- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Authors: Rakesh A. Afre; Ka Yeon Ryu; Won Suk Shin; Diego Pugliese;doi: 10.3390/en17246466
handle: 11696/82499
This study introduces novel phenothiazine-based organic dyes, 2-LBH-100, 2-LBH-44, and 2-Ryu-4, specifically designed for quasi-solid-state dye-sensitized solar cells (QsDSSCs). Employing a donor-π-acceptor architecture, these dyes incorporate varying electron-donating moieties, including bis(3-(hexyloxy)phenyl)amine and diphenylamino, coupled with a cyanoacrylic acid acceptor. Alkoxy substitutions in 2-LBH-100 and 2-LBH-44 enhanced solubility and dye loading on TiO2, leading to improved performance in QsDSSCs. 2-LBH-100 exhibited a power conversion efficiency (PCE) exceeding 5% with excellent stability, while 2-LBH-44 demonstrated a PCE of over 3%, increasing to 4% over time. 2-Ryu-4, with its diphenylamino donor, achieved an initial PCE of over 6%. This research highlights the crucial role of donor–acceptor interactions in optimizing organic dye design for high-performance QsDSSCs, paving the way for efficient and stable next-generation solar energy technologies.
METRology Institutio... arrow_drop_down METRology Institutional CAtalogArticle . 2024License: CC BYData sources: METRology Institutional CAtalogadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert METRology Institutio... arrow_drop_down METRology Institutional CAtalogArticle . 2024License: CC BYData sources: METRology Institutional CAtalogadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Royal Society of Chemistry (RSC) Claudia Barolo; Federico Bella; Federico Bella; Claudio Gerbaldi; Claudio Gerbaldi; Roberta Maria Bongiovanni; Stefano Bianco; Diego Pugliese; Diego Pugliese; Jijeesh Ravi Nair; Adriano Sacco; Adriano Sacco;Here we report on a novel polymer electrolyte membrane for quasi-solid dye-sensitized solar cells (DSSCs) with excellent efficiency and extended durability. The electrolyte is prepared by an elegant, rapid and cheap UV-induced polymerization method and the chemometric approach is used for the first time, to the best of our knowledge, for the optimization and the fine tuning of the experimental conditions.
Archivio Istituziona... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp00059a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu84 citations 84 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp00059a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:MDPI AG Muneeza Ahmad; Nadia Shahzad; Muhammad Ali Tariq; Abdul Sattar; Diego Pugliese;doi: 10.3390/en14248401
handle: 11583/2948572 , 11696/77373
Wide bandgap (Eg) perovskite solar cells (PSCs) are emerging as the preferred choice for top cells in a tandem architecture with crystalline silicon solar cells. Among the wide bandgap perovskites, a mixed cation mixed halide composition containing CsyFA1-yPbI3−xBrx is a popular choice because the presence of bromine widens the bandgap and addition of cesium stabilizes the crystal structure. These perovskite layers are commonly fabricated using one-step spin coating technique; however, sequential spin coating followed by dip coating has been successful in offering better control over the crystallization process for low bandgap absorber layers. In this paper, the fabrication of a Cs0.2FA0.8PbI3−xBrx perovskite absorber layer using the sequential deposition route is reported. The concentration of bromine was varied in the range 0 ≤ x ≤ 1 and optical, structural, and morphological properties of the films were studied. As the concentration was increased, the perovskite showed better crystallinity and the presence of large grains with high surface roughness, indicating the formation of the CsPbBr3 phase. Optically, the perovskite films exhibited higher absorbance in the ultraviolet (UV) range between 300 and 500 nm, hence up to x = 0.3 they can be profitably employed as a wide bandgap photon absorber layer in solar cell applications.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8401/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2021License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2021Full-Text: https://hdl.handle.net/11696/77373Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8401/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2021License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2021Full-Text: https://hdl.handle.net/11696/77373Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Tomasz Ragin; Bartlomiej Starzyk; Agata Baranowska; Karolina Sadowska; Valiantsin Askirka; Marta Kuwik; Gloria Lesly Jimenez; Diego Pugliese; Piotr Miluski; Jacek Zmojda; Jan Dorosz; Wojciech Pisarski; Joanna Pisarska; Marcin Kochanowicz; Dominik Dorosz;handle: 11696/78199
In this study, a comprehensive analysis of emission in erbium-doped and erbium and ytterbium co-doped fluoroindate glasses has been presented. The luminescence of the erbium transitions and the effect of ytterbium codoping under 488, 808 and 976 nm laser excitation have been discussed. Optimization of rare-earth (RE) ions doping concentration and the energy transfer processes related to the sensibilization effect in Er3+/Yb3+ codoped fluoroindate glasses focusing on the reciprocal distribution of radiative transitions, energy transfer parameters, and lifetimes have been analyzed. The luminescence consists of several bands in the visible (525, 546 and 660 nm) and the infrared (1550 and 2700 nm) spectral regions that correspond to characteristic radiative energy transitions within the erbium ions. In glasses co-doped with the Er3+/Yb3+ system, an augmentation in the emission intensity was observed in the visible and at 1550 nm, while a decrease was observed in the 2700 nm infrared band. The increase of the Yb3+: 2F5/2 lifetime under 488, 808 and 976 nm excitation showed significant Er3+: 4I11/2 → Yb3+: 2F5/2 back energy transfer. Based on the analysis of the available literature, it can be concluded that energy transfer upconversion and cooperative energy upconversion play a significant role in modulating luminescence intensity values within the examined emission bands. This effect is likely enhanced due to the incorporation in a low phonon energy glass matrix. As a result of the above optimization, a glass optical fiber co-doped with 0.8 YbF3/1.4 ErF3 (in mol%) was drawn and characterized, showing a strong emission at 2.77 μm. The optimized Er3+/Yb3+ co-doped fluoroindate glass and glass optical fiber confirmed their ability to be used in the visible and near-infrared spectral regions as efficient optical fiber sources.
METRology Institutio... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2023Full-Text: https://hdl.handle.net/11696/78199Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceramint.2023.05.278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert METRology Institutio... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2023Full-Text: https://hdl.handle.net/11696/78199Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceramint.2023.05.278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Nadia Shahzad; Nadia Shahzad; Diego Pugliese; Muhammad Imran Shahzad; Elena Maria Tresso; Andrea Lamberti;handle: 11583/2634552 , 11696/77325
Abstract In this paper, the real time monitoring of a microfluidic based ultrafast sensitization process is proposed for two different nanostructured semiconducting oxides (transparent TiO 2 and sponge-like ZnO) to be employed as photoanodes in Dye-Sensitized Solar Cells (DSSCs). A home-made set-up has been appositely developed in which the semiconducting oxide film is sandwiched into a microfluidic cell architecture connected to a pumping system. This innovative housing system allows impregnation of the photoanodes under continuous flow regime, thus ensuring a considerable reduction in the loading time and in the employed dye amount. This improvement is of particular interest in view of the device production at industrial scale. The effect of the dye concentration on the sensitization process is analyzed through dye adsorption analysis, obtained both by real time absorption monitoring and traditional desorption methods. The dye-impregnated TiO 2 and ZnO photoanodes have been used for DSSCs fabrication, using the same customized microfluidic architecture. The results are thoroughly discussed and correlated to the obtained DSSCs electrical performances such as photovoltaic conversion efficiencies and Incident Photon-to-electron Conversion Efficiency (IPCE) spectra.
METRology Institutio... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert METRology Institutio... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Tanzeela Yousaf; Nadia Shahzad; Abdul Sattar; Muhammad Ali Tariq; Naveed Hussain; Zuhair S. Khan; Sofia Javed; Muhammad Imran Shahzad; Diego Pugliese;doi: 10.3390/en16124748
handle: 11583/2979408 , 11696/77350
The development of organometal halide-based perovskite solar cells (PSCs) has made remarkable progress in photovoltaics. The commercialization of PSCs is still significantly limited, owing to their poor stability and the high material cost of a hole transport layer (HTL) and metal electrodes. To counter these issues, a carbon-based HTL and noble metal-free PSCs are being used. In this work, the effect of Cs-doping on perovskite film morphology and device performance has been systematically studied because the Cs+ and Br− ions-doping has proved to be a good choice to improve the stability of PSCs in combination with a carbon electrode. The results showed that when the Cs-doping concentration in perovskite film, MA1−xCsxPb(I1−yBry)3, was equal to x = 0.09, there was a substantial change in the morphological and optoelectronic properties of perovskite films. The grain size of perovskite films was improved from 70 nm (x = 0.00 control) to 170 nm (x = 0.09 Cs-doped), reducing grain boundaries. Moreover, the trap states were additionally passivated resulting in improved radiative recombinations in the perovskite film. The device fabrication was carried out in a controlled dry glovebox, with relative humidity < 40% using carbon as a counter electrode. As a result, Cs-doped PSCs showed a significant increase in efficiency (5.27%) compared to control PSCs (1.55%).
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4748/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2023License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2023Full-Text: https://hdl.handle.net/11696/77350Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4748/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2023License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2023Full-Text: https://hdl.handle.net/11696/77350Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Hindawi Limited Diego Pugliese; Diego Pugliese; Giuseppe Caputo; Guido Musso; Andrea Lamberti; Andrea Lamberti; Stefano Bianco; Candido Pirri; Candido Pirri; Elena Maria Tresso; Elena Maria Tresso; Adriano Sacco; Nadia Shahzad; Nadia Shahzad;doi: 10.1155/2013/871526
handle: 11583/2519500 , 11696/77315 , 2318/142188
Metal-free dye molecules for dye-sensitized solar cells application can avoid some of the typical drawbacks of common metal-based sensitizers, that are high production costs, relatively low molar extinction coefficient in the visible region, limited availability of precursors, and waste disposal issues. Recently we have proposed an innovative organic dye based on a simple hemi-squaraine molecule (CT1). In the present work, the effect of the sensitization time of the TiO2photoelectrode in the dye solution is studied with the aim of optimizing the performance of CT1-based DSCs. Moreover, the addition of the chenodeoxycholic acid (CDCA) as coadsorbent in the dye solution at different concentrations is investigated. Both CT1-sensitized mesoporous TiO2photoanodes and complete solar cells have been fully characterized in their electrical and absorption properties. We have found that the best photoconversion performances are obtained with 1 hour of impregnation time and a 1 mM CDCA concentration. The very fast kinetics in dye adsorption, with optimal sensitization steps almost 15 times faster than conventional Ru-based sensitizers, confirms the theoretical predictions and indicates a strong interaction of the semisquaric acid group with the anatase surface. This result suggests that this small molecule can be a promising sensitizer even in a continuous industrial process.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2013License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2013License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2013Full-Text: https://hdl.handle.net/11696/77315Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/871526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2013License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2013License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2013Full-Text: https://hdl.handle.net/11696/77315Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/871526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Nadia Garino; Stefano Bianco; Claudio Gerbaldi; Claudio Gerbaldi; Andrea Lamberti; Andrea Lamberti; Valentina Alice Cauda; Diego Pugliese; Diego Pugliese; Federico Bella; Federico Bella; Adriano Sacco;handle: 11583/2526696 , 11696/77340
Abstract In the present paper we demonstrate the efficient use of shape controlled flower-like ZnO (Zinc oxide) nanostructured particles as multifunctional electrode for both energy conversion and storage applications, i.e. Dye-sensitized Solar Cells (DSCs) and lithium-ion batteries. As regards DSC (Dye-sensitized Solar Cell) device, ZnO flower-like particles, prepared by a simple, low-cost and reliable hydrothermal method under mild reaction temperature, are efficiently used as photoanode in a microfluidic architectured cell in combination with NMBI (N-methylbenzimidazole), employed as additive of the electrolytic solution for the first time in a ZnO-based DSC. We obtain a remarkable sunlight conversion efficiency of 3.6%. As regards storage applications, a stable long-term ambient temperature cycling behavior in lithium cell is demonstrated, even at increasingly higher currents. Remarkable charge-discharge efficiency and specific capacity are obtained up to 200 cycles, which is the highest number of cycles reported so far for similar systems. Noteworthy, such results are achieved without the addition of foreign additives, nor during the synthesis process neither during the electrode preparation, and also no carbon coating on ZnO surface is used. The originality of the present paper consists not only in showing for the first time the efficient operation of such ZnO particles as anode in Li-ion batteries for prolonged cycling, but also in demonstrating the versatile and multifunctional use of the same material for two different energy related applications. The reported results enlighten indeed the promising prospects of the flower-like ZnO nanostructured material for the successful implementation as stable and long-term performing anodic material in the next generation of both energy conversion and storage devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu92 citations 92 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Authors: Sunandan Baruah; Rakesh A. Afre; Diego Pugliese;doi: 10.3390/en17092076
handle: 11696/80899
In this study, the influence of zinc oxide (ZnO) nanostructures with various morphologies on the performance of dye-sensitized solar cells (DSSCs) was investigated. Photo-electrodes were fabricated incorporating ZnO transport layers of distinct nanoscale morphologies—namely nanoparticles, microballs, spiky microballs, belts, and triangles—and their respective current–voltage characteristics were evaluated. It was observed that the DSSCs employing the triangular ZnO nanostructures, with a side length of approximately 30 nm, achieved the highest power conversion efficiency of 2.62%. This was closely followed by the DSSCs using spherical nanoparticles with an average diameter of approximately 20 nm, yielding an efficiency of 2.54%. In contrast, the efficiencies of DSSCs with microball and spiky microball ZnO nanostructures were significantly lower, measuring 0.31 and 1.79%, respectively. The reduction in efficiency for the microball-based DSSCs is attributed to the formation of micro-cracks within the thin film during the fabrication process. All DSSC configurations maintained a uniform active area of 4 mm². Remarkably, the highest fill factor of 59.88% was recorded for DSSCs utilizing the triangular ZnO morphology, with the spherical nanoparticles attaining a marginally lower fill factor of 59.38%. This investigation corroborates the hypothesis that reduced particle size in the transport layer correlates with enhanced DSSC performance, which is further amplified when the nanoparticles possess pointed geometries that induce strong electric fields due to elevated charge concentrations.
METRology Institutio... arrow_drop_down METRology Institutional CAtalogArticle . 2024License: CC BYData sources: METRology Institutional CAtalogadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert METRology Institutio... arrow_drop_down METRology Institutional CAtalogArticle . 2024License: CC BYData sources: METRology Institutional CAtalogadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: BELLA, FEDERICO; PUGLIESE, DIEGO; ZOLIN, LORENZO; GERBALDI, CLAUDIO;handle: 11583/2669191 , 11696/77328
Natural cellulose fibres are proposed as promising components for bioderived photoanodes and polymer electrolytes in dye-sensitized solar cells (DSSCs). In particular, TiO2-laden paper foils, prepared by simple papermaking, can be applied to several substrates (conductive glass or plastics) instead of the high-temperature sintered traditional commercial pastes. In addition, nanoscale microfibrillated cellulose is used as reinforcing filler in acrylate/methacrylate-based thermo-set polymer electrolyte membranes prepared by means of fast, low-cost and green UV-induced free-radical photopolymerization. The laboratory-scale quasi-solid state paper-DSSCs assembled with cellulose-based electrodes and electrolytes guarantee sunlight conversion efficiencies as high as 3.55 and 5.20% at simulated light intensities of 1 and 0.2 sun, respectively, along with an excellent efficiency retention of 96% after 1000 h of accelerated aging test. The simple, low cost and green approach here specifically developed opens up intriguing prospects in the design of bio-inspired energy conversion devices showing high performance, outstanding durability and truly sustainable characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2017.03.211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2017.03.211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Authors: Rakesh A. Afre; Ka Yeon Ryu; Won Suk Shin; Diego Pugliese;doi: 10.3390/en17246466
handle: 11696/82499
This study introduces novel phenothiazine-based organic dyes, 2-LBH-100, 2-LBH-44, and 2-Ryu-4, specifically designed for quasi-solid-state dye-sensitized solar cells (QsDSSCs). Employing a donor-π-acceptor architecture, these dyes incorporate varying electron-donating moieties, including bis(3-(hexyloxy)phenyl)amine and diphenylamino, coupled with a cyanoacrylic acid acceptor. Alkoxy substitutions in 2-LBH-100 and 2-LBH-44 enhanced solubility and dye loading on TiO2, leading to improved performance in QsDSSCs. 2-LBH-100 exhibited a power conversion efficiency (PCE) exceeding 5% with excellent stability, while 2-LBH-44 demonstrated a PCE of over 3%, increasing to 4% over time. 2-Ryu-4, with its diphenylamino donor, achieved an initial PCE of over 6%. This research highlights the crucial role of donor–acceptor interactions in optimizing organic dye design for high-performance QsDSSCs, paving the way for efficient and stable next-generation solar energy technologies.
METRology Institutio... arrow_drop_down METRology Institutional CAtalogArticle . 2024License: CC BYData sources: METRology Institutional CAtalogadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert METRology Institutio... arrow_drop_down METRology Institutional CAtalogArticle . 2024License: CC BYData sources: METRology Institutional CAtalogadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Royal Society of Chemistry (RSC) Claudia Barolo; Federico Bella; Federico Bella; Claudio Gerbaldi; Claudio Gerbaldi; Roberta Maria Bongiovanni; Stefano Bianco; Diego Pugliese; Diego Pugliese; Jijeesh Ravi Nair; Adriano Sacco; Adriano Sacco;Here we report on a novel polymer electrolyte membrane for quasi-solid dye-sensitized solar cells (DSSCs) with excellent efficiency and extended durability. The electrolyte is prepared by an elegant, rapid and cheap UV-induced polymerization method and the chemometric approach is used for the first time, to the best of our knowledge, for the optimization and the fine tuning of the experimental conditions.
Archivio Istituziona... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp00059a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu84 citations 84 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp00059a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:MDPI AG Muneeza Ahmad; Nadia Shahzad; Muhammad Ali Tariq; Abdul Sattar; Diego Pugliese;doi: 10.3390/en14248401
handle: 11583/2948572 , 11696/77373
Wide bandgap (Eg) perovskite solar cells (PSCs) are emerging as the preferred choice for top cells in a tandem architecture with crystalline silicon solar cells. Among the wide bandgap perovskites, a mixed cation mixed halide composition containing CsyFA1-yPbI3−xBrx is a popular choice because the presence of bromine widens the bandgap and addition of cesium stabilizes the crystal structure. These perovskite layers are commonly fabricated using one-step spin coating technique; however, sequential spin coating followed by dip coating has been successful in offering better control over the crystallization process for low bandgap absorber layers. In this paper, the fabrication of a Cs0.2FA0.8PbI3−xBrx perovskite absorber layer using the sequential deposition route is reported. The concentration of bromine was varied in the range 0 ≤ x ≤ 1 and optical, structural, and morphological properties of the films were studied. As the concentration was increased, the perovskite showed better crystallinity and the presence of large grains with high surface roughness, indicating the formation of the CsPbBr3 phase. Optically, the perovskite films exhibited higher absorbance in the ultraviolet (UV) range between 300 and 500 nm, hence up to x = 0.3 they can be profitably employed as a wide bandgap photon absorber layer in solar cell applications.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8401/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2021License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2021Full-Text: https://hdl.handle.net/11696/77373Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8401/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2021License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2021Full-Text: https://hdl.handle.net/11696/77373Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Tomasz Ragin; Bartlomiej Starzyk; Agata Baranowska; Karolina Sadowska; Valiantsin Askirka; Marta Kuwik; Gloria Lesly Jimenez; Diego Pugliese; Piotr Miluski; Jacek Zmojda; Jan Dorosz; Wojciech Pisarski; Joanna Pisarska; Marcin Kochanowicz; Dominik Dorosz;handle: 11696/78199
In this study, a comprehensive analysis of emission in erbium-doped and erbium and ytterbium co-doped fluoroindate glasses has been presented. The luminescence of the erbium transitions and the effect of ytterbium codoping under 488, 808 and 976 nm laser excitation have been discussed. Optimization of rare-earth (RE) ions doping concentration and the energy transfer processes related to the sensibilization effect in Er3+/Yb3+ codoped fluoroindate glasses focusing on the reciprocal distribution of radiative transitions, energy transfer parameters, and lifetimes have been analyzed. The luminescence consists of several bands in the visible (525, 546 and 660 nm) and the infrared (1550 and 2700 nm) spectral regions that correspond to characteristic radiative energy transitions within the erbium ions. In glasses co-doped with the Er3+/Yb3+ system, an augmentation in the emission intensity was observed in the visible and at 1550 nm, while a decrease was observed in the 2700 nm infrared band. The increase of the Yb3+: 2F5/2 lifetime under 488, 808 and 976 nm excitation showed significant Er3+: 4I11/2 → Yb3+: 2F5/2 back energy transfer. Based on the analysis of the available literature, it can be concluded that energy transfer upconversion and cooperative energy upconversion play a significant role in modulating luminescence intensity values within the examined emission bands. This effect is likely enhanced due to the incorporation in a low phonon energy glass matrix. As a result of the above optimization, a glass optical fiber co-doped with 0.8 YbF3/1.4 ErF3 (in mol%) was drawn and characterized, showing a strong emission at 2.77 μm. The optimized Er3+/Yb3+ co-doped fluoroindate glass and glass optical fiber confirmed their ability to be used in the visible and near-infrared spectral regions as efficient optical fiber sources.
METRology Institutio... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2023Full-Text: https://hdl.handle.net/11696/78199Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceramint.2023.05.278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert METRology Institutio... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2023Full-Text: https://hdl.handle.net/11696/78199Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceramint.2023.05.278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Nadia Shahzad; Nadia Shahzad; Diego Pugliese; Muhammad Imran Shahzad; Elena Maria Tresso; Andrea Lamberti;handle: 11583/2634552 , 11696/77325
Abstract In this paper, the real time monitoring of a microfluidic based ultrafast sensitization process is proposed for two different nanostructured semiconducting oxides (transparent TiO 2 and sponge-like ZnO) to be employed as photoanodes in Dye-Sensitized Solar Cells (DSSCs). A home-made set-up has been appositely developed in which the semiconducting oxide film is sandwiched into a microfluidic cell architecture connected to a pumping system. This innovative housing system allows impregnation of the photoanodes under continuous flow regime, thus ensuring a considerable reduction in the loading time and in the employed dye amount. This improvement is of particular interest in view of the device production at industrial scale. The effect of the dye concentration on the sensitization process is analyzed through dye adsorption analysis, obtained both by real time absorption monitoring and traditional desorption methods. The dye-impregnated TiO 2 and ZnO photoanodes have been used for DSSCs fabrication, using the same customized microfluidic architecture. The results are thoroughly discussed and correlated to the obtained DSSCs electrical performances such as photovoltaic conversion efficiencies and Incident Photon-to-electron Conversion Efficiency (IPCE) spectra.
METRology Institutio... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert METRology Institutio... arrow_drop_down INRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Tanzeela Yousaf; Nadia Shahzad; Abdul Sattar; Muhammad Ali Tariq; Naveed Hussain; Zuhair S. Khan; Sofia Javed; Muhammad Imran Shahzad; Diego Pugliese;doi: 10.3390/en16124748
handle: 11583/2979408 , 11696/77350
The development of organometal halide-based perovskite solar cells (PSCs) has made remarkable progress in photovoltaics. The commercialization of PSCs is still significantly limited, owing to their poor stability and the high material cost of a hole transport layer (HTL) and metal electrodes. To counter these issues, a carbon-based HTL and noble metal-free PSCs are being used. In this work, the effect of Cs-doping on perovskite film morphology and device performance has been systematically studied because the Cs+ and Br− ions-doping has proved to be a good choice to improve the stability of PSCs in combination with a carbon electrode. The results showed that when the Cs-doping concentration in perovskite film, MA1−xCsxPb(I1−yBry)3, was equal to x = 0.09, there was a substantial change in the morphological and optoelectronic properties of perovskite films. The grain size of perovskite films was improved from 70 nm (x = 0.00 control) to 170 nm (x = 0.09 Cs-doped), reducing grain boundaries. Moreover, the trap states were additionally passivated resulting in improved radiative recombinations in the perovskite film. The device fabrication was carried out in a controlled dry glovebox, with relative humidity < 40% using carbon as a counter electrode. As a result, Cs-doped PSCs showed a significant increase in efficiency (5.27%) compared to control PSCs (1.55%).
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4748/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2023License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2023Full-Text: https://hdl.handle.net/11696/77350Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4748/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2023License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2023License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2023Full-Text: https://hdl.handle.net/11696/77350Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Hindawi Limited Diego Pugliese; Diego Pugliese; Giuseppe Caputo; Guido Musso; Andrea Lamberti; Andrea Lamberti; Stefano Bianco; Candido Pirri; Candido Pirri; Elena Maria Tresso; Elena Maria Tresso; Adriano Sacco; Nadia Shahzad; Nadia Shahzad;doi: 10.1155/2013/871526
handle: 11583/2519500 , 11696/77315 , 2318/142188
Metal-free dye molecules for dye-sensitized solar cells application can avoid some of the typical drawbacks of common metal-based sensitizers, that are high production costs, relatively low molar extinction coefficient in the visible region, limited availability of precursors, and waste disposal issues. Recently we have proposed an innovative organic dye based on a simple hemi-squaraine molecule (CT1). In the present work, the effect of the sensitization time of the TiO2photoelectrode in the dye solution is studied with the aim of optimizing the performance of CT1-based DSCs. Moreover, the addition of the chenodeoxycholic acid (CDCA) as coadsorbent in the dye solution at different concentrations is investigated. Both CT1-sensitized mesoporous TiO2photoanodes and complete solar cells have been fully characterized in their electrical and absorption properties. We have found that the best photoconversion performances are obtained with 1 hour of impregnation time and a 1 mM CDCA concentration. The very fast kinetics in dye adsorption, with optimal sensitization steps almost 15 times faster than conventional Ru-based sensitizers, confirms the theoretical predictions and indicates a strong interaction of the semisquaric acid group with the anatase surface. This result suggests that this small molecule can be a promising sensitizer even in a continuous industrial process.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2013License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2013License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2013Full-Text: https://hdl.handle.net/11696/77315Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/871526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2013License: CC BYData sources: Publications Open Repository TOrinoMETRology Institutional CAtalogArticle . 2013License: CC BYData sources: METRology Institutional CAtalogINRiM: CINECA IRIS (Istituto Nazionale di Ricerca Metrologica)Article . 2013Full-Text: https://hdl.handle.net/11696/77315Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/871526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Nadia Garino; Stefano Bianco; Claudio Gerbaldi; Claudio Gerbaldi; Andrea Lamberti; Andrea Lamberti; Valentina Alice Cauda; Diego Pugliese; Diego Pugliese; Federico Bella; Federico Bella; Adriano Sacco;handle: 11583/2526696 , 11696/77340
Abstract In the present paper we demonstrate the efficient use of shape controlled flower-like ZnO (Zinc oxide) nanostructured particles as multifunctional electrode for both energy conversion and storage applications, i.e. Dye-sensitized Solar Cells (DSCs) and lithium-ion batteries. As regards DSC (Dye-sensitized Solar Cell) device, ZnO flower-like particles, prepared by a simple, low-cost and reliable hydrothermal method under mild reaction temperature, are efficiently used as photoanode in a microfluidic architectured cell in combination with NMBI (N-methylbenzimidazole), employed as additive of the electrolytic solution for the first time in a ZnO-based DSC. We obtain a remarkable sunlight conversion efficiency of 3.6%. As regards storage applications, a stable long-term ambient temperature cycling behavior in lithium cell is demonstrated, even at increasingly higher currents. Remarkable charge-discharge efficiency and specific capacity are obtained up to 200 cycles, which is the highest number of cycles reported so far for similar systems. Noteworthy, such results are achieved without the addition of foreign additives, nor during the synthesis process neither during the electrode preparation, and also no carbon coating on ZnO surface is used. The originality of the present paper consists not only in showing for the first time the efficient operation of such ZnO particles as anode in Li-ion batteries for prolonged cycling, but also in demonstrating the versatile and multifunctional use of the same material for two different energy related applications. The reported results enlighten indeed the promising prospects of the flower-like ZnO nanostructured material for the successful implementation as stable and long-term performing anodic material in the next generation of both energy conversion and storage devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu92 citations 92 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Authors: Sunandan Baruah; Rakesh A. Afre; Diego Pugliese;doi: 10.3390/en17092076
handle: 11696/80899
In this study, the influence of zinc oxide (ZnO) nanostructures with various morphologies on the performance of dye-sensitized solar cells (DSSCs) was investigated. Photo-electrodes were fabricated incorporating ZnO transport layers of distinct nanoscale morphologies—namely nanoparticles, microballs, spiky microballs, belts, and triangles—and their respective current–voltage characteristics were evaluated. It was observed that the DSSCs employing the triangular ZnO nanostructures, with a side length of approximately 30 nm, achieved the highest power conversion efficiency of 2.62%. This was closely followed by the DSSCs using spherical nanoparticles with an average diameter of approximately 20 nm, yielding an efficiency of 2.54%. In contrast, the efficiencies of DSSCs with microball and spiky microball ZnO nanostructures were significantly lower, measuring 0.31 and 1.79%, respectively. The reduction in efficiency for the microball-based DSSCs is attributed to the formation of micro-cracks within the thin film during the fabrication process. All DSSC configurations maintained a uniform active area of 4 mm². Remarkably, the highest fill factor of 59.88% was recorded for DSSCs utilizing the triangular ZnO morphology, with the spherical nanoparticles attaining a marginally lower fill factor of 59.38%. This investigation corroborates the hypothesis that reduced particle size in the transport layer correlates with enhanced DSSC performance, which is further amplified when the nanoparticles possess pointed geometries that induce strong electric fields due to elevated charge concentrations.
METRology Institutio... arrow_drop_down METRology Institutional CAtalogArticle . 2024License: CC BYData sources: METRology Institutional CAtalogadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert METRology Institutio... arrow_drop_down METRology Institutional CAtalogArticle . 2024License: CC BYData sources: METRology Institutional CAtalogadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: BELLA, FEDERICO; PUGLIESE, DIEGO; ZOLIN, LORENZO; GERBALDI, CLAUDIO;handle: 11583/2669191 , 11696/77328
Natural cellulose fibres are proposed as promising components for bioderived photoanodes and polymer electrolytes in dye-sensitized solar cells (DSSCs). In particular, TiO2-laden paper foils, prepared by simple papermaking, can be applied to several substrates (conductive glass or plastics) instead of the high-temperature sintered traditional commercial pastes. In addition, nanoscale microfibrillated cellulose is used as reinforcing filler in acrylate/methacrylate-based thermo-set polymer electrolyte membranes prepared by means of fast, low-cost and green UV-induced free-radical photopolymerization. The laboratory-scale quasi-solid state paper-DSSCs assembled with cellulose-based electrodes and electrolytes guarantee sunlight conversion efficiencies as high as 3.55 and 5.20% at simulated light intensities of 1 and 0.2 sun, respectively, along with an excellent efficiency retention of 96% after 1000 h of accelerated aging test. The simple, low cost and green approach here specifically developed opens up intriguing prospects in the design of bio-inspired energy conversion devices showing high performance, outstanding durability and truly sustainable characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2017.03.211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2017.03.211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu