- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Marroccoli M.; Ibris N.; Telesca A.; Tregambi C.; Solimene R.; Di Lauro F.; Ruiz de Ballesteros O.; Salatino P.; Montagnaro F.;handle: 11588/867638 , 20.500.14243/416346 , 11563/153088
Dolomite-based binders are characterised by interesting technical and environmental features. For their synthesis, sources of both CaO and MgO are required. The idea developed in this work is to couple the synthesis of dolomite-based binders, starting from a natural dolomite, through the concept of concentrated solar energy (needed to drive the endothermal dolomite calcination process) in fluidised bed reactors. To this end, a fluidised bed system, where the concentrated solar radiation is mimicked by the use of Xe-lamps (short-arc), has been set up and operated. Natural dolomite (sieved in the 420-590 ?m size range) was calcined at a nominal temperature of 850 °C, and bed temperature profiles during solar-driven calcination were investigated. Then, four binders were prepared by mixing slaked dolomite (obtained from the hydration of solar calcined dolomite) with either blast furnace slag or coal fly ash as supplementary cementitious materials. The binders were hydrated for curing times ranging from 7 to 56 days. X-ray fluorescence, X-ray diffraction and combined differential thermal and thermogravimetric analyses were employed as characterisation techniques both to analyse the chemical composition of starting materials and to investigate the evolution of the hydration in the four systems.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Marroccoli M.; Ibris N.; Telesca A.; Tregambi C.; Solimene R.; Di Lauro F.; Ruiz de Ballesteros O.; Salatino P.; Montagnaro F.;handle: 11588/867638 , 20.500.14243/416346 , 11563/153088
Dolomite-based binders are characterised by interesting technical and environmental features. For their synthesis, sources of both CaO and MgO are required. The idea developed in this work is to couple the synthesis of dolomite-based binders, starting from a natural dolomite, through the concept of concentrated solar energy (needed to drive the endothermal dolomite calcination process) in fluidised bed reactors. To this end, a fluidised bed system, where the concentrated solar radiation is mimicked by the use of Xe-lamps (short-arc), has been set up and operated. Natural dolomite (sieved in the 420-590 ?m size range) was calcined at a nominal temperature of 850 °C, and bed temperature profiles during solar-driven calcination were investigated. Then, four binders were prepared by mixing slaked dolomite (obtained from the hydration of solar calcined dolomite) with either blast furnace slag or coal fly ash as supplementary cementitious materials. The binders were hydrated for curing times ranging from 7 to 56 days. X-ray fluorescence, X-ray diffraction and combined differential thermal and thermogravimetric analyses were employed as characterisation techniques both to analyse the chemical composition of starting materials and to investigate the evolution of the hydration in the four systems.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Elsevier BV Di Lauro F.; Balsamo M.; Solimene R.; Alfieri M. L.; Manini P.; Salatino P.; Montagnaro F.;handle: 11588/1002194
Around 600 million m3 of wastewater and 6 million tonnes of leather solid wastes, are generated annually worldwide, with a chromium content of 1 to 4 %. In this context, the thermochemical valorisation of tannery sludge (TS) by hydrothermal liquefaction (HTL) process represents a promising route both for the reduction of the material to dispose in landfill and for the production of an energy carrier. HTL process produces bio-crude from wet biomasses in a hot pressurised water environment, thus avoiding the energy-intensive drying step commonly associated to other thermochemical processes. Moreover, HTL, not aiming at the complete oxidation of the organic component, potentially avoids the oxidation of Cr in its harmful hexavalent form. In this study, a TS was investigated as solid waste for HTL carried out in a 500 mL batch reactor to obtain a bio-crude for energy purposes. Results show that, under the best operating HTL condition (350 °C and 10 min), the H/C ratio of bio-crude was similar to that of starting biomass while the O/C ratio was about three times smaller than in the parent TS. The bio-crude yield was about 25–30 % on dry and ash-free basis, with an associated energy recovery of about 40–45 %. NMR analysis of bio-crude revealed that it is a complex mixture mainly constituted by aliphatic units. Moreover, ICP-MS, atomic absorption and UV–visible spectroscopy analyses proved that inorganic elements are mainly retrieved in the solid residue, and that Cr was present in its starting trivalent form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Elsevier BV Di Lauro F.; Balsamo M.; Solimene R.; Alfieri M. L.; Manini P.; Salatino P.; Montagnaro F.;handle: 11588/1002194
Around 600 million m3 of wastewater and 6 million tonnes of leather solid wastes, are generated annually worldwide, with a chromium content of 1 to 4 %. In this context, the thermochemical valorisation of tannery sludge (TS) by hydrothermal liquefaction (HTL) process represents a promising route both for the reduction of the material to dispose in landfill and for the production of an energy carrier. HTL process produces bio-crude from wet biomasses in a hot pressurised water environment, thus avoiding the energy-intensive drying step commonly associated to other thermochemical processes. Moreover, HTL, not aiming at the complete oxidation of the organic component, potentially avoids the oxidation of Cr in its harmful hexavalent form. In this study, a TS was investigated as solid waste for HTL carried out in a 500 mL batch reactor to obtain a bio-crude for energy purposes. Results show that, under the best operating HTL condition (350 °C and 10 min), the H/C ratio of bio-crude was similar to that of starting biomass while the O/C ratio was about three times smaller than in the parent TS. The bio-crude yield was about 25–30 % on dry and ash-free basis, with an associated energy recovery of about 40–45 %. NMR analysis of bio-crude revealed that it is a complex mixture mainly constituted by aliphatic units. Moreover, ICP-MS, atomic absorption and UV–visible spectroscopy analyses proved that inorganic elements are mainly retrieved in the solid residue, and that Cr was present in its starting trivalent form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Tregambi, Claudio; Solimene, Roberto; Montagnaro, Fabio; Salatino, Piero; Marroccoli, Milena; Ibris, Neluta; Telesca, Antonio;handle: 11588/720114 , 20.500.14243/348026 , 11563/134552
Cement production is an energy-intensive manufacturing process with potentially large environmental burdens. Among the others, it is one of the largest industrial sources of CO2 emission. Limestone calcination is the stage responsible for most of CO2 emissions and energy requirement. This article aims at supporting the use of solar energy as non-carbogenic renewable source to sustain limestone calcination, with advantages on both the economic and environmental aspects of the process. A directly irradiated Fluidised Bed (FB) reactor was used as limestone precalciner for clinker production. Concentrated solar radiation was simulated with an array of three short-arc Xe-lamps of 4 kWel each, coupled with elliptical reflectors, capable of producing a peak flux of about 3 MW m-2 at the centre of the reactor. The total irradiated power is of approximately 3.2 kWth. Thermocouples and an IR camera were used for the analysis of the FB thermal profiles. Calcination was carried out at a nominal bulk bed temperature of 950 °C, in an atmosphere containing about 70% CO2. The reactivity of lime generated by the solar-driven calcination process has been characterised. Lime produced by the solar-driven process was used together with commercial clay as kiln feed components for the formulation of Portland cement samples. A binary mixture composed by fresh limestone and the same clay as above was employed as a reference. The key focus of the investigation was the assessment of the reactivity of the solar-generated lime toward the main clay components in the clinker production process, as compared to lime from ordinary calcination. An aspect that is specifically scrutinised is whether the different, and possibly more severe, thermal history to which limestone particles undergo during solar-driven calcination in directly irradiated FB reactors may compromise lime reactivity. Portland clinkers were produced by burning the raw meals at 1500 °C for 15 min. Clinkers were mixed with 5% natural gypsum to prepare the related Portland cements, which were then paste hydrated for times ranging from 2 to 28 days (water/cement mass ratio = 0.5, 20 °C, 95% relative humidity). Parameters as lime saturation factor, burnability, phase composition of clinkers and hydration behaviour of cement pastes were taken into consideration. Techniques as X-ray fluorescence and diffraction, and simultaneous differential thermal-thermogravimetry were used to study the materials.
Solar Energy arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Tregambi, Claudio; Solimene, Roberto; Montagnaro, Fabio; Salatino, Piero; Marroccoli, Milena; Ibris, Neluta; Telesca, Antonio;handle: 11588/720114 , 20.500.14243/348026 , 11563/134552
Cement production is an energy-intensive manufacturing process with potentially large environmental burdens. Among the others, it is one of the largest industrial sources of CO2 emission. Limestone calcination is the stage responsible for most of CO2 emissions and energy requirement. This article aims at supporting the use of solar energy as non-carbogenic renewable source to sustain limestone calcination, with advantages on both the economic and environmental aspects of the process. A directly irradiated Fluidised Bed (FB) reactor was used as limestone precalciner for clinker production. Concentrated solar radiation was simulated with an array of three short-arc Xe-lamps of 4 kWel each, coupled with elliptical reflectors, capable of producing a peak flux of about 3 MW m-2 at the centre of the reactor. The total irradiated power is of approximately 3.2 kWth. Thermocouples and an IR camera were used for the analysis of the FB thermal profiles. Calcination was carried out at a nominal bulk bed temperature of 950 °C, in an atmosphere containing about 70% CO2. The reactivity of lime generated by the solar-driven calcination process has been characterised. Lime produced by the solar-driven process was used together with commercial clay as kiln feed components for the formulation of Portland cement samples. A binary mixture composed by fresh limestone and the same clay as above was employed as a reference. The key focus of the investigation was the assessment of the reactivity of the solar-generated lime toward the main clay components in the clinker production process, as compared to lime from ordinary calcination. An aspect that is specifically scrutinised is whether the different, and possibly more severe, thermal history to which limestone particles undergo during solar-driven calcination in directly irradiated FB reactors may compromise lime reactivity. Portland clinkers were produced by burning the raw meals at 1500 °C for 15 min. Clinkers were mixed with 5% natural gypsum to prepare the related Portland cements, which were then paste hydrated for times ranging from 2 to 28 days (water/cement mass ratio = 0.5, 20 °C, 95% relative humidity). Parameters as lime saturation factor, burnability, phase composition of clinkers and hydration behaviour of cement pastes were taken into consideration. Techniques as X-ray fluorescence and diffraction, and simultaneous differential thermal-thermogravimetry were used to study the materials.
Solar Energy arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United Kingdom, ItalyPublisher:Elsevier BV Claudio Tregambi; Piero Bareschino; Dawid P. Hanak; Fabio Montagnaro; Francesco Pepe; Erasmo Mancusi;handle: 11588/886265
Negative-emission technologies are largely investigated to better control atmospheric carbon dioxide concentration driving global warming. Calcium looping has been proposed in literature for direct air capture, but a comprehensive system analysis is still missing. Methanation of carbon dioxide can represent an alternative to geological storage, widely investigated within the power-to-gas framework. In this study, an integrated process considering the catalytic methanation of the concentrated carbon dioxide stream after capture from ambient air by a pure hydrogen stream from water electrolysis was proposed and numerically investigated. The system relies on packed bed reactors and uses calcium oxide as sorbent, and a nickel-based catalyst for methanation. A comprehensive study on the overall system performance was carried out, assuming a carbon dioxide capture target of 100 t y−1. Model computations suggest that roughly 50-in-parallel reactors, 0.5 m diameter each, are required for a continuous operation. The overall energy demand of the integrated process ranges within 344–370 GJ tCH4−1, or 215–293 GJ tCH4−1 if neglecting the humidifier. The methanation process requires 3-in-series reactors and can yield a continuous gas stream with a flow rate of 5 kg h−1 and a methane molar fraction of nearly 91%. If this stream is exploited for heat generation, a return of energy index of 16%, or 23% if neglecting the humidifier, is foreseen. The proposed process stems as viable solution towards a circular carbon economy.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.131827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.131827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United Kingdom, ItalyPublisher:Elsevier BV Claudio Tregambi; Piero Bareschino; Dawid P. Hanak; Fabio Montagnaro; Francesco Pepe; Erasmo Mancusi;handle: 11588/886265
Negative-emission technologies are largely investigated to better control atmospheric carbon dioxide concentration driving global warming. Calcium looping has been proposed in literature for direct air capture, but a comprehensive system analysis is still missing. Methanation of carbon dioxide can represent an alternative to geological storage, widely investigated within the power-to-gas framework. In this study, an integrated process considering the catalytic methanation of the concentrated carbon dioxide stream after capture from ambient air by a pure hydrogen stream from water electrolysis was proposed and numerically investigated. The system relies on packed bed reactors and uses calcium oxide as sorbent, and a nickel-based catalyst for methanation. A comprehensive study on the overall system performance was carried out, assuming a carbon dioxide capture target of 100 t y−1. Model computations suggest that roughly 50-in-parallel reactors, 0.5 m diameter each, are required for a continuous operation. The overall energy demand of the integrated process ranges within 344–370 GJ tCH4−1, or 215–293 GJ tCH4−1 if neglecting the humidifier. The methanation process requires 3-in-series reactors and can yield a continuous gas stream with a flow rate of 5 kg h−1 and a methane molar fraction of nearly 91%. If this stream is exploited for heat generation, a return of energy index of 16%, or 23% if neglecting the humidifier, is foreseen. The proposed process stems as viable solution towards a circular carbon economy.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.131827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.131827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:MIURMIURClaudio Tregambi; Stefano Padula; Mariano Galbusieri; Gianluca Coppola; Fabio Montagnaro; Piero Salatino; Maurizio Troiano; Roberto Solimene;handle: 11588/796467 , 20.500.14243/430835
The path toward a greener economy is leading the world energy scenario to an ever-increasing use of renewable energy sources. Concentrating Solar Thermal (CST) systems are typically based on technologies in which solar energy, concentrated by means of optical sun tracking mirrors, is exploited to drive power cycles or sustain chemical processes. Integration of CST technologies with relatively inexpensive energy storage systems decouples the collection of solar radiation from its use, and thus greatly increases the dispatchability of thermal energy production. Huge research efforts are currently devoted to the study of ThermoChemical Energy Storage (TCES) systems, in which solar energy is used to perform endothermal chemical reactions featuring large latent heat, so as to store solar energy in the noble and stable form of chemical bonds and/or produce solar fuels. Since most TCES processes involve gas/solid chemical reactions, multiphase chemical reactors own a key role for the success of the TCES technology. In this study, a novel batch lab-scale fluidized bed reactor for TCES of concentrated solar power and solar fuels production was designed. The reactor targets at maximizing the collection of solar energy, withstanding the highly-concentrated flux typical of high-temperature CST applications and ensuring uniform temperature distribution of the reactive materials. An experimental campaign consisting in hydrodynamical and thermal characterization of the system under inert conditions was performed. Moreover, reactive tests aimed at TCES of solar energy were performed using limestone calcination/carbonation as model reversible reaction. Heating of the system was performed by means of a simulator of concentrated solar energy made of a 7 kW short-arc Xe lamp coupled with an elliptical reflector. The hydrodynamical characterization disclosed the main features of the reactor and the possibility of establishing different regimes of operation. Thermal characterization revealed that reactor can be safely operated at temperature of over 1000 °C. Reactive tests proved the feasibility and reliability of the designed reactor toward chemical reactions aimed at TCES of concentrated solar energy and encourage future studies toward solar fuels production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.02.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.02.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:MIURMIURClaudio Tregambi; Stefano Padula; Mariano Galbusieri; Gianluca Coppola; Fabio Montagnaro; Piero Salatino; Maurizio Troiano; Roberto Solimene;handle: 11588/796467 , 20.500.14243/430835
The path toward a greener economy is leading the world energy scenario to an ever-increasing use of renewable energy sources. Concentrating Solar Thermal (CST) systems are typically based on technologies in which solar energy, concentrated by means of optical sun tracking mirrors, is exploited to drive power cycles or sustain chemical processes. Integration of CST technologies with relatively inexpensive energy storage systems decouples the collection of solar radiation from its use, and thus greatly increases the dispatchability of thermal energy production. Huge research efforts are currently devoted to the study of ThermoChemical Energy Storage (TCES) systems, in which solar energy is used to perform endothermal chemical reactions featuring large latent heat, so as to store solar energy in the noble and stable form of chemical bonds and/or produce solar fuels. Since most TCES processes involve gas/solid chemical reactions, multiphase chemical reactors own a key role for the success of the TCES technology. In this study, a novel batch lab-scale fluidized bed reactor for TCES of concentrated solar power and solar fuels production was designed. The reactor targets at maximizing the collection of solar energy, withstanding the highly-concentrated flux typical of high-temperature CST applications and ensuring uniform temperature distribution of the reactive materials. An experimental campaign consisting in hydrodynamical and thermal characterization of the system under inert conditions was performed. Moreover, reactive tests aimed at TCES of solar energy were performed using limestone calcination/carbonation as model reversible reaction. Heating of the system was performed by means of a simulator of concentrated solar energy made of a 7 kW short-arc Xe lamp coupled with an elliptical reflector. The hydrodynamical characterization disclosed the main features of the reactor and the possibility of establishing different regimes of operation. Thermal characterization revealed that reactor can be safely operated at temperature of over 1000 °C. Reactive tests proved the feasibility and reliability of the designed reactor toward chemical reactions aimed at TCES of concentrated solar energy and encourage future studies toward solar fuels production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.02.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.02.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Ferone, Claudio; Capasso, Ilaria; Bonati, Antonio; Roviello, Giuseppina; Montagnaro, Fabio; Santoro, Luciano; Turco, Rosa; Cioffi, Raffaele;handle: 11588/752398 , 11564/712735 , 11367/75270
Abstract Alumina-containing water potabilization sludge (WPS) is one of the main wastes produced by reservoir management activities. This kind of residues, deriving from treatment processes for water potabilization, recently attracted great attention as starting raw material in the production of innovative building materials. In this study, the use of WPS as aluminosilicate source for the synthesis of geopolymers has been investigated. In particular, two different potabilization sludge deriving from the water treatment plants of two artificial water reservoirs have been selected. For both of the WPS, mineralogical (XRD analysis), physical-chemical (FTIR analysis), thermal (TGA-DSC analysis), porosimetric (BET analysis) and morphological (SEM analysis) properties have been evaluated. A thermal treatment at 650 °C has been performed on the two raw sludge in order to increase their reactivity. Geopolymeric samples have been produced by the hardening of the calcined WPS in two sodium silicate solutions, differing only by concentration, and using two curing temperatures. Obtained specimens have been widely characterized from chemical, mechanical and microstructural points of view. SEM, FTIR and XRD analyses confirmed that the geopolymeric reaction effectively took place for the samples produced by using the more concentrated solution and the higher curing temperature. In general, the mechanical performances reached by the specimens, suggest the possibility of a promising reuse of WPS as raw materials for the synthesis of geopolymer based building precast components.
ARUdA arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.04.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ARUdA arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.04.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Ferone, Claudio; Capasso, Ilaria; Bonati, Antonio; Roviello, Giuseppina; Montagnaro, Fabio; Santoro, Luciano; Turco, Rosa; Cioffi, Raffaele;handle: 11588/752398 , 11564/712735 , 11367/75270
Abstract Alumina-containing water potabilization sludge (WPS) is one of the main wastes produced by reservoir management activities. This kind of residues, deriving from treatment processes for water potabilization, recently attracted great attention as starting raw material in the production of innovative building materials. In this study, the use of WPS as aluminosilicate source for the synthesis of geopolymers has been investigated. In particular, two different potabilization sludge deriving from the water treatment plants of two artificial water reservoirs have been selected. For both of the WPS, mineralogical (XRD analysis), physical-chemical (FTIR analysis), thermal (TGA-DSC analysis), porosimetric (BET analysis) and morphological (SEM analysis) properties have been evaluated. A thermal treatment at 650 °C has been performed on the two raw sludge in order to increase their reactivity. Geopolymeric samples have been produced by the hardening of the calcined WPS in two sodium silicate solutions, differing only by concentration, and using two curing temperatures. Obtained specimens have been widely characterized from chemical, mechanical and microstructural points of view. SEM, FTIR and XRD analyses confirmed that the geopolymeric reaction effectively took place for the samples produced by using the more concentrated solution and the higher curing temperature. In general, the mechanical performances reached by the specimens, suggest the possibility of a promising reuse of WPS as raw materials for the synthesis of geopolymer based building precast components.
ARUdA arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.04.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ARUdA arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.04.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Telesca A.; Ibris N.; Marroccoli M.; Tregambi C.; Solimene R.; Di Lauro F.; Ruiz de Ballesteros O.; Salatino P.; Montagnaro F.;handle: 11588/956294 , 20.500.14243/533405 , 11563/180535
Magnesium oxide (MgO)-based cements display very interesting technical properties and environmentally-friendly features. The novel idea investigated in this study is to synthesize MgO cements, using as raw material natural magnesite calcined in fluidized bed heated by concentrated solar energy. Calcination was performed in a lab-scale system equipped with a concentrated solar simulator, operated under different process conditions. The most reactive MgO was mixed with 3% by weight of MgCO3 (nucleation agent) and four different solutions containing magnesium acetate or chloride. The binders were hydrated in air or 20% CO2 atmosphere (accelerated carbonation conditions) until 28 days. X-ray diffraction, differential-thermal and mercury intrusion porosimetry analyses, and compressive mechanical strength tests, were performed on the hydrated systems. Solar calcination produced a highly reactive MgO. The performance of the cement pastes improved at higher curing times, and when using magnesium acetate as hydration agent, as also witnessed by the application of a kinetic model. Accelerated carbonation conditions further enhanced the mechanical properties of the cements thanks to the formation of nesquehonite, allowing to reach a mechanical strength comparable to that of ordinary Portland cements class 32.5. The achieved outcomes encourage the production of low-CO2 magnesite cements from solar calcined magnesite, boosting the green aspect of the entire process.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Telesca A.; Ibris N.; Marroccoli M.; Tregambi C.; Solimene R.; Di Lauro F.; Ruiz de Ballesteros O.; Salatino P.; Montagnaro F.;handle: 11588/956294 , 20.500.14243/533405 , 11563/180535
Magnesium oxide (MgO)-based cements display very interesting technical properties and environmentally-friendly features. The novel idea investigated in this study is to synthesize MgO cements, using as raw material natural magnesite calcined in fluidized bed heated by concentrated solar energy. Calcination was performed in a lab-scale system equipped with a concentrated solar simulator, operated under different process conditions. The most reactive MgO was mixed with 3% by weight of MgCO3 (nucleation agent) and four different solutions containing magnesium acetate or chloride. The binders were hydrated in air or 20% CO2 atmosphere (accelerated carbonation conditions) until 28 days. X-ray diffraction, differential-thermal and mercury intrusion porosimetry analyses, and compressive mechanical strength tests, were performed on the hydrated systems. Solar calcination produced a highly reactive MgO. The performance of the cement pastes improved at higher curing times, and when using magnesium acetate as hydration agent, as also witnessed by the application of a kinetic model. Accelerated carbonation conditions further enhanced the mechanical properties of the cements thanks to the formation of nesquehonite, allowing to reach a mechanical strength comparable to that of ordinary Portland cements class 32.5. The achieved outcomes encourage the production of low-CO2 magnesite cements from solar calcined magnesite, boosting the green aspect of the entire process.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Claudio Tregambi; Piero Bareschino; Dawid P. Hanak; Erasmo Mancusi; Fabio Montagnaro; Francesco Pepe;handle: 11588/948203
Direct air capture (DAC) is widely investigated to capture carbon dioxide (CO2) emissions from decentralised sources. As an alternative to geological storage, CO2 from DAC can be reacted with hydrogen (H2) from water electrolysis driven by renewable energy to produce synthetic methane (CH4), increasing the penetration of renewable energies and leading to a circular carbon economy. This study presents a techno-economic assessment of an integrated system for DAC based on calcium looping and subsequent methanation of CO2. Photovoltaics (PV) is considered as renewable energy source. For the DAC plant, heat exchangers represent the most expensive component, followed by blowers/compressors, reactors and gas heaters. The levelized cost of CO2 removal for DAC ranges within 693–1587 € tCO2−1 according to the parameters considered. For a methanation plant built in Abu Dhabi (United Arab Emirates), the electrolyzer represents the most expensive component, followed by PV field, H2 storage tank, and reactors. Altogether, the levelized cost of methane (LCOM) ranges within 4.9–8.2 € kgCH4−1 for integration with the DAC plant investigated. It reduces to 3.1–3.9 € kgCH4−1 for integration with point source carbon capture. A comparison between Abu Dhabi and Benevento (Italy) reveals that cities with an uneven distribution of solar energy throughout the year may require a large investment cost for the H2 storage tank, that makes the LCOM increase. In conclusion, LCOM values provided in this study exceeds the current price of methane, suggesting that further improvements or economic incentives are required to increase the competitiveness of this power-to-gas technology.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2023.06.289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2023.06.289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Claudio Tregambi; Piero Bareschino; Dawid P. Hanak; Erasmo Mancusi; Fabio Montagnaro; Francesco Pepe;handle: 11588/948203
Direct air capture (DAC) is widely investigated to capture carbon dioxide (CO2) emissions from decentralised sources. As an alternative to geological storage, CO2 from DAC can be reacted with hydrogen (H2) from water electrolysis driven by renewable energy to produce synthetic methane (CH4), increasing the penetration of renewable energies and leading to a circular carbon economy. This study presents a techno-economic assessment of an integrated system for DAC based on calcium looping and subsequent methanation of CO2. Photovoltaics (PV) is considered as renewable energy source. For the DAC plant, heat exchangers represent the most expensive component, followed by blowers/compressors, reactors and gas heaters. The levelized cost of CO2 removal for DAC ranges within 693–1587 € tCO2−1 according to the parameters considered. For a methanation plant built in Abu Dhabi (United Arab Emirates), the electrolyzer represents the most expensive component, followed by PV field, H2 storage tank, and reactors. Altogether, the levelized cost of methane (LCOM) ranges within 4.9–8.2 € kgCH4−1 for integration with the DAC plant investigated. It reduces to 3.1–3.9 € kgCH4−1 for integration with point source carbon capture. A comparison between Abu Dhabi and Benevento (Italy) reveals that cities with an uneven distribution of solar energy throughout the year may require a large investment cost for the H2 storage tank, that makes the LCOM increase. In conclusion, LCOM values provided in this study exceeds the current price of methane, suggesting that further improvements or economic incentives are required to increase the competitiveness of this power-to-gas technology.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2023.06.289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2023.06.289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Tregambi, Claudio; Salatino, Piero; Solimene, Roberto; Montagnaro, Fabio;handle: 11588/696171 , 20.500.14243/348023
Carbon Capture and Sequestration (CCS) and renewable energy sources are both essential to mitigate the CO2 emissions in the near future. Calcium Looping (CaL) is an important post-combustion carbon capture technology that has reached the maturity of the pilot plant stage. On the other side Concentrated Solar Power (CSP) is a fas-tgrowing renewable technology in which solar energy, concentrated up to several MW m(-2), can be used to produce electricity or to drive an endothermic chemical reaction. The integration between a CSP system and a CaL cycle, in order to use a renewable source to supply the energy required by the calciner, would strongly improve the performance of the CaL process by overcoming some of its main drawbacks. However, the role that highly concentrated radiation can have on the sorbent properties in the CaL cycle is still matter of investigation. In this study, the CaL-CSP integrated process is experimentally investigated through the use of a directly irradiated Fluidized Bed )FB) reactor. Simulated concentrated solar radiation featured a peak flux on the FB surface of approximately 3 MW m(-2) and a total power of about 3 kWth. Several calcination and carbonation tests have been performed on samples of a commercial Italian limestone, in order to establish the evolution of the sorbent capacity of CO2 capture at increasing number of cycles. The properties of the limestone samples were further investigated by means of microstructural characterization. The comparison between results obtained with and without the use of the solar concentrated flux to thermally sustain calcination provides useful information on the potential of solar driven CaL and on the measure to overcome some of its potential limitations.
CNR ExploRA arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.08.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.08.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Tregambi, Claudio; Salatino, Piero; Solimene, Roberto; Montagnaro, Fabio;handle: 11588/696171 , 20.500.14243/348023
Carbon Capture and Sequestration (CCS) and renewable energy sources are both essential to mitigate the CO2 emissions in the near future. Calcium Looping (CaL) is an important post-combustion carbon capture technology that has reached the maturity of the pilot plant stage. On the other side Concentrated Solar Power (CSP) is a fas-tgrowing renewable technology in which solar energy, concentrated up to several MW m(-2), can be used to produce electricity or to drive an endothermic chemical reaction. The integration between a CSP system and a CaL cycle, in order to use a renewable source to supply the energy required by the calciner, would strongly improve the performance of the CaL process by overcoming some of its main drawbacks. However, the role that highly concentrated radiation can have on the sorbent properties in the CaL cycle is still matter of investigation. In this study, the CaL-CSP integrated process is experimentally investigated through the use of a directly irradiated Fluidized Bed )FB) reactor. Simulated concentrated solar radiation featured a peak flux on the FB surface of approximately 3 MW m(-2) and a total power of about 3 kWth. Several calcination and carbonation tests have been performed on samples of a commercial Italian limestone, in order to establish the evolution of the sorbent capacity of CO2 capture at increasing number of cycles. The properties of the limestone samples were further investigated by means of microstructural characterization. The comparison between results obtained with and without the use of the solar concentrated flux to thermally sustain calcination provides useful information on the potential of solar driven CaL and on the measure to overcome some of its potential limitations.
CNR ExploRA arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.08.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.08.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:MIURMIURDi Lauro F.; Tregambi C.; Montagnaro F.; Salatino P.; Chirone R.; Solimene R.;handle: 11588/852161 , 20.500.14243/430799
Concentrating solar thermal (CST) technologies for power production can play a major role in the future portfolio of renewable energies. Limestone calcination/carbonation (Calcium Looping (CaL)), is an appealing reaction whose integration with CST is widely investigated for thermochemical energy storage (TCES) and carbon capture and storage/utilization (CCSU). Experimental data under realistic CST conditions/reactors currently lacks, since most of the experimental activities have been performed in thermogravimetric analyzers. In this study, CaL-CST integration was investigated in a lab-scale directly irradiated fluidized bed reactor, able to mimic the operating conditions required for industrial implementation of the technology. Three different techniques to improve the performance of CaL-CST for TCES and CCSU were investigated: i) lowering of calcination temperature; ii) precalcination; iii) use of dolomite instead of limestone. Experimental results revealed that all the strategies moderately improve system performance. After 20 cycles, depending on the technique applied, the mean carbonation degree ranges within 28.1-37.1% (TCES) and 15.3-18.7% (CCSU) with limestone, and values 61.5% (TCES) and 36.7% (CCSU) with dolomite. Figures of energy storage density are less sensitive to the different techniques, as pay for the lower calcination temperature (limestone), or for the presence of an inert MgO fraction (dolomite). Corresponding values range within 941-1065 MJ m (TCES) and 777-872 MJ m (CCSU), for loose-packed conditions. N-physisorption analyses revealed that the increased reactivity arises from better microstructural properties in terms of specific surface. Optimal choice among the different strategies should consider the intrinsic peculiarities of each investigated technique.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120791&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120791&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:MIURMIURDi Lauro F.; Tregambi C.; Montagnaro F.; Salatino P.; Chirone R.; Solimene R.;handle: 11588/852161 , 20.500.14243/430799
Concentrating solar thermal (CST) technologies for power production can play a major role in the future portfolio of renewable energies. Limestone calcination/carbonation (Calcium Looping (CaL)), is an appealing reaction whose integration with CST is widely investigated for thermochemical energy storage (TCES) and carbon capture and storage/utilization (CCSU). Experimental data under realistic CST conditions/reactors currently lacks, since most of the experimental activities have been performed in thermogravimetric analyzers. In this study, CaL-CST integration was investigated in a lab-scale directly irradiated fluidized bed reactor, able to mimic the operating conditions required for industrial implementation of the technology. Three different techniques to improve the performance of CaL-CST for TCES and CCSU were investigated: i) lowering of calcination temperature; ii) precalcination; iii) use of dolomite instead of limestone. Experimental results revealed that all the strategies moderately improve system performance. After 20 cycles, depending on the technique applied, the mean carbonation degree ranges within 28.1-37.1% (TCES) and 15.3-18.7% (CCSU) with limestone, and values 61.5% (TCES) and 36.7% (CCSU) with dolomite. Figures of energy storage density are less sensitive to the different techniques, as pay for the lower calcination temperature (limestone), or for the presence of an inert MgO fraction (dolomite). Corresponding values range within 941-1065 MJ m (TCES) and 777-872 MJ m (CCSU), for loose-packed conditions. N-physisorption analyses revealed that the increased reactivity arises from better microstructural properties in terms of specific surface. Optimal choice among the different strategies should consider the intrinsic peculiarities of each investigated technique.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120791&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120791&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Marroccoli M.; Ibris N.; Telesca A.; Tregambi C.; Solimene R.; Di Lauro F.; Ruiz de Ballesteros O.; Salatino P.; Montagnaro F.;handle: 11588/867638 , 20.500.14243/416346 , 11563/153088
Dolomite-based binders are characterised by interesting technical and environmental features. For their synthesis, sources of both CaO and MgO are required. The idea developed in this work is to couple the synthesis of dolomite-based binders, starting from a natural dolomite, through the concept of concentrated solar energy (needed to drive the endothermal dolomite calcination process) in fluidised bed reactors. To this end, a fluidised bed system, where the concentrated solar radiation is mimicked by the use of Xe-lamps (short-arc), has been set up and operated. Natural dolomite (sieved in the 420-590 ?m size range) was calcined at a nominal temperature of 850 °C, and bed temperature profiles during solar-driven calcination were investigated. Then, four binders were prepared by mixing slaked dolomite (obtained from the hydration of solar calcined dolomite) with either blast furnace slag or coal fly ash as supplementary cementitious materials. The binders were hydrated for curing times ranging from 7 to 56 days. X-ray fluorescence, X-ray diffraction and combined differential thermal and thermogravimetric analyses were employed as characterisation techniques both to analyse the chemical composition of starting materials and to investigate the evolution of the hydration in the four systems.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Marroccoli M.; Ibris N.; Telesca A.; Tregambi C.; Solimene R.; Di Lauro F.; Ruiz de Ballesteros O.; Salatino P.; Montagnaro F.;handle: 11588/867638 , 20.500.14243/416346 , 11563/153088
Dolomite-based binders are characterised by interesting technical and environmental features. For their synthesis, sources of both CaO and MgO are required. The idea developed in this work is to couple the synthesis of dolomite-based binders, starting from a natural dolomite, through the concept of concentrated solar energy (needed to drive the endothermal dolomite calcination process) in fluidised bed reactors. To this end, a fluidised bed system, where the concentrated solar radiation is mimicked by the use of Xe-lamps (short-arc), has been set up and operated. Natural dolomite (sieved in the 420-590 ?m size range) was calcined at a nominal temperature of 850 °C, and bed temperature profiles during solar-driven calcination were investigated. Then, four binders were prepared by mixing slaked dolomite (obtained from the hydration of solar calcined dolomite) with either blast furnace slag or coal fly ash as supplementary cementitious materials. The binders were hydrated for curing times ranging from 7 to 56 days. X-ray fluorescence, X-ray diffraction and combined differential thermal and thermogravimetric analyses were employed as characterisation techniques both to analyse the chemical composition of starting materials and to investigate the evolution of the hydration in the four systems.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Elsevier BV Di Lauro F.; Balsamo M.; Solimene R.; Alfieri M. L.; Manini P.; Salatino P.; Montagnaro F.;handle: 11588/1002194
Around 600 million m3 of wastewater and 6 million tonnes of leather solid wastes, are generated annually worldwide, with a chromium content of 1 to 4 %. In this context, the thermochemical valorisation of tannery sludge (TS) by hydrothermal liquefaction (HTL) process represents a promising route both for the reduction of the material to dispose in landfill and for the production of an energy carrier. HTL process produces bio-crude from wet biomasses in a hot pressurised water environment, thus avoiding the energy-intensive drying step commonly associated to other thermochemical processes. Moreover, HTL, not aiming at the complete oxidation of the organic component, potentially avoids the oxidation of Cr in its harmful hexavalent form. In this study, a TS was investigated as solid waste for HTL carried out in a 500 mL batch reactor to obtain a bio-crude for energy purposes. Results show that, under the best operating HTL condition (350 °C and 10 min), the H/C ratio of bio-crude was similar to that of starting biomass while the O/C ratio was about three times smaller than in the parent TS. The bio-crude yield was about 25–30 % on dry and ash-free basis, with an associated energy recovery of about 40–45 %. NMR analysis of bio-crude revealed that it is a complex mixture mainly constituted by aliphatic units. Moreover, ICP-MS, atomic absorption and UV–visible spectroscopy analyses proved that inorganic elements are mainly retrieved in the solid residue, and that Cr was present in its starting trivalent form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Elsevier BV Di Lauro F.; Balsamo M.; Solimene R.; Alfieri M. L.; Manini P.; Salatino P.; Montagnaro F.;handle: 11588/1002194
Around 600 million m3 of wastewater and 6 million tonnes of leather solid wastes, are generated annually worldwide, with a chromium content of 1 to 4 %. In this context, the thermochemical valorisation of tannery sludge (TS) by hydrothermal liquefaction (HTL) process represents a promising route both for the reduction of the material to dispose in landfill and for the production of an energy carrier. HTL process produces bio-crude from wet biomasses in a hot pressurised water environment, thus avoiding the energy-intensive drying step commonly associated to other thermochemical processes. Moreover, HTL, not aiming at the complete oxidation of the organic component, potentially avoids the oxidation of Cr in its harmful hexavalent form. In this study, a TS was investigated as solid waste for HTL carried out in a 500 mL batch reactor to obtain a bio-crude for energy purposes. Results show that, under the best operating HTL condition (350 °C and 10 min), the H/C ratio of bio-crude was similar to that of starting biomass while the O/C ratio was about three times smaller than in the parent TS. The bio-crude yield was about 25–30 % on dry and ash-free basis, with an associated energy recovery of about 40–45 %. NMR analysis of bio-crude revealed that it is a complex mixture mainly constituted by aliphatic units. Moreover, ICP-MS, atomic absorption and UV–visible spectroscopy analyses proved that inorganic elements are mainly retrieved in the solid residue, and that Cr was present in its starting trivalent form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Tregambi, Claudio; Solimene, Roberto; Montagnaro, Fabio; Salatino, Piero; Marroccoli, Milena; Ibris, Neluta; Telesca, Antonio;handle: 11588/720114 , 20.500.14243/348026 , 11563/134552
Cement production is an energy-intensive manufacturing process with potentially large environmental burdens. Among the others, it is one of the largest industrial sources of CO2 emission. Limestone calcination is the stage responsible for most of CO2 emissions and energy requirement. This article aims at supporting the use of solar energy as non-carbogenic renewable source to sustain limestone calcination, with advantages on both the economic and environmental aspects of the process. A directly irradiated Fluidised Bed (FB) reactor was used as limestone precalciner for clinker production. Concentrated solar radiation was simulated with an array of three short-arc Xe-lamps of 4 kWel each, coupled with elliptical reflectors, capable of producing a peak flux of about 3 MW m-2 at the centre of the reactor. The total irradiated power is of approximately 3.2 kWth. Thermocouples and an IR camera were used for the analysis of the FB thermal profiles. Calcination was carried out at a nominal bulk bed temperature of 950 °C, in an atmosphere containing about 70% CO2. The reactivity of lime generated by the solar-driven calcination process has been characterised. Lime produced by the solar-driven process was used together with commercial clay as kiln feed components for the formulation of Portland cement samples. A binary mixture composed by fresh limestone and the same clay as above was employed as a reference. The key focus of the investigation was the assessment of the reactivity of the solar-generated lime toward the main clay components in the clinker production process, as compared to lime from ordinary calcination. An aspect that is specifically scrutinised is whether the different, and possibly more severe, thermal history to which limestone particles undergo during solar-driven calcination in directly irradiated FB reactors may compromise lime reactivity. Portland clinkers were produced by burning the raw meals at 1500 °C for 15 min. Clinkers were mixed with 5% natural gypsum to prepare the related Portland cements, which were then paste hydrated for times ranging from 2 to 28 days (water/cement mass ratio = 0.5, 20 °C, 95% relative humidity). Parameters as lime saturation factor, burnability, phase composition of clinkers and hydration behaviour of cement pastes were taken into consideration. Techniques as X-ray fluorescence and diffraction, and simultaneous differential thermal-thermogravimetry were used to study the materials.
Solar Energy arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Tregambi, Claudio; Solimene, Roberto; Montagnaro, Fabio; Salatino, Piero; Marroccoli, Milena; Ibris, Neluta; Telesca, Antonio;handle: 11588/720114 , 20.500.14243/348026 , 11563/134552
Cement production is an energy-intensive manufacturing process with potentially large environmental burdens. Among the others, it is one of the largest industrial sources of CO2 emission. Limestone calcination is the stage responsible for most of CO2 emissions and energy requirement. This article aims at supporting the use of solar energy as non-carbogenic renewable source to sustain limestone calcination, with advantages on both the economic and environmental aspects of the process. A directly irradiated Fluidised Bed (FB) reactor was used as limestone precalciner for clinker production. Concentrated solar radiation was simulated with an array of three short-arc Xe-lamps of 4 kWel each, coupled with elliptical reflectors, capable of producing a peak flux of about 3 MW m-2 at the centre of the reactor. The total irradiated power is of approximately 3.2 kWth. Thermocouples and an IR camera were used for the analysis of the FB thermal profiles. Calcination was carried out at a nominal bulk bed temperature of 950 °C, in an atmosphere containing about 70% CO2. The reactivity of lime generated by the solar-driven calcination process has been characterised. Lime produced by the solar-driven process was used together with commercial clay as kiln feed components for the formulation of Portland cement samples. A binary mixture composed by fresh limestone and the same clay as above was employed as a reference. The key focus of the investigation was the assessment of the reactivity of the solar-generated lime toward the main clay components in the clinker production process, as compared to lime from ordinary calcination. An aspect that is specifically scrutinised is whether the different, and possibly more severe, thermal history to which limestone particles undergo during solar-driven calcination in directly irradiated FB reactors may compromise lime reactivity. Portland clinkers were produced by burning the raw meals at 1500 °C for 15 min. Clinkers were mixed with 5% natural gypsum to prepare the related Portland cements, which were then paste hydrated for times ranging from 2 to 28 days (water/cement mass ratio = 0.5, 20 °C, 95% relative humidity). Parameters as lime saturation factor, burnability, phase composition of clinkers and hydration behaviour of cement pastes were taken into consideration. Techniques as X-ray fluorescence and diffraction, and simultaneous differential thermal-thermogravimetry were used to study the materials.
Solar Energy arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.08.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United Kingdom, ItalyPublisher:Elsevier BV Claudio Tregambi; Piero Bareschino; Dawid P. Hanak; Fabio Montagnaro; Francesco Pepe; Erasmo Mancusi;handle: 11588/886265
Negative-emission technologies are largely investigated to better control atmospheric carbon dioxide concentration driving global warming. Calcium looping has been proposed in literature for direct air capture, but a comprehensive system analysis is still missing. Methanation of carbon dioxide can represent an alternative to geological storage, widely investigated within the power-to-gas framework. In this study, an integrated process considering the catalytic methanation of the concentrated carbon dioxide stream after capture from ambient air by a pure hydrogen stream from water electrolysis was proposed and numerically investigated. The system relies on packed bed reactors and uses calcium oxide as sorbent, and a nickel-based catalyst for methanation. A comprehensive study on the overall system performance was carried out, assuming a carbon dioxide capture target of 100 t y−1. Model computations suggest that roughly 50-in-parallel reactors, 0.5 m diameter each, are required for a continuous operation. The overall energy demand of the integrated process ranges within 344–370 GJ tCH4−1, or 215–293 GJ tCH4−1 if neglecting the humidifier. The methanation process requires 3-in-series reactors and can yield a continuous gas stream with a flow rate of 5 kg h−1 and a methane molar fraction of nearly 91%. If this stream is exploited for heat generation, a return of energy index of 16%, or 23% if neglecting the humidifier, is foreseen. The proposed process stems as viable solution towards a circular carbon economy.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.131827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.131827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United Kingdom, ItalyPublisher:Elsevier BV Claudio Tregambi; Piero Bareschino; Dawid P. Hanak; Fabio Montagnaro; Francesco Pepe; Erasmo Mancusi;handle: 11588/886265
Negative-emission technologies are largely investigated to better control atmospheric carbon dioxide concentration driving global warming. Calcium looping has been proposed in literature for direct air capture, but a comprehensive system analysis is still missing. Methanation of carbon dioxide can represent an alternative to geological storage, widely investigated within the power-to-gas framework. In this study, an integrated process considering the catalytic methanation of the concentrated carbon dioxide stream after capture from ambient air by a pure hydrogen stream from water electrolysis was proposed and numerically investigated. The system relies on packed bed reactors and uses calcium oxide as sorbent, and a nickel-based catalyst for methanation. A comprehensive study on the overall system performance was carried out, assuming a carbon dioxide capture target of 100 t y−1. Model computations suggest that roughly 50-in-parallel reactors, 0.5 m diameter each, are required for a continuous operation. The overall energy demand of the integrated process ranges within 344–370 GJ tCH4−1, or 215–293 GJ tCH4−1 if neglecting the humidifier. The methanation process requires 3-in-series reactors and can yield a continuous gas stream with a flow rate of 5 kg h−1 and a methane molar fraction of nearly 91%. If this stream is exploited for heat generation, a return of energy index of 16%, or 23% if neglecting the humidifier, is foreseen. The proposed process stems as viable solution towards a circular carbon economy.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.131827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.131827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:MIURMIURClaudio Tregambi; Stefano Padula; Mariano Galbusieri; Gianluca Coppola; Fabio Montagnaro; Piero Salatino; Maurizio Troiano; Roberto Solimene;handle: 11588/796467 , 20.500.14243/430835
The path toward a greener economy is leading the world energy scenario to an ever-increasing use of renewable energy sources. Concentrating Solar Thermal (CST) systems are typically based on technologies in which solar energy, concentrated by means of optical sun tracking mirrors, is exploited to drive power cycles or sustain chemical processes. Integration of CST technologies with relatively inexpensive energy storage systems decouples the collection of solar radiation from its use, and thus greatly increases the dispatchability of thermal energy production. Huge research efforts are currently devoted to the study of ThermoChemical Energy Storage (TCES) systems, in which solar energy is used to perform endothermal chemical reactions featuring large latent heat, so as to store solar energy in the noble and stable form of chemical bonds and/or produce solar fuels. Since most TCES processes involve gas/solid chemical reactions, multiphase chemical reactors own a key role for the success of the TCES technology. In this study, a novel batch lab-scale fluidized bed reactor for TCES of concentrated solar power and solar fuels production was designed. The reactor targets at maximizing the collection of solar energy, withstanding the highly-concentrated flux typical of high-temperature CST applications and ensuring uniform temperature distribution of the reactive materials. An experimental campaign consisting in hydrodynamical and thermal characterization of the system under inert conditions was performed. Moreover, reactive tests aimed at TCES of solar energy were performed using limestone calcination/carbonation as model reversible reaction. Heating of the system was performed by means of a simulator of concentrated solar energy made of a 7 kW short-arc Xe lamp coupled with an elliptical reflector. The hydrodynamical characterization disclosed the main features of the reactor and the possibility of establishing different regimes of operation. Thermal characterization revealed that reactor can be safely operated at temperature of over 1000 °C. Reactive tests proved the feasibility and reliability of the designed reactor toward chemical reactions aimed at TCES of concentrated solar energy and encourage future studies toward solar fuels production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.02.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.02.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:MIURMIURClaudio Tregambi; Stefano Padula; Mariano Galbusieri; Gianluca Coppola; Fabio Montagnaro; Piero Salatino; Maurizio Troiano; Roberto Solimene;handle: 11588/796467 , 20.500.14243/430835
The path toward a greener economy is leading the world energy scenario to an ever-increasing use of renewable energy sources. Concentrating Solar Thermal (CST) systems are typically based on technologies in which solar energy, concentrated by means of optical sun tracking mirrors, is exploited to drive power cycles or sustain chemical processes. Integration of CST technologies with relatively inexpensive energy storage systems decouples the collection of solar radiation from its use, and thus greatly increases the dispatchability of thermal energy production. Huge research efforts are currently devoted to the study of ThermoChemical Energy Storage (TCES) systems, in which solar energy is used to perform endothermal chemical reactions featuring large latent heat, so as to store solar energy in the noble and stable form of chemical bonds and/or produce solar fuels. Since most TCES processes involve gas/solid chemical reactions, multiphase chemical reactors own a key role for the success of the TCES technology. In this study, a novel batch lab-scale fluidized bed reactor for TCES of concentrated solar power and solar fuels production was designed. The reactor targets at maximizing the collection of solar energy, withstanding the highly-concentrated flux typical of high-temperature CST applications and ensuring uniform temperature distribution of the reactive materials. An experimental campaign consisting in hydrodynamical and thermal characterization of the system under inert conditions was performed. Moreover, reactive tests aimed at TCES of solar energy were performed using limestone calcination/carbonation as model reversible reaction. Heating of the system was performed by means of a simulator of concentrated solar energy made of a 7 kW short-arc Xe lamp coupled with an elliptical reflector. The hydrodynamical characterization disclosed the main features of the reactor and the possibility of establishing different regimes of operation. Thermal characterization revealed that reactor can be safely operated at temperature of over 1000 °C. Reactive tests proved the feasibility and reliability of the designed reactor toward chemical reactions aimed at TCES of concentrated solar energy and encourage future studies toward solar fuels production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.02.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.02.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Ferone, Claudio; Capasso, Ilaria; Bonati, Antonio; Roviello, Giuseppina; Montagnaro, Fabio; Santoro, Luciano; Turco, Rosa; Cioffi, Raffaele;handle: 11588/752398 , 11564/712735 , 11367/75270
Abstract Alumina-containing water potabilization sludge (WPS) is one of the main wastes produced by reservoir management activities. This kind of residues, deriving from treatment processes for water potabilization, recently attracted great attention as starting raw material in the production of innovative building materials. In this study, the use of WPS as aluminosilicate source for the synthesis of geopolymers has been investigated. In particular, two different potabilization sludge deriving from the water treatment plants of two artificial water reservoirs have been selected. For both of the WPS, mineralogical (XRD analysis), physical-chemical (FTIR analysis), thermal (TGA-DSC analysis), porosimetric (BET analysis) and morphological (SEM analysis) properties have been evaluated. A thermal treatment at 650 °C has been performed on the two raw sludge in order to increase their reactivity. Geopolymeric samples have been produced by the hardening of the calcined WPS in two sodium silicate solutions, differing only by concentration, and using two curing temperatures. Obtained specimens have been widely characterized from chemical, mechanical and microstructural points of view. SEM, FTIR and XRD analyses confirmed that the geopolymeric reaction effectively took place for the samples produced by using the more concentrated solution and the higher curing temperature. In general, the mechanical performances reached by the specimens, suggest the possibility of a promising reuse of WPS as raw materials for the synthesis of geopolymer based building precast components.
ARUdA arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.04.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ARUdA arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.04.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Ferone, Claudio; Capasso, Ilaria; Bonati, Antonio; Roviello, Giuseppina; Montagnaro, Fabio; Santoro, Luciano; Turco, Rosa; Cioffi, Raffaele;handle: 11588/752398 , 11564/712735 , 11367/75270
Abstract Alumina-containing water potabilization sludge (WPS) is one of the main wastes produced by reservoir management activities. This kind of residues, deriving from treatment processes for water potabilization, recently attracted great attention as starting raw material in the production of innovative building materials. In this study, the use of WPS as aluminosilicate source for the synthesis of geopolymers has been investigated. In particular, two different potabilization sludge deriving from the water treatment plants of two artificial water reservoirs have been selected. For both of the WPS, mineralogical (XRD analysis), physical-chemical (FTIR analysis), thermal (TGA-DSC analysis), porosimetric (BET analysis) and morphological (SEM analysis) properties have been evaluated. A thermal treatment at 650 °C has been performed on the two raw sludge in order to increase their reactivity. Geopolymeric samples have been produced by the hardening of the calcined WPS in two sodium silicate solutions, differing only by concentration, and using two curing temperatures. Obtained specimens have been widely characterized from chemical, mechanical and microstructural points of view. SEM, FTIR and XRD analyses confirmed that the geopolymeric reaction effectively took place for the samples produced by using the more concentrated solution and the higher curing temperature. In general, the mechanical performances reached by the specimens, suggest the possibility of a promising reuse of WPS as raw materials for the synthesis of geopolymer based building precast components.
ARUdA arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.04.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ARUdA arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.04.299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Telesca A.; Ibris N.; Marroccoli M.; Tregambi C.; Solimene R.; Di Lauro F.; Ruiz de Ballesteros O.; Salatino P.; Montagnaro F.;handle: 11588/956294 , 20.500.14243/533405 , 11563/180535
Magnesium oxide (MgO)-based cements display very interesting technical properties and environmentally-friendly features. The novel idea investigated in this study is to synthesize MgO cements, using as raw material natural magnesite calcined in fluidized bed heated by concentrated solar energy. Calcination was performed in a lab-scale system equipped with a concentrated solar simulator, operated under different process conditions. The most reactive MgO was mixed with 3% by weight of MgCO3 (nucleation agent) and four different solutions containing magnesium acetate or chloride. The binders were hydrated in air or 20% CO2 atmosphere (accelerated carbonation conditions) until 28 days. X-ray diffraction, differential-thermal and mercury intrusion porosimetry analyses, and compressive mechanical strength tests, were performed on the hydrated systems. Solar calcination produced a highly reactive MgO. The performance of the cement pastes improved at higher curing times, and when using magnesium acetate as hydration agent, as also witnessed by the application of a kinetic model. Accelerated carbonation conditions further enhanced the mechanical properties of the cements thanks to the formation of nesquehonite, allowing to reach a mechanical strength comparable to that of ordinary Portland cements class 32.5. The achieved outcomes encourage the production of low-CO2 magnesite cements from solar calcined magnesite, boosting the green aspect of the entire process.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Telesca A.; Ibris N.; Marroccoli M.; Tregambi C.; Solimene R.; Di Lauro F.; Ruiz de Ballesteros O.; Salatino P.; Montagnaro F.;handle: 11588/956294 , 20.500.14243/533405 , 11563/180535
Magnesium oxide (MgO)-based cements display very interesting technical properties and environmentally-friendly features. The novel idea investigated in this study is to synthesize MgO cements, using as raw material natural magnesite calcined in fluidized bed heated by concentrated solar energy. Calcination was performed in a lab-scale system equipped with a concentrated solar simulator, operated under different process conditions. The most reactive MgO was mixed with 3% by weight of MgCO3 (nucleation agent) and four different solutions containing magnesium acetate or chloride. The binders were hydrated in air or 20% CO2 atmosphere (accelerated carbonation conditions) until 28 days. X-ray diffraction, differential-thermal and mercury intrusion porosimetry analyses, and compressive mechanical strength tests, were performed on the hydrated systems. Solar calcination produced a highly reactive MgO. The performance of the cement pastes improved at higher curing times, and when using magnesium acetate as hydration agent, as also witnessed by the application of a kinetic model. Accelerated carbonation conditions further enhanced the mechanical properties of the cements thanks to the formation of nesquehonite, allowing to reach a mechanical strength comparable to that of ordinary Portland cements class 32.5. The achieved outcomes encourage the production of low-CO2 magnesite cements from solar calcined magnesite, boosting the green aspect of the entire process.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Claudio Tregambi; Piero Bareschino; Dawid P. Hanak; Erasmo Mancusi; Fabio Montagnaro; Francesco Pepe;handle: 11588/948203
Direct air capture (DAC) is widely investigated to capture carbon dioxide (CO2) emissions from decentralised sources. As an alternative to geological storage, CO2 from DAC can be reacted with hydrogen (H2) from water electrolysis driven by renewable energy to produce synthetic methane (CH4), increasing the penetration of renewable energies and leading to a circular carbon economy. This study presents a techno-economic assessment of an integrated system for DAC based on calcium looping and subsequent methanation of CO2. Photovoltaics (PV) is considered as renewable energy source. For the DAC plant, heat exchangers represent the most expensive component, followed by blowers/compressors, reactors and gas heaters. The levelized cost of CO2 removal for DAC ranges within 693–1587 € tCO2−1 according to the parameters considered. For a methanation plant built in Abu Dhabi (United Arab Emirates), the electrolyzer represents the most expensive component, followed by PV field, H2 storage tank, and reactors. Altogether, the levelized cost of methane (LCOM) ranges within 4.9–8.2 € kgCH4−1 for integration with the DAC plant investigated. It reduces to 3.1–3.9 € kgCH4−1 for integration with point source carbon capture. A comparison between Abu Dhabi and Benevento (Italy) reveals that cities with an uneven distribution of solar energy throughout the year may require a large investment cost for the H2 storage tank, that makes the LCOM increase. In conclusion, LCOM values provided in this study exceeds the current price of methane, suggesting that further improvements or economic incentives are required to increase the competitiveness of this power-to-gas technology.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2023.06.289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2023.06.289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Claudio Tregambi; Piero Bareschino; Dawid P. Hanak; Erasmo Mancusi; Fabio Montagnaro; Francesco Pepe;handle: 11588/948203
Direct air capture (DAC) is widely investigated to capture carbon dioxide (CO2) emissions from decentralised sources. As an alternative to geological storage, CO2 from DAC can be reacted with hydrogen (H2) from water electrolysis driven by renewable energy to produce synthetic methane (CH4), increasing the penetration of renewable energies and leading to a circular carbon economy. This study presents a techno-economic assessment of an integrated system for DAC based on calcium looping and subsequent methanation of CO2. Photovoltaics (PV) is considered as renewable energy source. For the DAC plant, heat exchangers represent the most expensive component, followed by blowers/compressors, reactors and gas heaters. The levelized cost of CO2 removal for DAC ranges within 693–1587 € tCO2−1 according to the parameters considered. For a methanation plant built in Abu Dhabi (United Arab Emirates), the electrolyzer represents the most expensive component, followed by PV field, H2 storage tank, and reactors. Altogether, the levelized cost of methane (LCOM) ranges within 4.9–8.2 € kgCH4−1 for integration with the DAC plant investigated. It reduces to 3.1–3.9 € kgCH4−1 for integration with point source carbon capture. A comparison between Abu Dhabi and Benevento (Italy) reveals that cities with an uneven distribution of solar energy throughout the year may require a large investment cost for the H2 storage tank, that makes the LCOM increase. In conclusion, LCOM values provided in this study exceeds the current price of methane, suggesting that further improvements or economic incentives are required to increase the competitiveness of this power-to-gas technology.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2023.06.289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2023.06.289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Tregambi, Claudio; Salatino, Piero; Solimene, Roberto; Montagnaro, Fabio;handle: 11588/696171 , 20.500.14243/348023
Carbon Capture and Sequestration (CCS) and renewable energy sources are both essential to mitigate the CO2 emissions in the near future. Calcium Looping (CaL) is an important post-combustion carbon capture technology that has reached the maturity of the pilot plant stage. On the other side Concentrated Solar Power (CSP) is a fas-tgrowing renewable technology in which solar energy, concentrated up to several MW m(-2), can be used to produce electricity or to drive an endothermic chemical reaction. The integration between a CSP system and a CaL cycle, in order to use a renewable source to supply the energy required by the calciner, would strongly improve the performance of the CaL process by overcoming some of its main drawbacks. However, the role that highly concentrated radiation can have on the sorbent properties in the CaL cycle is still matter of investigation. In this study, the CaL-CSP integrated process is experimentally investigated through the use of a directly irradiated Fluidized Bed )FB) reactor. Simulated concentrated solar radiation featured a peak flux on the FB surface of approximately 3 MW m(-2) and a total power of about 3 kWth. Several calcination and carbonation tests have been performed on samples of a commercial Italian limestone, in order to establish the evolution of the sorbent capacity of CO2 capture at increasing number of cycles. The properties of the limestone samples were further investigated by means of microstructural characterization. The comparison between results obtained with and without the use of the solar concentrated flux to thermally sustain calcination provides useful information on the potential of solar driven CaL and on the measure to overcome some of its potential limitations.
CNR ExploRA arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.08.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.08.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Tregambi, Claudio; Salatino, Piero; Solimene, Roberto; Montagnaro, Fabio;handle: 11588/696171 , 20.500.14243/348023
Carbon Capture and Sequestration (CCS) and renewable energy sources are both essential to mitigate the CO2 emissions in the near future. Calcium Looping (CaL) is an important post-combustion carbon capture technology that has reached the maturity of the pilot plant stage. On the other side Concentrated Solar Power (CSP) is a fas-tgrowing renewable technology in which solar energy, concentrated up to several MW m(-2), can be used to produce electricity or to drive an endothermic chemical reaction. The integration between a CSP system and a CaL cycle, in order to use a renewable source to supply the energy required by the calciner, would strongly improve the performance of the CaL process by overcoming some of its main drawbacks. However, the role that highly concentrated radiation can have on the sorbent properties in the CaL cycle is still matter of investigation. In this study, the CaL-CSP integrated process is experimentally investigated through the use of a directly irradiated Fluidized Bed )FB) reactor. Simulated concentrated solar radiation featured a peak flux on the FB surface of approximately 3 MW m(-2) and a total power of about 3 kWth. Several calcination and carbonation tests have been performed on samples of a commercial Italian limestone, in order to establish the evolution of the sorbent capacity of CO2 capture at increasing number of cycles. The properties of the limestone samples were further investigated by means of microstructural characterization. The comparison between results obtained with and without the use of the solar concentrated flux to thermally sustain calcination provides useful information on the potential of solar driven CaL and on the measure to overcome some of its potential limitations.
CNR ExploRA arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.08.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering JournalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2017.08.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:MIURMIURDi Lauro F.; Tregambi C.; Montagnaro F.; Salatino P.; Chirone R.; Solimene R.;handle: 11588/852161 , 20.500.14243/430799
Concentrating solar thermal (CST) technologies for power production can play a major role in the future portfolio of renewable energies. Limestone calcination/carbonation (Calcium Looping (CaL)), is an appealing reaction whose integration with CST is widely investigated for thermochemical energy storage (TCES) and carbon capture and storage/utilization (CCSU). Experimental data under realistic CST conditions/reactors currently lacks, since most of the experimental activities have been performed in thermogravimetric analyzers. In this study, CaL-CST integration was investigated in a lab-scale directly irradiated fluidized bed reactor, able to mimic the operating conditions required for industrial implementation of the technology. Three different techniques to improve the performance of CaL-CST for TCES and CCSU were investigated: i) lowering of calcination temperature; ii) precalcination; iii) use of dolomite instead of limestone. Experimental results revealed that all the strategies moderately improve system performance. After 20 cycles, depending on the technique applied, the mean carbonation degree ranges within 28.1-37.1% (TCES) and 15.3-18.7% (CCSU) with limestone, and values 61.5% (TCES) and 36.7% (CCSU) with dolomite. Figures of energy storage density are less sensitive to the different techniques, as pay for the lower calcination temperature (limestone), or for the presence of an inert MgO fraction (dolomite). Corresponding values range within 941-1065 MJ m (TCES) and 777-872 MJ m (CCSU), for loose-packed conditions. N-physisorption analyses revealed that the increased reactivity arises from better microstructural properties in terms of specific surface. Optimal choice among the different strategies should consider the intrinsic peculiarities of each investigated technique.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120791&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120791&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:MIURMIURDi Lauro F.; Tregambi C.; Montagnaro F.; Salatino P.; Chirone R.; Solimene R.;handle: 11588/852161 , 20.500.14243/430799
Concentrating solar thermal (CST) technologies for power production can play a major role in the future portfolio of renewable energies. Limestone calcination/carbonation (Calcium Looping (CaL)), is an appealing reaction whose integration with CST is widely investigated for thermochemical energy storage (TCES) and carbon capture and storage/utilization (CCSU). Experimental data under realistic CST conditions/reactors currently lacks, since most of the experimental activities have been performed in thermogravimetric analyzers. In this study, CaL-CST integration was investigated in a lab-scale directly irradiated fluidized bed reactor, able to mimic the operating conditions required for industrial implementation of the technology. Three different techniques to improve the performance of CaL-CST for TCES and CCSU were investigated: i) lowering of calcination temperature; ii) precalcination; iii) use of dolomite instead of limestone. Experimental results revealed that all the strategies moderately improve system performance. After 20 cycles, depending on the technique applied, the mean carbonation degree ranges within 28.1-37.1% (TCES) and 15.3-18.7% (CCSU) with limestone, and values 61.5% (TCES) and 36.7% (CCSU) with dolomite. Figures of energy storage density are less sensitive to the different techniques, as pay for the lower calcination temperature (limestone), or for the presence of an inert MgO fraction (dolomite). Corresponding values range within 941-1065 MJ m (TCES) and 777-872 MJ m (CCSU), for loose-packed conditions. N-physisorption analyses revealed that the increased reactivity arises from better microstructural properties in terms of specific surface. Optimal choice among the different strategies should consider the intrinsic peculiarities of each investigated technique.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120791&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120791&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu