attacks (LAAs) can seriously impact power grid operations, such as destabilising the grid's control loops. Timely detection and identification of any compromised nodes are essential to minimise the adverse effects of these attacks on power grid operations. In this work, two data‐driven algorithms are proposed to detect and identify compromised nodes and the attack parameters of the LAAs. The first method, based on the Sparse Identification of Nonlinear Dynamics approach, adopts a sparse regression framework to identify attack parameters that best describe the observed dynamics. The second method, based on physics‐informed neural networks, employs neural networks to infer the attack parameters from the measurements. Both algorithms are presented utilising edge computing for deployment over decentralised architectures. Extensive simulations are performed on IEEE 6‐, 14‐, and 39‐bus systems to verify the effectiveness of the proposed methods. Numerical results confirm that the proposed algorithms outperform existing approaches, such as those based on unscented Kalman filter, support vector machines, and neural networks (NN), and effectively detect and identify locations of attack in a timely manner.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/stg2.12066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/stg2.12066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Italy, DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Ioannis Zografopoulos; Ankur Srivastava; Charalambos Konstantinou; Junbo Zhao; Amir Abiri Jahromi; Astha Chawla; Bang Nguyen; Bu Siqi; Chendan Li; Fei Teng; Goli Preetham; Juan Ospina; Mohammad Asim Aftab; Mohammadreza Arani; Ömer Sen; Panayiotis Moutis; Pudong Ge; Qinglai Guo; Subham Sahoo; Subhash Lakshminarayana; Tuyen Vu; Zhaoyuan Wang;handle: 11567/1237715
This paper summarizes the technical endeavors undertaken by the Task Force (TF) on Cyber-Physical Interdependence for Power System Operation and Control. The TF was established to investigate the cyber-physical interdependence of critical power system elements and their influence on the operation and control of energy systems. State-of-the-art analysis techniques, including co-simulation and digital twin technologies, are employed to address various layers of interdependence between cyber and physical systems, facilitating the identification of potential threats and vulnerabilities. The paper examines prospective trajectories for resilient cyber-physical systems and outlines the educational and workforce training imperatives for addressing cybersecurity threats in contemporary power systems. Furthermore, concluding remarks and future recommendations are provided to mitigate the inherent vulnerabilities within the extensively interoperable grid infrastructure.
Aalborg University R... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3538012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3538012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 Saudi ArabiaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Subhash Lakshminarayana; Abla Kammoun; Merouane Debbah; H. Vincent Poor;handle: 10754/661757
We address the problem of constructing false data injection (FDI) attacks that can bypass the bad data detector (BDD) of a power grid. The attacker is assumed to have access to only power flow measurement data traces (collected over a limited period of time) and no other prior knowledge about the grid. Existing related algorithms are formulated under the assumption that the attacker has access to measurements collected over a long (asymptotically infinite) time period, which may not be realistic. We show that these approaches do not perform well when the attacker has a limited number of data samples only. We design an enhanced algorithm to construct FDI attack vectors in the face of limited measurements that can nevertheless bypass the BDD with high probability. The algorithm design is guided by results from random matrix theory. Furthermore, we characterize an important trade-off between the attack's BDD-bypass probability and its sparsity, which affects the spatial extent of the attack that must be achieved. Extensive simulations using data traces collected from the MATPOWER simulator and benchmark IEEE bus systems validate our findings.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2020.3011391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2020.3011391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 United KingdomPublisher:IEEE Authors: Subhash Lakshminarayana; Sondipon Adhikari; Carsten Maple;Recent research has shown that large-scale Internet of Things (IoT)-based load altering attacks can have a serious impact on power grid operations such as causing unsafe frequency excursions and destabilizing the grid's control loops. In this work, we present an analytical framework to investigate the impact of IoT-based static/dynamic load altering attacks (S/DLAAs) on the power grid's dynamic response. Existing work on this topic has mainly relied on numerical simulations and, to date, there is no analytical framework to identify the victim nodes from which that attacker can launch the most impactful attacks. To address these shortcomings, we use results from second-order dynamical systems to analyze the power grid frequency control loop under S/DLAAs. We use parametric sensitivity of the system's eigensolutions to identify victim nodes that correspond to the least-effort destabilizing DLAAs. Further, to analyze the SLAAs, we present closed-form expression for the system's frequency response in terms of the attacker's inputs, helping us characterize the minimum load change required to cause unsafe frequency excursions. Using these results, we formulate the defense against S/DLAAs as a linear programming problem in which we determine the minimum amount of load that needs to be secured at the victim nodes to ensure system safety/stability. Extensive simulations conducted using benchmark IEEE-bus systems validate the accuracy and efficacy of our approach.
IEEE Transactions on... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9916879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9916879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2023Embargo end date: 01 Jan 2022 United KingdomPublisher:IEEE Authors: Zhongda Chu; Subhash Lakshminarayana; Balarko Chaudhuri; Fei Teng;handle: 10044/1/110230
Large-scale Load-Altering Attacks (LAAs) against Internet-of-Things (IoT) enabled high-wattage electrical appliances (e.g., wifi-enabled air-conditioners, electric vehicles, etc.) pose a serious threat to power systems' security and stability. In this work, a Cyber-Resilient Economic Dispatch (CRED) framework is presented to mitigate the destabilizing effect of LAAs while minimizing the overall operational cost by dynamically optimizing the frequency droop control gains of Inverter-Based Resources (IBRs). The system frequency dynamics incorporating both LAAs and the IBR droop control are modeled. The system stability constraints are explicitly derived based on parametric sensitivities. To incorporate them into the CRED model and minimize the error of the sensitivity analysis, a recursive linearization method is further proposed. A distributionally robust approach is applied to account for the uncertainty associated with the LAA detection/parameter estimation. The overall performance of the proposed CRED model is demonstrated through simulations in a modified IEEE reliability test system.
https://dx.doi.org/1... arrow_drop_down https://doi.org/10.1109/powert...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/powertech55446.2023.10202796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down https://doi.org/10.1109/powert...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/powertech55446.2023.10202796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 FrancePublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:NSF | EAGER: Collaborative Rese...NSF| EAGER: Collaborative Research: Local Topological Properties of Power Flow Networks, and Their Role in Power System FunctionalityAuthors: Subhash Lakshminarayana; E. Veronica Belmega; H. Vincent Poor;This work proposes a moving target defense (MTD) strategy to detect coordinated cyber-physical attacks (CCPAs) against power grids. The main idea of the proposed approach is to invalidate the knowledge that the attackers use to mask the effects of their physical attack by actively perturbing the grid's transmission line reactances via distributed flexible AC transmission system (D-FACTS) devices. The proposed MTD design consists of two parts. First, we identify the subset of links for D-FACTS device deployment that enables the defender to detect CCPAs against any link in the system. Then, in order to minimize the defense cost during the system's operational time, we formulate a zero-sum game to identify the best subset of links to perturb (which will provide adequate protection) against a strategic attacker. The Nash equilibrium robust solution is computed via exponential weights, which does not require complete knowledge of the game but only the observed payoff at each iteration. Extensive simulations performed using the MATPOWER simulator on IEEE bus systems verify the effectiveness of our approach in detecting CCPAs and reducing the operator's defense cost. arXiv admin note: substantial text overlap with arXiv:1908.02392
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3095083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3095083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type , Preprint 2022Embargo end date: 01 Jan 2022 Saudi ArabiaPublisher:IEEE Authors: Subhash Lakshminarayana; Juan Ospina; Charalambos Konstantinou;The COVID-19 pandemic has impacted our society by forcing shutdowns and shifting the way people interacted worldwide. In relation to the impacts on the electric grid, it created a significant decrease in energy demands across the globe. Recent studies have shown that the low demand conditions caused by COVID-19 lockdowns combined with large renewable generation have resulted in extremely low-inertia grid conditions. In this work, we examine how an attacker could exploit these {scenarios} to cause unsafe grid operating conditions by executing load-altering attacks (LAAs) targeted at compromising hundreds of thousands of IoT-connected high-wattage loads in low-inertia power systems. Our study focuses on analyzing the impact of the COVID-19 mitigation measures on U.S. regional transmission operators (RTOs), formulating a plausible and realistic least-effort LAA targeted at transmission systems with low-inertia conditions, and evaluating the probability of these large-scale LAAs. Theoretical and simulation results are presented based on the WSCC 9-bus {and IEEE 118-bus} test systems. Results demonstrate how adversaries could provoke major frequency disturbances by targeting vulnerable load buses in low-inertia systems and offer insights into how the temporal fluctuations of renewable energy sources, considering generation scheduling, impact the grid's vulnerability to LAAs.
CORE arrow_drop_down IEEE Open Access Journal of Power and EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: DataciteKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm52003.2023.10252465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down IEEE Open Access Journal of Power and EnergyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: DataciteKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm52003.2023.10252465&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Journal 2018Embargo end date: 01 Jan 2018 United KingdomPublisher:IEEE Authors: Subhash Lakshminarayana; David K.Y. Yau;We study moving-target defense (MTD) that actively perturbs transmission line reactances to thwart stealthy false data injection (FDI) attacks against state estimation in a power grid. Prior work on this topic has proposed MTD based on randomly selected reactance perturbations, but these perturbations cannot guarantee effective attack detection. To address the issue, we present formal design criteria to select MTD reactance perturbations that are truly effective. However, based on a key optimal power flow (OPF) formulation, we find that the effective MTD may incur a non-trivial operational cost that has not hitherto received attention. Accordingly, we characterize important tradeoffs between the MTD's detection capability and its associated required cost. Extensive simulations, using the MATPOWER simulator and benchmark IEEE bus systems, verify and illustrate the proposed design approach that for the first time addresses both key aspects of cost and effectiveness of the MTD. IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) - 2018
CORE arrow_drop_down Warwick Research Archives Portal RepositoryConference object . 2018Data sources: CORE (RIOXX-UK Aggregator)IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/dsn.2018.00026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Warwick Research Archives Portal RepositoryConference object . 2018Data sources: CORE (RIOXX-UK Aggregator)IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/dsn.2018.00026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Research 2025Embargo end date: 01 Jan 2023 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Maldon Patrice Goodridge; Subhash Lakshminarayana; Alessandro Zocca;Load-altering attacks targetting a large number of IoT-based high-wattage devices (e.g., smart electric vehicle charging stations) can lead to serious disruptions of power grid operations. In this work, we aim to uncover spatiotemporal characteristics of LAAs that can lead to serious impact. The problem is challenging since existing protection measures such as $N-1$ security ensures that the power grid is naturally resilient to load changes. Thus, strategically injected load perturbations that lead to network failure can be regarded as \emph{rare events}. To this end, we adopt a rare-event sampling approach to uncover LAAs distributed temporally and spatially across the power network. The key advantage of this sampling method is the ability of sampling efficiently from multi-modal conditional distributions with disconnected support. Furthermore, we systematically compare the impacts of static (one-time manipulation of demand) and dynamic (attack over multiple time periods) LAAs. We perform extensive simulations using benchmark IEEE test simulations. The results show (i) the superiority and the need for rare-event sampling in the context of uncovering LAAs as compared to other sampling methodologies, (ii) statistical analysis of attack characteristics and impacts of static and dynamic LAAs, and (iii) cascade sizes (due to LAA) for different network sizes and load conditions.
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3419725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3419725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Hamidreza Jahangir; Subhash Lakshminarayana; H. Vincent Poor;The widespread deployment of "smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation. The connectivity features of smart EVCSs can be utilized to schedule EV charging operations while respecting user preferences, thus avoiding synchronous charging from a large number of customers and relieving grid congestion. However, the communication and connectivity requirements involved in smart charging raise cybersecurity concerns. In this work, we investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations. The objective of CMAs is to shift the EV aggregator's demand across different times of the day. The proposed CMAs can bypass existing protection mechanisms in EV communication protocols. We quantify the impact of CMAs on the EV aggregator's economic profit by modeling their participation in the day-ahead (DA) and real-time (RT) electricity markets. Finally, we propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging. We extensively analyze the attack impact and the efficiency of the proposed detection on real-world EV charging datasets. The results highlight the vulnerabilities of smart charging operations and the need for a monitoring mechanism to detect malicious CMAs.
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3401090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3401090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institution of Engineering and Technology (IET) Funded by:NSF | EAGER:Collaborative Resea...NSF| EAGER:Collaborative Research: Blockchain Graphs as Testbeds of Power Grid Resiliece and Functionality MetricsSubhash Lakshminarayana; Saurav Sthapit; Hamidreza Jahangir; Carsten Maple; H. Vincent Poor;doi: 10.1049/stg2.12066
AbstractAdvances in edge computing are powering the development and deployment of Internet of Things (IoT) systems to provide advanced services and resource efficiency. However, large‐scale IoT‐based load‐altering attacks (LAAs) can seriously impact power grid operations, such as destabilising the grid's control loops. Timely detection and identification of any compromised nodes are essential to minimise the adverse effects of these attacks on power grid operations. In this work, two data‐driven algorithms are proposed to detect and identify compromised nodes and the attack parameters of the LAAs. The first method, based on the Sparse Identification of Nonlinear Dynamics approach, adopts a sparse regression framework to identify attack parameters that best describe the observed dynamics. The second method, based on physics‐informed neural networks, employs neural networks to infer the attack parameters from the measurements. Both algorithms are presented utilising edge computing for deployment over decentralised architectures. Extensive simulations are performed on IEEE 6‐, 14‐, and 39‐bus systems to verify the effectiveness of the proposed methods. Numerical results confirm that the proposed algorithms outperform existing approaches, such as those based on unscented Kalman filter, support vector machines, and neural networks (NN), and effectively detect and identify locations of attack in a timely manner.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/stg2.12066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/stg2.12066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Italy, DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Ioannis Zografopoulos; Ankur Srivastava; Charalambos Konstantinou; Junbo Zhao; Amir Abiri Jahromi; Astha Chawla; Bang Nguyen; Bu Siqi; Chendan Li; Fei Teng; Goli Preetham; Juan Ospina; Mohammad Asim Aftab; Mohammadreza Arani; Ömer Sen; Panayiotis Moutis; Pudong Ge; Qinglai Guo; Subham Sahoo; Subhash Lakshminarayana; Tuyen Vu; Zhaoyuan Wang;handle: 11567/1237715
This paper summarizes the technical endeavors undertaken by the Task Force (TF) on Cyber-Physical Interdependence for Power System Operation and Control. The TF was established to investigate the cyber-physical interdependence of critical power system elements and their influence on the operation and control of energy systems. State-of-the-art analysis techniques, including co-simulation and digital twin technologies, are employed to address various layers of interdependence between cyber and physical systems, facilitating the identification of potential threats and vulnerabilities. The paper examines prospective trajectories for resilient cyber-physical systems and outlines the educational and workforce training imperatives for addressing cybersecurity threats in contemporary power systems. Furthermore, concluding remarks and future recommendations are provided to mitigate the inherent vulnerabilities within the extensively interoperable grid infrastructure.
Aalborg University R... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3538012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3538012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 Saudi ArabiaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Subhash Lakshminarayana; Abla Kammoun; Merouane Debbah; H. Vincent Poor;handle: 10754/661757
We address the problem of constructing false data injection (FDI) attacks that can bypass the bad data detector (BDD) of a power grid. The attacker is assumed to have access to only power flow measurement data traces (collected over a limited period of time) and no other prior knowledge about the grid. Existing related algorithms are formulated under the assumption that the attacker has access to measurements collected over a long (asymptotically infinite) time period, which may not be realistic. We show that these approaches do not perform well when the attacker has a limited number of data samples only. We design an enhanced algorithm to construct FDI attack vectors in the face of limited measurements that can nevertheless bypass the BDD with high probability. The algorithm design is guided by results from random matrix theory. Furthermore, we characterize an important trade-off between the attack's BDD-bypass probability and its sparsity, which affects the spatial extent of the attack that must be achieved. Extensive simulations using data traces collected from the MATPOWER simulator and benchmark IEEE bus systems validate our findings.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2020.3011391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2020.3011391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 United KingdomPublisher:IEEE Authors: Subhash Lakshminarayana; Sondipon Adhikari; Carsten Maple;Recent research has shown that large-scale Internet of Things (IoT)-based load altering attacks can have a serious impact on power grid operations such as causing unsafe frequency excursions and destabilizing the grid's control loops. In this work, we present an analytical framework to investigate the impact of IoT-based static/dynamic load altering attacks (S/DLAAs) on the power grid's dynamic response. Existing work on this topic has mainly relied on numerical simulations and, to date, there is no analytical framework to identify the victim nodes from which that attacker can launch the most impactful attacks. To address these shortcomings, we use results from second-order dynamical systems to analyze the power grid frequency control loop under S/DLAAs. We use parametric sensitivity of the system's eigensolutions to identify victim nodes that correspond to the least-effort destabilizing DLAAs. Further, to analyze the SLAAs, we present closed-form expression for the system's frequency response in terms of the attacker's inputs, helping us characterize the minimum load change required to cause unsafe frequency excursions. Using these results, we formulate the defense against S/DLAAs as a linear programming problem in which we determine the minimum amount of load that needs to be secured at the victim nodes to ensure system safety/stability. Extensive simulations conducted using benchmark IEEE-bus systems validate the accuracy and efficacy of our approach.
IEEE Transactions on... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9916879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9916879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu