- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Germany, United Kingdom, Germany, JapanPublisher:IOP Publishing Dan Tong; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Johannes Emmerling; Robert Fofrich; Oliver Fricko; Gunnar Luderer; Gunnar Luderer; Joeri Rogelj; Joeri Rogelj; Steven J. Davis; Harmen Sytze de Boer; Harmen Sytze de Boer; Katherine Calvin;handle: 2433/255250 , 10044/1/83047
Abstract International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 34 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, Germany, Finland, Germany, France, United KingdomPublisher:IOP Publishing Funded by:EC | NAVIGATE, EC | ADVANCEEC| NAVIGATE ,EC| ADVANCEGokul Iyer; Detlef P. van Vuuren; Detlef P. van Vuuren; Bas van Ruijven; Ryna Cui; Volker Krey; Kaj-Ivar van der Wijst; Kaj-Ivar van der Wijst; Shinichiro Fujimori; Jessica Strefler; Johannes Emmerling; Gunnar Luderer; Gunnar Luderer; Alexandre C. Köberle; Panagiotis Fragkos; Olivier Dessens; Christoph Krüger; Christoph Krüger; Florian Fosse; Fuminori Sano; Dimitris Fragkiadakis; Kimon Keramidas; Sergey Paltsev; Florian Leblanc; Pedro Rochedo; Ronald D. Sands; Kostas Fragkiadakis; Céline Guivarch; Peter Kolp; Panagiotis Karkatsoulis; Elmar Kriegler; Elmar Kriegler; J. Jeffrey Morris; David E.H.J. Gernaat; David E.H.J. Gernaat; Mathijs Harmsen; Mathijs Harmsen; Laurent Drouet; Oliver Fricko; Behnam Zakeri; Behnam Zakeri; Shivika Mittal; Eveline Vasquez Arroyo; Kenichi Wada; I. Keppo;handle: 10044/1/88339
Abstract Integrated assessment models (IAMs) form a prime tool in informing about climate mitigation strategies. Diagnostic indicators that allow comparison across these models can help describe and explain differences in model projections. This increases transparency and comparability. Earlier, the IAM community has developed an approach to diagnose models (Kriegler (2015 Technol. Forecast. Soc. Change 90 45–61)). Here we build on this, by proposing a selected set of well-defined indicators as a community standard, to systematically and routinely assess IAM behaviour, similar to metrics used for other modeling communities such as climate models. These indicators are the relative abatement index, emission reduction type index, inertia timescale, fossil fuel reduction, transformation index and cost per abatement value. We apply the approach to 17 IAMs, assessing both older as well as their latest versions, as applied in the IPCC 6th Assessment Report. The study shows that the approach can be easily applied and used to indentify key differences between models and model versions. Moreover, we demonstrate that this comparison helps to link model behavior to model characteristics and assumptions. We show that together, the set of six indicators can provide useful indication of the main traits of the model and can roughly indicate the general model behavior. The results also show that there is often a considerable spread across the models. Interestingly, the diagnostic values often change for different model versions, but there does not seem to be a distinct trend.
IIASA DARE arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/88339Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication ArchiveCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 9 Powered bymore_vert IIASA DARE arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/88339Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication ArchiveCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Germany, NetherlandsPublisher:Elsevier BV Funded by:EC | PATHWAYS, EC | ADVANCE, EC | LUC4CEC| PATHWAYS ,EC| ADVANCE ,EC| LUC4CBrian C. O'Neill; Tomoko Hasegawa; Detlef P. van Vuuren; Alexander Popp; Shinichiro Fujimori; Petr Havlik; Giacomo Marangoni; Tom Kram; Hermann Lotze-Campen; Hermann Lotze-Campen; Florian Humpenöder; Gunnar Luderer; Massimo Tavoni; Massimo Tavoni; David E.H.J. Gernaat; Johannes Emmerling; Kiyoshi Takahashi; Steve Smith; Mathijs Harmsen; Valentina Bosetti; Valentina Bosetti; Jessica Strefler; Andrzej Tabeau; Joeri Rogelj; Jiyong Eom; Jiyong Eom; Samir Kc; Samir Kc; Leiwen Jiang; Katherine Calvin; Kristie L. Ebi; Mikiko Kainuma; Jesus Crespo Cuaresma; Rob Dellink; Lavinia Baumstark; Wolfgang Lutz; Toshihiko Masui; Marian Leimbach; Lara Aleluia Da Silva; Laurent Drouet; Oliver Fricko; Nico Bauer; Jae Edmonds; Michael Obersteiner; Volker Krey; Zbigniew Klimont; Shilpa Rao; Elke Stehfest; Keywan Riahi; Elmar Kriegler; Jonathan C. Doelman;handle: 10044/1/78069
This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/78069Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4K citations 3,592 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 12visibility views 12 download downloads 623 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/78069Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Harmen Sytze de Boer; Matthew Gidden; Shinichiro Fujimori; Shinichiro Fujimori; +32 AuthorsHarmen Sytze de Boer; Matthew Gidden; Shinichiro Fujimori; Shinichiro Fujimori; Marianne Fay; Wenji Zhou; Mathijs Harmsen; Mathijs Harmsen; Claire Nicolas; Julie Rozenberg; Gokul Iyer; Detlef P. van Vuuren; Detlef P. van Vuuren; Miguel Poblete-Cazenave; David L. McCollum; David L. McCollum; Sebastian Busch; Jacques Després; Christoph Bertram; Valentina Bosetti; Valentina Bosetti; Peter Rafaj; Narasimha D. Rao; Keywan Riahi; Keywan Riahi; Elmar Kriegler; Shonali Pachauri; Andreas Schmitz; Daniel Huppmann; Laurent Drouet; Oliver Fricko; Simon Parkinson; Simon Parkinson; Wolfgang Schoepp; Johannes Emmerling; Volker Krey;In the version of ‘Supplementary Data 1’ originally published with this Article, the units for the ‘Capacity|Electricity|*’ variables in the ‘Non_Investment_Annual’ tab were incorrectly given as EJ/yr; they should have read GW. This has now been corrected. Also, some of the variables listed in the ‘Non_Investment_Variable_Defs’ were not required and have therefore been removed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0215-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0215-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | CD-LINKSEC| CD-LINKSDaniel Huppmann; Laurent Drouet; Oliver Fricko; Simon Parkinson; Simon Parkinson; Matthew Gidden; Christoph Bertram; Shinichiro Fujimori; Shinichiro Fujimori; Wenji Zhou; Harmen Sytze de Boer; Sebastian Busch; Claire Nicolas; Keywan Riahi; Keywan Riahi; Jacques Després; Marianne Fay; Elmar Kriegler; Miguel Poblete-Cazenave; Valentina Bosetti; Valentina Bosetti; David L. McCollum; David L. McCollum; Narasimha D. Rao; Wolfgang Schoepp; Gokul Iyer; Shonali Pachauri; Detlef P. van Vuuren; Detlef P. van Vuuren; Peter Rafaj; Mathijs Harmsen; Mathijs Harmsen; Johannes Emmerling; Julie Rozenberg; Andreas Schmitz; Volker Krey;Low-carbon investments are necessary for driving the energy system transformation that is called for by both the Paris Agreement and Sustainable Development Goals. Improving understanding of the scale and nature of these investments under diverging technology and policy futures is therefore of great importance to decision makers. Here, using six global modelling frameworks, we show that the pronounced reallocation of the investment portfolio required to transform the energy system will not be initiated by the current suite of countries’ Nationally Determined Contributions. Charting a course toward ‘well below 2 °C’ instead sees low-carbon investments overtaking fossil investments globally by around 2025 or before and growing thereafter. Pursuing the 1.5 °C target demands a marked upscaling in low-carbon capital beyond that of a 2 °C-consistent future. Actions consistent with an energy transformation would increase the costs of achieving the goals of energy access and food security, but reduce the costs of achieving air-quality goals.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0179-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 413 citations 413 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0179-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, GermanyPublisher:Springer Science and Business Media LLC Funded by:DFG | Climate Engineering: Risk...,DFG| Climate Engineering: Risks, Challenges, Opportunities? ,[no funder available]Junichi Tsutsui; Jessica Strefler; Shinichiro Fujimori; Shinichiro Fujimori; Matteo Muratori; John P. Weyant; Detlef P. van Vuuren; Detlef P. van Vuuren; Alban Kitous; Atsushi Kurosawa; Matthew Gidden; Steven K. Rose; Oliver Fricko; David Klein; Silvana Mima; Ruben Bibas; Vassilis Daioglou; Florian Leblanc; Ronald D. Sands; Nico Bauer; Tomoko Hasegawa; Etsushi Kato; Marshall Wise; Yiyun Cui; Fuminori Sano;We present an overview of results from 11 integrated assessment models (IAMs) that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33) on the viability of large-scale deployment of bioenergy for achieving long-run climate goals. The study explores future bioenergy use across models under harmonized scenarios for future climate policies, availability of bioenergy technologies, and constraints on biomass supply. This paper provides a more transparent description of IAMs that span a broad range of assumptions regarding model structures, energy sectors, and bioenergy conversion chains. Without emission constraints, we find vastly different CO2 emission and bioenergy deployment patterns across models due to differences in competition with fossil fuels, the possibility to produce large-scale bio-liquids, and the flexibility of energy systems. Imposing increasingly stringent carbon budgets mostly increases bioenergy use. A diverse set of available bioenergy technology portfolios provides flexibility to allocate bioenergy to supply different final energy as well as remove carbon dioxide from the atmosphere by combining bioenergy with carbon capture and sequestration (BECCS). Sector and regional bioenergy allocation varies dramatically across models mainly due to bioenergy technology availability and costs, final energy patterns, and availability of alternative decarbonization options. Although much bioenergy is used in combination with CCS, BECCS is not necessarily the driver of bioenergy use. We find that the flexibility to use biomass feedstocks in different energy sub-sectors makes large-scale bioenergy deployment a robust strategy in mitigation scenarios that is surprisingly insensitive with respect to reduced technology availability. However, the achievability of stringent carbon budgets and associated carbon prices is sensitive. Constraints on biomass feedstock supply increase the carbon price less significantly than excluding BECCS because carbon removals are still realized and valued. Incremental sensitivity tests find that delayed readiness of bioenergy technologies until 2050 is more important than potentially higher investment costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2226-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2226-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, FrancePublisher:IOP Publishing Funded by:EC | ADVANCEEC| ADVANCEBert Saveyn; Shinichiro Fujimori; Gunnar Luderer; Harmen Sytze de Boer; Harmen Sytze de Boer; Detlef P. van Vuuren; Christoph Bertram; Kimon Keramidas; Zoi Vrontisi; Kostas Fragkiadakis; Céline Guivarch; Leonidas Paroussos; Lara Aleluia Reis; Laurent Drouet; Oliver Fricko; Alban Kitous; Volker Krey; Lavinia Baumstark; Eoin Ó Broin; Elmar Kriegler;The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0-20.3) and 24.6 (18.5-29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020-2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios.
Hyper Article en Lig... arrow_drop_down IIASA DAREArticle . 2018License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://shs.hal.science/halshs-01782274Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab53e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down IIASA DAREArticle . 2018License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://shs.hal.science/halshs-01782274Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab53e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | ECEMF, EC | ENGAGEEC| ECEMF ,EC| ENGAGEMark M. Dekker; Vassilis Daioglou; Robert Pietzcker; Renato Rodrigues; Harmen-Sytze de Boer; Francesco Dalla Longa; Laurent Drouet; Johannes Emmerling; Amir Fattahi; Theofano Fotiou; Panagiotis Fragkos; Oliver Fricko; Ema Gusheva; Mathijs Harmsen; Daniel Huppmann; Maria Kannavou; Volker Krey; Francesco Lombardi; Gunnar Luderer; Stefan Pfenninger; Ioannis Tsiropoulos; Behnam Zakeri; Bob van der Zwaan; Will Usher; Detlef van Vuuren;AbstractEnergy models are used to study emissions mitigation pathways, such as those compatible with the Paris Agreement goals. These models vary in structure, objectives, parameterization and level of detail, yielding differences in the computed energy and climate policy scenarios. To study model differences, diagnostic indicators are common practice in many academic fields, for example, in the physical climate sciences. However, they have not yet been applied systematically in mitigation literature, beyond addressing individual model dimensions. Here we address this gap by quantifying energy model typology along five dimensions: responsiveness, mitigation strategies, energy supply, energy demand and mitigation costs and effort, each expressed through several diagnostic indicators. The framework is applied to a diagnostic experiment with eight energy models in which we explore ten scenarios focusing on Europe. Comparing indicators to the ensemble yields comprehensive ‘energy model fingerprints’, which describe systematic model behaviour and contextualize model differences for future multi-model comparison studies.
Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01399-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01399-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | ADVANCE, EC | CRESCENDO, EC | CD-LINKSEC| ADVANCE ,EC| CRESCENDO ,EC| CD-LINKSElke Stehfest; Keywan Riahi; Tomoko Hasegawa; Tomoko Hasegawa; Massimo Tavoni; Massimo Tavoni; Elmar Kriegler; Shinichiro Fujimori; Shinichiro Fujimori; Mathijs Harmsen; Mathijs Harmsen; Laurent Drouet; Oliver Fricko; David E.H.J. Gernaat; David E.H.J. Gernaat; Jae Edmonds; Jessica Strefler; Volker Krey; Gunnar Luderer; Joeri Rogelj; Joeri Rogelj; Giacomo Marangoni; Petr Havlik; Detlef P. van Vuuren; Detlef P. van Vuuren; Katherine Calvin; Alexander Popp; Florian Humpenöder; Jonathan C. Doelman; Johannes Emmerling;The 2015 Paris Agreement calls for countries to pursue efforts to limit global-mean temperature rise to 1.5 °C. The transition pathways that can meet such a target have not, however, been extensively explored. Here we describe scenarios that limit end-of-century radiative forcing to 1.9 W m−2, and consequently restrict median warming in the year 2100 to below 1.5 °C. We use six integrated assessment models and a simple climate model, under different socio-economic, technological and resource assumptions from five Shared Socio-economic Pathways (SSPs). Some, but not all, SSPs are amenable to pathways to 1.5 °C. Successful 1.9 W m−2 scenarios are characterized by a rapid shift away from traditional fossil-fuel use towards large-scale low-carbon energy supplies, reduced energy use, and carbon-dioxide removal. However, 1.9 W m−2 scenarios could not be achieved in several models under SSPs with strong inequalities, high baseline fossil-fuel use, or scattered short-term climate policy. Further research can help policy-makers to understand the real-world implications of these scenarios.
IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0091-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 877 citations 877 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0091-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:American Chemical Society (ACS) Funded by:NSERCNSERCZarrar Khan; Nils Johnson; Khaled Sedraoui; Abdulrahman H. Almasoud; Ned Djilali; Ned Djilali; Volker Krey; Oliver Fricko; Simon Parkinson; Simon Parkinson;Balancing groundwater depletion, socioeconomic development and food security in Saudi Arabia will require policy that promotes expansion of unconventional freshwater supply options, such as wastewater recycling and desalination. As these processes consume more electricity than conventional freshwater supply technologies, Saudi Arabia's electricity system is vulnerable to groundwater conservation policy. This paper examines strategies for adapting to long-term groundwater constraints in Saudi Arabia's freshwater and electricity supply sectors with an integrated modeling framework. The approach combines electricity and freshwater supply planning models across provinces to provide an improved representation of coupled infrastructure systems. The tool is applied to study the interaction between policy aimed at a complete phase-out of nonrenewable groundwater extraction and concurrent policy aimed at achieving deep reductions in electricity sector carbon emissions. We find that transitioning away from nonrenewable groundwater use by the year 2050 could increase electricity demand by more than 40% relative to 2010 conditions, and require investments similar to strategies aimed at transitioning away from fossil fuels in the electricity sector. Higher electricity demands under groundwater constraints reduce flexibility of supply side options in the electricity sector to limit carbon emissions, making it more expensive to fulfill climate sustainability objectives. The results of this analysis underscore the importance of integrated long-term planning approaches for Saudi Arabia's electricity and freshwater supply systems.
Environmental Scienc... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5b05852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5b05852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Germany, United Kingdom, Germany, JapanPublisher:IOP Publishing Dan Tong; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Johannes Emmerling; Robert Fofrich; Oliver Fricko; Gunnar Luderer; Gunnar Luderer; Joeri Rogelj; Joeri Rogelj; Steven J. Davis; Harmen Sytze de Boer; Harmen Sytze de Boer; Katherine Calvin;handle: 2433/255250 , 10044/1/83047
Abstract International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 34 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, Germany, Finland, Germany, France, United KingdomPublisher:IOP Publishing Funded by:EC | NAVIGATE, EC | ADVANCEEC| NAVIGATE ,EC| ADVANCEGokul Iyer; Detlef P. van Vuuren; Detlef P. van Vuuren; Bas van Ruijven; Ryna Cui; Volker Krey; Kaj-Ivar van der Wijst; Kaj-Ivar van der Wijst; Shinichiro Fujimori; Jessica Strefler; Johannes Emmerling; Gunnar Luderer; Gunnar Luderer; Alexandre C. Köberle; Panagiotis Fragkos; Olivier Dessens; Christoph Krüger; Christoph Krüger; Florian Fosse; Fuminori Sano; Dimitris Fragkiadakis; Kimon Keramidas; Sergey Paltsev; Florian Leblanc; Pedro Rochedo; Ronald D. Sands; Kostas Fragkiadakis; Céline Guivarch; Peter Kolp; Panagiotis Karkatsoulis; Elmar Kriegler; Elmar Kriegler; J. Jeffrey Morris; David E.H.J. Gernaat; David E.H.J. Gernaat; Mathijs Harmsen; Mathijs Harmsen; Laurent Drouet; Oliver Fricko; Behnam Zakeri; Behnam Zakeri; Shivika Mittal; Eveline Vasquez Arroyo; Kenichi Wada; I. Keppo;handle: 10044/1/88339
Abstract Integrated assessment models (IAMs) form a prime tool in informing about climate mitigation strategies. Diagnostic indicators that allow comparison across these models can help describe and explain differences in model projections. This increases transparency and comparability. Earlier, the IAM community has developed an approach to diagnose models (Kriegler (2015 Technol. Forecast. Soc. Change 90 45–61)). Here we build on this, by proposing a selected set of well-defined indicators as a community standard, to systematically and routinely assess IAM behaviour, similar to metrics used for other modeling communities such as climate models. These indicators are the relative abatement index, emission reduction type index, inertia timescale, fossil fuel reduction, transformation index and cost per abatement value. We apply the approach to 17 IAMs, assessing both older as well as their latest versions, as applied in the IPCC 6th Assessment Report. The study shows that the approach can be easily applied and used to indentify key differences between models and model versions. Moreover, we demonstrate that this comparison helps to link model behavior to model characteristics and assumptions. We show that together, the set of six indicators can provide useful indication of the main traits of the model and can roughly indicate the general model behavior. The results also show that there is often a considerable spread across the models. Interestingly, the diagnostic values often change for different model versions, but there does not seem to be a distinct trend.
IIASA DARE arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/88339Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication ArchiveCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 9 Powered bymore_vert IIASA DARE arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/88339Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication ArchiveCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Germany, NetherlandsPublisher:Elsevier BV Funded by:EC | PATHWAYS, EC | ADVANCE, EC | LUC4CEC| PATHWAYS ,EC| ADVANCE ,EC| LUC4CBrian C. O'Neill; Tomoko Hasegawa; Detlef P. van Vuuren; Alexander Popp; Shinichiro Fujimori; Petr Havlik; Giacomo Marangoni; Tom Kram; Hermann Lotze-Campen; Hermann Lotze-Campen; Florian Humpenöder; Gunnar Luderer; Massimo Tavoni; Massimo Tavoni; David E.H.J. Gernaat; Johannes Emmerling; Kiyoshi Takahashi; Steve Smith; Mathijs Harmsen; Valentina Bosetti; Valentina Bosetti; Jessica Strefler; Andrzej Tabeau; Joeri Rogelj; Jiyong Eom; Jiyong Eom; Samir Kc; Samir Kc; Leiwen Jiang; Katherine Calvin; Kristie L. Ebi; Mikiko Kainuma; Jesus Crespo Cuaresma; Rob Dellink; Lavinia Baumstark; Wolfgang Lutz; Toshihiko Masui; Marian Leimbach; Lara Aleluia Da Silva; Laurent Drouet; Oliver Fricko; Nico Bauer; Jae Edmonds; Michael Obersteiner; Volker Krey; Zbigniew Klimont; Shilpa Rao; Elke Stehfest; Keywan Riahi; Elmar Kriegler; Jonathan C. Doelman;handle: 10044/1/78069
This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/78069Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4K citations 3,592 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 12visibility views 12 download downloads 623 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/78069Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Harmen Sytze de Boer; Matthew Gidden; Shinichiro Fujimori; Shinichiro Fujimori; +32 AuthorsHarmen Sytze de Boer; Matthew Gidden; Shinichiro Fujimori; Shinichiro Fujimori; Marianne Fay; Wenji Zhou; Mathijs Harmsen; Mathijs Harmsen; Claire Nicolas; Julie Rozenberg; Gokul Iyer; Detlef P. van Vuuren; Detlef P. van Vuuren; Miguel Poblete-Cazenave; David L. McCollum; David L. McCollum; Sebastian Busch; Jacques Després; Christoph Bertram; Valentina Bosetti; Valentina Bosetti; Peter Rafaj; Narasimha D. Rao; Keywan Riahi; Keywan Riahi; Elmar Kriegler; Shonali Pachauri; Andreas Schmitz; Daniel Huppmann; Laurent Drouet; Oliver Fricko; Simon Parkinson; Simon Parkinson; Wolfgang Schoepp; Johannes Emmerling; Volker Krey;In the version of ‘Supplementary Data 1’ originally published with this Article, the units for the ‘Capacity|Electricity|*’ variables in the ‘Non_Investment_Annual’ tab were incorrectly given as EJ/yr; they should have read GW. This has now been corrected. Also, some of the variables listed in the ‘Non_Investment_Variable_Defs’ were not required and have therefore been removed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0215-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0215-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | CD-LINKSEC| CD-LINKSDaniel Huppmann; Laurent Drouet; Oliver Fricko; Simon Parkinson; Simon Parkinson; Matthew Gidden; Christoph Bertram; Shinichiro Fujimori; Shinichiro Fujimori; Wenji Zhou; Harmen Sytze de Boer; Sebastian Busch; Claire Nicolas; Keywan Riahi; Keywan Riahi; Jacques Després; Marianne Fay; Elmar Kriegler; Miguel Poblete-Cazenave; Valentina Bosetti; Valentina Bosetti; David L. McCollum; David L. McCollum; Narasimha D. Rao; Wolfgang Schoepp; Gokul Iyer; Shonali Pachauri; Detlef P. van Vuuren; Detlef P. van Vuuren; Peter Rafaj; Mathijs Harmsen; Mathijs Harmsen; Johannes Emmerling; Julie Rozenberg; Andreas Schmitz; Volker Krey;Low-carbon investments are necessary for driving the energy system transformation that is called for by both the Paris Agreement and Sustainable Development Goals. Improving understanding of the scale and nature of these investments under diverging technology and policy futures is therefore of great importance to decision makers. Here, using six global modelling frameworks, we show that the pronounced reallocation of the investment portfolio required to transform the energy system will not be initiated by the current suite of countries’ Nationally Determined Contributions. Charting a course toward ‘well below 2 °C’ instead sees low-carbon investments overtaking fossil investments globally by around 2025 or before and growing thereafter. Pursuing the 1.5 °C target demands a marked upscaling in low-carbon capital beyond that of a 2 °C-consistent future. Actions consistent with an energy transformation would increase the costs of achieving the goals of energy access and food security, but reduce the costs of achieving air-quality goals.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0179-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 413 citations 413 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0179-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, GermanyPublisher:Springer Science and Business Media LLC Funded by:DFG | Climate Engineering: Risk...,DFG| Climate Engineering: Risks, Challenges, Opportunities? ,[no funder available]Junichi Tsutsui; Jessica Strefler; Shinichiro Fujimori; Shinichiro Fujimori; Matteo Muratori; John P. Weyant; Detlef P. van Vuuren; Detlef P. van Vuuren; Alban Kitous; Atsushi Kurosawa; Matthew Gidden; Steven K. Rose; Oliver Fricko; David Klein; Silvana Mima; Ruben Bibas; Vassilis Daioglou; Florian Leblanc; Ronald D. Sands; Nico Bauer; Tomoko Hasegawa; Etsushi Kato; Marshall Wise; Yiyun Cui; Fuminori Sano;We present an overview of results from 11 integrated assessment models (IAMs) that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33) on the viability of large-scale deployment of bioenergy for achieving long-run climate goals. The study explores future bioenergy use across models under harmonized scenarios for future climate policies, availability of bioenergy technologies, and constraints on biomass supply. This paper provides a more transparent description of IAMs that span a broad range of assumptions regarding model structures, energy sectors, and bioenergy conversion chains. Without emission constraints, we find vastly different CO2 emission and bioenergy deployment patterns across models due to differences in competition with fossil fuels, the possibility to produce large-scale bio-liquids, and the flexibility of energy systems. Imposing increasingly stringent carbon budgets mostly increases bioenergy use. A diverse set of available bioenergy technology portfolios provides flexibility to allocate bioenergy to supply different final energy as well as remove carbon dioxide from the atmosphere by combining bioenergy with carbon capture and sequestration (BECCS). Sector and regional bioenergy allocation varies dramatically across models mainly due to bioenergy technology availability and costs, final energy patterns, and availability of alternative decarbonization options. Although much bioenergy is used in combination with CCS, BECCS is not necessarily the driver of bioenergy use. We find that the flexibility to use biomass feedstocks in different energy sub-sectors makes large-scale bioenergy deployment a robust strategy in mitigation scenarios that is surprisingly insensitive with respect to reduced technology availability. However, the achievability of stringent carbon budgets and associated carbon prices is sensitive. Constraints on biomass feedstock supply increase the carbon price less significantly than excluding BECCS because carbon removals are still realized and valued. Incremental sensitivity tests find that delayed readiness of bioenergy technologies until 2050 is more important than potentially higher investment costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2226-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-018-2226-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, FrancePublisher:IOP Publishing Funded by:EC | ADVANCEEC| ADVANCEBert Saveyn; Shinichiro Fujimori; Gunnar Luderer; Harmen Sytze de Boer; Harmen Sytze de Boer; Detlef P. van Vuuren; Christoph Bertram; Kimon Keramidas; Zoi Vrontisi; Kostas Fragkiadakis; Céline Guivarch; Leonidas Paroussos; Lara Aleluia Reis; Laurent Drouet; Oliver Fricko; Alban Kitous; Volker Krey; Lavinia Baumstark; Eoin Ó Broin; Elmar Kriegler;The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0-20.3) and 24.6 (18.5-29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020-2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios.
Hyper Article en Lig... arrow_drop_down IIASA DAREArticle . 2018License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://shs.hal.science/halshs-01782274Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab53e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down IIASA DAREArticle . 2018License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://shs.hal.science/halshs-01782274Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab53e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | ECEMF, EC | ENGAGEEC| ECEMF ,EC| ENGAGEMark M. Dekker; Vassilis Daioglou; Robert Pietzcker; Renato Rodrigues; Harmen-Sytze de Boer; Francesco Dalla Longa; Laurent Drouet; Johannes Emmerling; Amir Fattahi; Theofano Fotiou; Panagiotis Fragkos; Oliver Fricko; Ema Gusheva; Mathijs Harmsen; Daniel Huppmann; Maria Kannavou; Volker Krey; Francesco Lombardi; Gunnar Luderer; Stefan Pfenninger; Ioannis Tsiropoulos; Behnam Zakeri; Bob van der Zwaan; Will Usher; Detlef van Vuuren;AbstractEnergy models are used to study emissions mitigation pathways, such as those compatible with the Paris Agreement goals. These models vary in structure, objectives, parameterization and level of detail, yielding differences in the computed energy and climate policy scenarios. To study model differences, diagnostic indicators are common practice in many academic fields, for example, in the physical climate sciences. However, they have not yet been applied systematically in mitigation literature, beyond addressing individual model dimensions. Here we address this gap by quantifying energy model typology along five dimensions: responsiveness, mitigation strategies, energy supply, energy demand and mitigation costs and effort, each expressed through several diagnostic indicators. The framework is applied to a diagnostic experiment with eight energy models in which we explore ten scenarios focusing on Europe. Comparing indicators to the ensemble yields comprehensive ‘energy model fingerprints’, which describe systematic model behaviour and contextualize model differences for future multi-model comparison studies.
Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01399-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01399-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | ADVANCE, EC | CRESCENDO, EC | CD-LINKSEC| ADVANCE ,EC| CRESCENDO ,EC| CD-LINKSElke Stehfest; Keywan Riahi; Tomoko Hasegawa; Tomoko Hasegawa; Massimo Tavoni; Massimo Tavoni; Elmar Kriegler; Shinichiro Fujimori; Shinichiro Fujimori; Mathijs Harmsen; Mathijs Harmsen; Laurent Drouet; Oliver Fricko; David E.H.J. Gernaat; David E.H.J. Gernaat; Jae Edmonds; Jessica Strefler; Volker Krey; Gunnar Luderer; Joeri Rogelj; Joeri Rogelj; Giacomo Marangoni; Petr Havlik; Detlef P. van Vuuren; Detlef P. van Vuuren; Katherine Calvin; Alexander Popp; Florian Humpenöder; Jonathan C. Doelman; Johannes Emmerling;The 2015 Paris Agreement calls for countries to pursue efforts to limit global-mean temperature rise to 1.5 °C. The transition pathways that can meet such a target have not, however, been extensively explored. Here we describe scenarios that limit end-of-century radiative forcing to 1.9 W m−2, and consequently restrict median warming in the year 2100 to below 1.5 °C. We use six integrated assessment models and a simple climate model, under different socio-economic, technological and resource assumptions from five Shared Socio-economic Pathways (SSPs). Some, but not all, SSPs are amenable to pathways to 1.5 °C. Successful 1.9 W m−2 scenarios are characterized by a rapid shift away from traditional fossil-fuel use towards large-scale low-carbon energy supplies, reduced energy use, and carbon-dioxide removal. However, 1.9 W m−2 scenarios could not be achieved in several models under SSPs with strong inequalities, high baseline fossil-fuel use, or scattered short-term climate policy. Further research can help policy-makers to understand the real-world implications of these scenarios.
IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0091-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 877 citations 877 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0091-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:American Chemical Society (ACS) Funded by:NSERCNSERCZarrar Khan; Nils Johnson; Khaled Sedraoui; Abdulrahman H. Almasoud; Ned Djilali; Ned Djilali; Volker Krey; Oliver Fricko; Simon Parkinson; Simon Parkinson;Balancing groundwater depletion, socioeconomic development and food security in Saudi Arabia will require policy that promotes expansion of unconventional freshwater supply options, such as wastewater recycling and desalination. As these processes consume more electricity than conventional freshwater supply technologies, Saudi Arabia's electricity system is vulnerable to groundwater conservation policy. This paper examines strategies for adapting to long-term groundwater constraints in Saudi Arabia's freshwater and electricity supply sectors with an integrated modeling framework. The approach combines electricity and freshwater supply planning models across provinces to provide an improved representation of coupled infrastructure systems. The tool is applied to study the interaction between policy aimed at a complete phase-out of nonrenewable groundwater extraction and concurrent policy aimed at achieving deep reductions in electricity sector carbon emissions. We find that transitioning away from nonrenewable groundwater use by the year 2050 could increase electricity demand by more than 40% relative to 2010 conditions, and require investments similar to strategies aimed at transitioning away from fossil fuels in the electricity sector. Higher electricity demands under groundwater constraints reduce flexibility of supply side options in the electricity sector to limit carbon emissions, making it more expensive to fulfill climate sustainability objectives. The results of this analysis underscore the importance of integrated long-term planning approaches for Saudi Arabia's electricity and freshwater supply systems.
Environmental Scienc... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5b05852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5b05852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu