Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
26 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Kamel Guedri;
    Kamel Guedri
    ORCID
    Harvested from ORCID Public Data File

    Kamel Guedri in OpenAIRE
    Arshad Khan; orcid Ndolane Sene;
    Ndolane Sene
    ORCID
    Harvested from ORCID Public Data File

    Ndolane Sene in OpenAIRE
    orcid Zehba Raizah;
    Zehba Raizah
    ORCID
    Harvested from ORCID Public Data File

    Zehba Raizah in OpenAIRE
    +2 Authors

    This study examines the bidimensional nonlinear convective flow of ternary hybrid nanofluid upon a nonlinear stretching sheet. Three types of nanoparticles, namely Cu , TiO 2 , Al 2 O 3 , are suspended in the base fluid taken as water with a new composition Cu + TiO 2 + Al 2 O 3 / H 2 O which is termed as ternary hybrid nanofluid. To stabilize the flow and thermal properties of the new composition, the Brownian as well as thermophoresis properties are incorporated into energy and mass equations. The nonlinear thermal radiations and heat absorption/generation terms are included in the energy equation. The effects of the Darcy–Forchheimer phenomenon are also induced in the momentum equation. The set of model equations has shifted to dimension-free form by employing suitable variables. It has concluded in this study that flow characteristics have been declined with augmenting values of volumetric fractions of solid nanoparticles, porosity, and inertia factors and have upsurge with higher values of thermal and nonlinear thermal Grashof numbers. Thermal characteristics have been observed to be augmented with growth in radiation, Brownian motion, thermophoresis, heat generation/absorption, temperature ratio factors, and volumetric fraction of solid nanoparticles. These effects are more significant for ternary hybrid nanoparticles. Concentration profiles have been declined with higher values of Brownian motion factor, Lewis number, and upsurge with growth in thermophoresis factor. It has also been deduced in this investigation that the thermal flow rate is higher for trihybrid nanofluid than hybrid or traditional nanofluids, and a percentage growth in Nusselt number has been shown through statistical chart in support of this work. Current results have been compared with established results and found a fine agreement amongst all results.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematical Problem...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Mathematical Problems in Engineering
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematical Problem...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Mathematical Problems in Engineering
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • Authors: orcid Zehba A.S. Raizah;
    Zehba A.S. Raizah
    ORCID
    Harvested from ORCID Public Data File

    Zehba A.S. Raizah in OpenAIRE
    addClaim
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Zehba A. S. Raizah;
    Zehba A. S. Raizah
    ORCID
    Harvested from ORCID Public Data File

    Zehba A. S. Raizah in OpenAIRE
    orcid Ammar I. Alsabery;
    Ammar I. Alsabery
    ORCID
    Harvested from ORCID Public Data File

    Ammar I. Alsabery in OpenAIRE
    orcid bw Abdelraheem M. Aly;
    Abdelraheem M. Aly
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Abdelraheem M. Aly in OpenAIRE
    orcid bw Ishak Hashim;
    Ishak Hashim
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Ishak Hashim in OpenAIRE

    The flow and heat transfer fields from a nanofluid within a horizontal annulus partly saturated with a porous region are examined by the Galerkin weighted residual finite element technique scheme. The inner and the outer circular boundaries have hot and cold temperatures, respectively. Impacts of the wide ranges of the Darcy number, porosity, dimensionless length of the porous layer, and nanoparticle volume fractions on the streamlines, isotherms, and isentropic distributions are investigated. The primary outcomes revealed that the stream function value is powered by increasing the Darcy parameter and porosity and reduced by growing the porous region’s area. The Bejan number and the average temperature are reduced by the increase in Da, porosity ε, and nanoparticles volume fractions ϕ. The heat transfer through the nanofluid-porous layer was determined to be the best toward high rates of Darcy number, porosity, and volume fraction of nanofluid. Further, the local velocity and local temperature in the interface surface between nanofluid-porous layers obtain high values at the smallest area from the porous region (D=0.4), and in contrast, the local heat transfer takes the lower value.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Entropyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Entropy
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Entropy
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PubMed Central
    Other literature type . 2021
    License: CC BY
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Entropy
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    gold
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Entropyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Entropy
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Entropy
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PubMed Central
      Other literature type . 2021
      License: CC BY
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Entropy
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Zehba Raizah;
    Zehba Raizah
    ORCID
    Harvested from ORCID Public Data File

    Zehba Raizah in OpenAIRE
    Udaya Kodipalya Nanjappa; orcid Harshitha Ajjipura Shankar;
    Harshitha Ajjipura Shankar
    ORCID
    Harvested from ORCID Public Data File

    Harshitha Ajjipura Shankar in OpenAIRE
    orcid Umair Khan;
    Umair Khan
    ORCID
    Harvested from ORCID Public Data File

    Umair Khan in OpenAIRE
    +3 Authors

    The government of Karnataka has resolved to promote and employ an increasing number of alternative fuels, particularly, wind energy. Selecting a windmill supplier is a key decision when developing a wind energy project, and investors must evaluate various qualitative and quantitative variables that interact symmetrically to discover the best source. As a result, a multi-criteria decision-making procedure is applied to choose a wind turbine provider for wind power projects. A variety of approaches have been used to address this judgment process, some of which were predicated on the use of multi-criteria judgment techniques alone or in conjunction with some different multiple-criteria decision approaches. In this study, the researchers advocated selecting windmill producers for geothermal power generation using a judgment method based on a spherical fuzzy system. After the analyses of the last stage of this research, turbine manufacturers for installations could be suggested. The purpose of this research was to develop a fuzzy multi-criteria foundation for choosing appropriate rotor makers for electricity production. Specialists can utilize the conclusions of this study to choose an appropriate windmill operator in other states, including for green initiatives of a similar nature.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2022
    Data sources: DOAJ
    addClaim
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2022
      Data sources: DOAJ
      addClaim
  • Authors: orcid Zehba A.S. Raizah;
    Zehba A.S. Raizah
    ORCID
    Harvested from ORCID Public Data File

    Zehba A.S. Raizah in OpenAIRE
    Sameh E. Ahmed; orcid Abdelraheem M. Aly;
    Abdelraheem M. Aly
    ORCID
    Harvested from ORCID Public Data File

    Abdelraheem M. Aly in OpenAIRE

    In this paper, the effects of the wavy nanofluid/porous interface on the mixed convection and entropy generations of Cu–water nanofluid in a horizontally partitioned non-Darcy porous double lid-dri...

    addClaim
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw MD. Shamshuddin;
    MD. Shamshuddin
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    MD. Shamshuddin in OpenAIRE
    orcid Zehba Raizah;
    Zehba Raizah
    ORCID
    Harvested from ORCID Public Data File

    Zehba Raizah in OpenAIRE
    Nevzat Akkurt; orcid Vishwambhar S. Patil;
    Vishwambhar S. Patil
    ORCID
    Harvested from ORCID Public Data File

    Vishwambhar S. Patil in OpenAIRE
    +1 Authors

    The effect of multiple slip boundary conditions is one more important physical parameter on the flow investigation and have been studied in this analysis. Further, the effect of Ohmic heating and varying chemical reaction on non-Newtonian Prandtl hybrid nanofluid with water based nanofluids to an extending of leading edge was also investigated to this current analysis. An inclined magnetic field is introduced to fluid flow to regulate the fluid stream. Hybrid nanomaterial is synthesized by the dispersion of Cu and Cofe2O4 nanoparticles in Prandtl fluid. All chemical science specifications of nanofluid are measured as constant. Due to the nanofluid particles motion, the fluid concentration is inspected underneath chemical implications. A mathematical model is developed by assuming the flow as incompressible and purely cartesian coordinate system and appropriate non-dimensional variables are introduced for problem simplifications and dimensional analysis. The scheme for semi analytical study named Homotopy Analysis Method (HAM) is implied to get solutions to the equations. The procedure is then displayed pictorially where fluid velocity, temperature and concertation against various pertinent parameters are examined. It was found that, the Concentration field profiles have been shown to deteriorate because molecule diffusivity reduces as the chemical reaction parameter rises in both cases. In order to maintain thermal balance management in tiny heat density equipment and gadgets, current research may also be helpful in enhancing the thermal efficiency of heat exchangers.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Case Studies in Thermal Engineering
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Case Studies in Thermal Engineering
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Sameh E. Ahmed;
    Sameh E. Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Sameh E. Ahmed in OpenAIRE
    orcid Zehba A.S. Raizah;
    Zehba A.S. Raizah
    ORCID
    Harvested from ORCID Public Data File

    Zehba A.S. Raizah in OpenAIRE
    orcid Zahra S. Hafed;
    Zahra S. Hafed
    ORCID
    Harvested from ORCID Public Data File

    Zahra S. Hafed in OpenAIRE
    Zeinab Morsy;

    In this article, the impacts of the Hall current on the 3D forced convection and heat transfer due to the rotation of a disk are examined. The disk's surface is considered to be rigid or stretched and the non-Newtonian viscoelastic nanofluids are assumed to be the working suspension. The convective boundary conditions together with passively control of the nanoparticles are imposed to the disk's surface. Several important influences are considered such as Ohmic heating, thermal radiation, heat generation/absorption and Arrhenius energy. The transformed governing equations are solved numerically using the shooting technique with 4th order Runge-Kutta method. The major findings revealed that the Hall current parameter enhances the radial velocity in both rigid and stretched surface while the tangential velocity has lower features. Also, the viscoelastic nanofluid parameter causes lower behaviors of tangential velocity and nanofluid temperatures. The considered range of the Hall parameter causes an increase in the heat transfer rate by 1.73%.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Case Studies in Thermal Engineering
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Case Studies in Thermal Engineering
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Abdelraheem M. Aly; Abdelraheem M. Aly; orcid Zehba A.S. Raizah;
    Zehba A.S. Raizah
    ORCID
    Harvested from ORCID Public Data File

    Zehba A.S. Raizah in OpenAIRE
    orcid Amal Al-Hanaya;
    Amal Al-Hanaya
    ORCID
    Harvested from ORCID Public Data File

    Amal Al-Hanaya in OpenAIRE

    Abstract A transient two-dimensional ISPH method based on the time-fractional derivative was applied for emulating thermosolutal convection of the nano-encapsulated phase change material (NEPCM) embedded in an annulus between an inner wavy shape and outer hexagonal-shaped cavity. The impacts of a magnetic field and double rotations amongst an inner wavy shape and outer hexagonal-shaped cavity on the heat and mass transmission of NEPCM in an annulus have been conducted. Effects of a time parameter τ (0.01 − 1), frequency parameter ω (1 − 7), fractional time derivative α (0.95 − 1), Darcy parameter Da (10−2 − 10−4), Hartmann number Ha (0 − 100), fusion temperature θf (0.05 − 0.8), and Rayleigh number Ra (103 − 105) on the contours of temperature, heat capacity, concentration, and velocity field as well as profiles of Nu ¯ and Sh ¯ are investigated. The main findings signaled that the double rotations plays effectively in speed up the nanofluid movements, and changing the features of temperature, concentration, and heat capacity inside an annulus. An augmentation in a frequency parameter boosts the nanofluid speed by 128.57%. A decline in α from 1 to 0.95 enhances the maximum nanofluid velocity by 13.73%. The nanofluid movements within an annulus are reduced according to an increase in Ha and a decrease in Da. The power in the Rayleigh number enhances the nanofluid movements within an annulus.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Commun...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Communications in Heat and Mass Transfer
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    43
    citations43
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Commun...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Communications in Heat and Mass Transfer
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Javali Madhukesh;
    Javali Madhukesh
    ORCID
    Harvested from ORCID Public Data File

    Javali Madhukesh in OpenAIRE
    orcid Ballajja Prasannakumara;
    Ballajja Prasannakumara
    ORCID
    Harvested from ORCID Public Data File

    Ballajja Prasannakumara in OpenAIRE
    orcid Umair Khan;
    Umair Khan
    ORCID
    Harvested from ORCID Public Data File

    Umair Khan in OpenAIRE
    Sunitha Madireddy; +2 Authors

    The notion of thermophoretic particle deposition is used in a number of applications, including thermal exchanger walls. It is important to identify the transport processes in action in systems such as thermal precipitators, exhaust devices, optical transmission fabrication processes, and so on. Based on these application points of view, the present work studies the performance of nanoparticle aggregation stagnation point flow over a rotating sphere during the occurrence of thermophoretic particle deposition. The nonlinear governing equations are transformed into the ordinary differential equation by utilizing suitable similarity variables. The numerical outcomes of the reduced equations along with boundary conditions are solved by the Runge–Kutta–Fehlberg 45 (RKF-45) order method with shooting procedure. The numerical results are shown with the assistance of graphs. The impacts of various dimensionless constraints on velocity, thermal, and concentration profiles are studied under the occurrence and absence of nanoparticle aggregation. The study reveals that the primary velocity is enhanced with increasing values of the acceleration parameter, but secondary velocity diminishes. The impressions of the rotation parameter will improve the primary velocity. The concentration profiles will diminish with an improvement in the thermophoretic parameter. The surface drag force is greater in nanoparticles with aggregation than nanoparticles without aggregation in the Cfx case but a reverse behavior is seen in the Cfz case. Further, the rate of heat distribution increases with a rise in the solid volume fraction, whereas the rate of mass distribution grows as the thermophoretic parameter grows.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2022
    Data sources: DOAJ
    addClaim
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2022
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: J Suresh Goud; Pudhari Srilatha; orcid R.S. Varun Kumar;
    R.S. Varun Kumar
    ORCID
    Harvested from ORCID Public Data File

    R.S. Varun Kumar in OpenAIRE
    K. Thanesh Kumar; +4 Authors

    The primary goal of this research is to examine the thermal variance in a dovetail fin under fully wet conditions with ternary hybrid nanofluid ZnFe2O4 +MnZnFe2O4 +NiZnFe2O4- H2O taking temperature and humidity ratio differences into account as driving forces for heat and mass transfer systems, respectively. The consequences of surface convection, radiation, and internally generated heat on the heat exchange of the fin have been taken into account. The mathematical modeling involves dimensionless transformation to convert the balanced energy equation to ordinary differential equation, and the problem is then solved numerically as well as analytically using the fourth-fifth order Runge-Kutta-Fehlberg's (RKF) methodology and DTM-Pade approximant. The significance of major thermal parameters such as radiation-conduction, wet factor, heat generation, and the ambient temperature variable on the temperature profile is explored graphically, contributing to an analysis of thermal performance. As the main outcome, ternary hybrid nanoliquid exhibits higher thermal response compared to mono and binary hybrid nanoliquid. Also, the thermal dispersion is higher for the lower values of wet parameter and radiative variable.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Case Studies in Thermal Engineering
    Article . 2022 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    234
    citations234
    popularityTop 1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Case Studies in Thermal Engineering
      Article . 2022 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph