- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran..., ARC | Ocean acidification and r...ARC| Discovery Projects - Grant ID: DP170101722 ,ARC| Discovery Projects - Grant ID: DP150104263 ,ARC| Ocean acidification and rising sea temperature effect on fishEricka O. C. Coni; Ivan Nagelkerken; Camilo M. Ferreira; Sean D. Connell; David J. Booth;handle: 2440/129982
Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. Warming is shifting temperate zones to become more tropical. Natural warming and CO2 vent sites show that acidification buffers warming effects, reducing sea urchin numbers and grazing, thus creating a turf-dominated temperate habitat that is less hospitable to tropical fish than urchin barrens.
Nature Climate Chang... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-020-00980-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nature Climate Chang... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-020-00980-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Jennifer M. Donelson; Jennifer M. Donelson; David J. Booth; Shannen M. Smith; Rebecca J. Fox; Rebecca J. Fox;AbstractRange shifts of tropical marine species to temperate latitudes are predicted to increase as a consequence of climate change. To date, the research focus on climate‐mediated range shifts has been predominately dealt with the physiological capacity of tropical species to cope with the thermal challenges imposed by temperate latitudes. Behavioural traits of individuals in the novel temperate environment have not previously been investigated, however, they are also likely to play a key role in determining the establishment success of individual species at the range‐expansion forefront. The aim of this study was to investigate the effect of shoaling strategy on the performance of juvenile tropical reef fishes that recruit annually to temperate waters off the south east coast of Australia. Specifically, we compared body‐size distributions and the seasonal decline in abundance through time of juvenile tropical fishes that shoaled with native temperate species (‘mixed’ shoals) to those that shoaled only with conspecifics (as would be the case in their tropical range). We found that shoaling with temperate native species benefitted juvenile tropical reef fishes, with individuals in ‘mixed’ shoals attaining larger body‐sizes over the season than those in ‘tropical‐only’ shoals. This benefit in terms of population body‐size distributions was accompanied by greater social cohesion of ‘mixed’ shoals across the season. Our results highlight the impact that sociality and behavioural plasticity are likely to play in determining the impact on native fish communities of climate‐induced range expansion of coral reef fishes.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/254986Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/254986Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Wiley Beger, Maria; Babcock, Russ; Booth, David J.; Bucher, Daniel; Condie, Scott A.; Creese, Bob; Cvitanovic, Christopher; Dalton , Steve J.; Harrison, Peter; Hoey, Andrew; Jordan, Alan; Loder, Jennifer; Malcolm, Hamish; Purcell, Steven W.; Roelfsma, Chris; Sachs, Patrick; Smith, Stephen D.A.; Sommer, Brigitte; Stuart-Smith, Rick; Thomson, Damian; Wallace, Carden C.; Zann, Maria; Pandolfi, John M.;handle: 1885/39125
This paper reports on a workshop conducted in Australia in 2010, entitled 'Management, Conservation, and Scientific Challenges on Subtropical Reefs under Climate Change'. The workshop brought together 26 experts actively involved in the science and management of subtropical reefs. Its primary aim was to identify the areas of research that need to be most urgently addressed to improve the decision-making framework for managers of subtropical reefs. The main findings of the workshop were a sustainable subtropical reefs declaration that highlights seven research priorities for subtropical reefs. These are to (i) conduct research and management activities across local government, state and bioregion borders; (ii) understand natural variability of environmental conditions; (iii) quantify socio-economic factors and ecosystem services; (iv) benchmark cross-realm connectivity; (v) know marine population connectivity; (vi) habitat mapping and ecological research; and (v) determine refugia. These findings are hoped to form a basis for focussing research efforts, leveraging funds and assisting managers with allocation of resources.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/39125Data sources: Bielefeld Academic Search Engine (BASE)Ecological Management & RestorationArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1442-8903.2011.00573.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/39125Data sources: Bielefeld Academic Search Engine (BASE)Ecological Management & RestorationArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1442-8903.2011.00573.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Sam J. Allan; Max J. O'Connell; David Harasti; O. Selma Klanten; David J. Booth;AbstractHabitat associations can be critical predictors of larger‐scale organism distributions and range shifts. Here the authors consider how a critical habitat, kelp (Ecklonia radiata) and prey (mysid crustacean swarms), can influence small‐ and large‐scale distribution on the iconic common (weedy) seadragon (Phyllopteryx taeniolatus:Syngnathidae). P. taeniolatus are charismatic fish endemic to the temperate reefs of southern Australia, reported to range from Geraldton, Western Australia (28.7667°S, 114.6167°E) around southern Australia to Port Stephens, New South Wales (32.614369°S, 152.325676°E). The authors test a previously developed model of seadragon habitat preferences to predict P. taeniolatus occurrence within four sites from Sydney to the northern limit of their range in eastern Australia. They determined that P. taeniolatus associations with Ecklonia and mysid shrimp can be extrapolated across multiple sites to predict the occurrence of individual P. taeniolatus within a location/site. For instance, the authors demonstrated a significant positive relationship between the density of mysid swarms and the density of P. taeniolatus, evident across all sites despite large differences in the density of mysid swarms among sites. The findings are the first to model P. taeniolatus habitat associations across multiple sites to the northern limit of their range and have applications in protecting P. taeniolatus populations and how they may respond under climate change scenarios, such as poleward kelp retractions.
Journal of Fish Biol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.15025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Fish Biol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.15025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:The Royal Society Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170101722Authors: Ericka O. C. Coni; David J. Booth; Ivan Nagelkerken;As climate warms, tropical species are expanding their distribution to temperate ecosystems where they are confronted with novel predators and habitats. Predation strongly regulates ecological communities, and range-extending species that adopt an effective antipredator strategy have a higher likelihood to persist in non-native environments. Here, we test this hypothesis by comparing various proxies of antipredator and other fitness-related behaviours between range-extending tropical fishes and native-temperate fishes at multiple sites across a 730 km latitudinal range. Although some behavioural proxies of risk aversion remained unaltered for individual tropical fish species, in general they became more risk-averse (increased sheltering and/or flight initiation distance), and their activity level decreased poleward. Nevertheless, they did not experience a decline in body condition or feeding rate in their temperate ranges. Temperate fishes did not show a consistently altered pattern in their behaviours across range locations, even though one species increased its flight initiation distance at the warm-temperate location and another one had lowest activity levels at the coldest range location. The maintenance of feeding and bite rate combined with a decreased activity level and increased sheltering may be behavioural strategies adopted by range-extending tropical fishes, to preserve energy and maintain fitness in their novel temperate ecosystems.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.2676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.2676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010 Australia, United States, Saudi Arabia, France, Australia, Australia, Saudi Arabia, AustraliaPublisher:The Company of Biologists Alistair J. Cheal; Peter J. Mumby; Tim R. McClanahan; Philip L. Munday; C. Syms; Andrew S. Hoey; M. Sano; Monica Gagliano; Marcus C. Öhman; Yves Letourneur; Y. Marie Bozec; David R. Bellwood; Alastair R. Harborne; M. Kulbiki; Joshua E. Cinner; Mark G. Meekan; Mehdi Adjeroud; Pascale Chabanet; Sally J. Holbrook; Geoffrey P. Jones; Mark I. McCormick; Russell J. Schmitt; Andrew R. Halford; Andrew R. Halford; T. L. de Loma; Martial Depczynski; David A. Feary; David J. Booth; Bernhard Riegl; Nicholas A. J. Graham; Michael L. Berumen; Michael L. Berumen; Michael L. Berumen; Morgan S. Pratchett; Benjamin S. Halpern; Shaun K. Wilson;SUMMARY Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.
Journal of Experimen... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.037895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 83 citations 83 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.037895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: J. Poole; David A. Feary; Davina E. Poulos; David J. Booth;doi: 10.1111/jfb.12255
pmid: 24383807
The effect of water temperature on growth responses of three common seagrass fish species that co‐occur as juveniles in the estuaries in Sydney (34° S) but have differing latitudinal ranges was measured: Pelates sexlineatus (subtropical to warm temperate: 27–35° S), Centropogon australis (primarily subtropical to warm temperate: 24–37° S) and Acanthaluteres spilomelanurus (warm to cool temperate: below 32° S). Replicate individuals of each species were acclimated over a 7 day period in one of three temperature treatments (control: 22° C, low: 18° C and high: 26° C) and their somatic growth was assessed within treatments over 10 days. Growth of all three species was affected by water temperature, with the highest growth of both northern species (P. sexlineatus and C. australis) at 22 and 26° C, whereas growth of the southern ranging species (A. spilomelanurus) was reduced at temperatures higher than 18° C, suggesting that predicted increase in estuarine water temperatures through climate change may change relative performance of seagrass fish assemblages.
Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.12255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.12255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170101722Authors: Sasaki, M.; Michell, A.; Booth, D.J.; Nagelkerken, I.;Global warming facilitates species range-expansions, leading to novel biological interactions between local and range-expanding species. Little is still known of how such novel interactions modify the performance of interacting species or how these interactions might be altered under climate change. Here, we used an aquarium experiment to investigate the novel ecological interactions between a poleward range-extending coral reef damselfish ("tropical-vagrant") and a local temperate species ("temperate-local") collected from a climate warming hotspot in SE Australia. We measured the effect of novel interactions (isolated vs. paired fish species) on energy expenditure (activity levels, oxidative stress, and antioxidant responses), energy gain (feeding rates), and growth rates of both fish species under present-day (23 °C) and future ocean temperatures (26 °C). Short-term growth rates were faster in both species under novel interactions (paired species), regardless of elevated temperature. Compared to isolated species, activity level, feeding rate and oxidative stress level were also higher in the paired temperate fish but not in the paired tropical fish. The tropical fish showed an increased feeding rate and long-term growth under elevated temperature, irrespective of novel interactions. We conclude that novel ecological interactions under climate change can be an important driver of physiological traits in sympatric tropical and temperate fishes and can mediate critical physiological performance of fishes under ocean warming.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Funded by:ARC | Ocean acidification and r..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran...ARC| Ocean acidification and rising sea temperature effect on fish ,ARC| Discovery Projects - Grant ID: DP150104263 ,ARC| Discovery Projects - Grant ID: DP170101722Coni, Ericka O C; Nagelkerken, Ivan; Ferreira, Camilo M; Connell, Sean D; Booth, David J;Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-07-26.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170101722Authors: Ericka O. C. Coni; David J. Booth; Camilo M. Ferreira; Ivan Nagelkerken;Abstract Coral‐reef fishes are shifting their distributions poleward in response to human‐mediated ocean warming; yet, the consequences for recipient temperate fish communities remain poorly understood. Behavioural modification is often the first response of species to environmental change, but we know little about how this might shape the ongoing colonisation by tropical fishes of temperate‐latitude ecosystems under climate change. In a global hotspot of ocean warming (southeast Australia), we quantified 14 behavioural traits of invading tropical and local co‐occurring temperate fishes at 10 sites across a 730 km latitudinal gradient as a proxy of species behavioural niche space in different climate ranges (subtropical, warm‐temperate and cold‐temperate). We found that tropical fishes (four species) modified their behavioural niches as well as increased their overall behavioural niche breadth in their novel temperate ranges where temperate species predominate, but maintained a moderate to high niche segregation with native temperate species across latitudinal range position. Temperate species (three co‐occurring species) also modified their niches, but in contrast to tropical species, experienced an increased niche breadth towards subtropical ranges. Alterations to feeding and shoaling behaviours contributed most to niche modifications in tropical and temperate species, while behaviours related to alertness and escape from potential threats contributed least. We here show that at warmer and colder range edges where community structures are being reshuffled due to climate change, behavioural generalism and niche modification are potential mechanisms adopted by tropical range extenders and native temperate fishes to adjust to novel species interactions under climate change.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran..., ARC | Ocean acidification and r...ARC| Discovery Projects - Grant ID: DP170101722 ,ARC| Discovery Projects - Grant ID: DP150104263 ,ARC| Ocean acidification and rising sea temperature effect on fishEricka O. C. Coni; Ivan Nagelkerken; Camilo M. Ferreira; Sean D. Connell; David J. Booth;handle: 2440/129982
Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. Warming is shifting temperate zones to become more tropical. Natural warming and CO2 vent sites show that acidification buffers warming effects, reducing sea urchin numbers and grazing, thus creating a turf-dominated temperate habitat that is less hospitable to tropical fish than urchin barrens.
Nature Climate Chang... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-020-00980-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nature Climate Chang... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-020-00980-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Jennifer M. Donelson; Jennifer M. Donelson; David J. Booth; Shannen M. Smith; Rebecca J. Fox; Rebecca J. Fox;AbstractRange shifts of tropical marine species to temperate latitudes are predicted to increase as a consequence of climate change. To date, the research focus on climate‐mediated range shifts has been predominately dealt with the physiological capacity of tropical species to cope with the thermal challenges imposed by temperate latitudes. Behavioural traits of individuals in the novel temperate environment have not previously been investigated, however, they are also likely to play a key role in determining the establishment success of individual species at the range‐expansion forefront. The aim of this study was to investigate the effect of shoaling strategy on the performance of juvenile tropical reef fishes that recruit annually to temperate waters off the south east coast of Australia. Specifically, we compared body‐size distributions and the seasonal decline in abundance through time of juvenile tropical fishes that shoaled with native temperate species (‘mixed’ shoals) to those that shoaled only with conspecifics (as would be the case in their tropical range). We found that shoaling with temperate native species benefitted juvenile tropical reef fishes, with individuals in ‘mixed’ shoals attaining larger body‐sizes over the season than those in ‘tropical‐only’ shoals. This benefit in terms of population body‐size distributions was accompanied by greater social cohesion of ‘mixed’ shoals across the season. Our results highlight the impact that sociality and behavioural plasticity are likely to play in determining the impact on native fish communities of climate‐induced range expansion of coral reef fishes.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/254986Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/254986Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Wiley Beger, Maria; Babcock, Russ; Booth, David J.; Bucher, Daniel; Condie, Scott A.; Creese, Bob; Cvitanovic, Christopher; Dalton , Steve J.; Harrison, Peter; Hoey, Andrew; Jordan, Alan; Loder, Jennifer; Malcolm, Hamish; Purcell, Steven W.; Roelfsma, Chris; Sachs, Patrick; Smith, Stephen D.A.; Sommer, Brigitte; Stuart-Smith, Rick; Thomson, Damian; Wallace, Carden C.; Zann, Maria; Pandolfi, John M.;handle: 1885/39125
This paper reports on a workshop conducted in Australia in 2010, entitled 'Management, Conservation, and Scientific Challenges on Subtropical Reefs under Climate Change'. The workshop brought together 26 experts actively involved in the science and management of subtropical reefs. Its primary aim was to identify the areas of research that need to be most urgently addressed to improve the decision-making framework for managers of subtropical reefs. The main findings of the workshop were a sustainable subtropical reefs declaration that highlights seven research priorities for subtropical reefs. These are to (i) conduct research and management activities across local government, state and bioregion borders; (ii) understand natural variability of environmental conditions; (iii) quantify socio-economic factors and ecosystem services; (iv) benchmark cross-realm connectivity; (v) know marine population connectivity; (vi) habitat mapping and ecological research; and (v) determine refugia. These findings are hoped to form a basis for focussing research efforts, leveraging funds and assisting managers with allocation of resources.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/39125Data sources: Bielefeld Academic Search Engine (BASE)Ecological Management & RestorationArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1442-8903.2011.00573.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/39125Data sources: Bielefeld Academic Search Engine (BASE)Ecological Management & RestorationArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1442-8903.2011.00573.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Sam J. Allan; Max J. O'Connell; David Harasti; O. Selma Klanten; David J. Booth;AbstractHabitat associations can be critical predictors of larger‐scale organism distributions and range shifts. Here the authors consider how a critical habitat, kelp (Ecklonia radiata) and prey (mysid crustacean swarms), can influence small‐ and large‐scale distribution on the iconic common (weedy) seadragon (Phyllopteryx taeniolatus:Syngnathidae). P. taeniolatus are charismatic fish endemic to the temperate reefs of southern Australia, reported to range from Geraldton, Western Australia (28.7667°S, 114.6167°E) around southern Australia to Port Stephens, New South Wales (32.614369°S, 152.325676°E). The authors test a previously developed model of seadragon habitat preferences to predict P. taeniolatus occurrence within four sites from Sydney to the northern limit of their range in eastern Australia. They determined that P. taeniolatus associations with Ecklonia and mysid shrimp can be extrapolated across multiple sites to predict the occurrence of individual P. taeniolatus within a location/site. For instance, the authors demonstrated a significant positive relationship between the density of mysid swarms and the density of P. taeniolatus, evident across all sites despite large differences in the density of mysid swarms among sites. The findings are the first to model P. taeniolatus habitat associations across multiple sites to the northern limit of their range and have applications in protecting P. taeniolatus populations and how they may respond under climate change scenarios, such as poleward kelp retractions.
Journal of Fish Biol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.15025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Fish Biol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.15025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:The Royal Society Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170101722Authors: Ericka O. C. Coni; David J. Booth; Ivan Nagelkerken;As climate warms, tropical species are expanding their distribution to temperate ecosystems where they are confronted with novel predators and habitats. Predation strongly regulates ecological communities, and range-extending species that adopt an effective antipredator strategy have a higher likelihood to persist in non-native environments. Here, we test this hypothesis by comparing various proxies of antipredator and other fitness-related behaviours between range-extending tropical fishes and native-temperate fishes at multiple sites across a 730 km latitudinal range. Although some behavioural proxies of risk aversion remained unaltered for individual tropical fish species, in general they became more risk-averse (increased sheltering and/or flight initiation distance), and their activity level decreased poleward. Nevertheless, they did not experience a decline in body condition or feeding rate in their temperate ranges. Temperate fishes did not show a consistently altered pattern in their behaviours across range locations, even though one species increased its flight initiation distance at the warm-temperate location and another one had lowest activity levels at the coldest range location. The maintenance of feeding and bite rate combined with a decreased activity level and increased sheltering may be behavioural strategies adopted by range-extending tropical fishes, to preserve energy and maintain fitness in their novel temperate ecosystems.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.2676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2021.2676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010 Australia, United States, Saudi Arabia, France, Australia, Australia, Saudi Arabia, AustraliaPublisher:The Company of Biologists Alistair J. Cheal; Peter J. Mumby; Tim R. McClanahan; Philip L. Munday; C. Syms; Andrew S. Hoey; M. Sano; Monica Gagliano; Marcus C. Öhman; Yves Letourneur; Y. Marie Bozec; David R. Bellwood; Alastair R. Harborne; M. Kulbiki; Joshua E. Cinner; Mark G. Meekan; Mehdi Adjeroud; Pascale Chabanet; Sally J. Holbrook; Geoffrey P. Jones; Mark I. McCormick; Russell J. Schmitt; Andrew R. Halford; Andrew R. Halford; T. L. de Loma; Martial Depczynski; David A. Feary; David J. Booth; Bernhard Riegl; Nicholas A. J. Graham; Michael L. Berumen; Michael L. Berumen; Michael L. Berumen; Morgan S. Pratchett; Benjamin S. Halpern; Shaun K. Wilson;SUMMARY Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.
Journal of Experimen... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.037895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 83 citations 83 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.037895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: J. Poole; David A. Feary; Davina E. Poulos; David J. Booth;doi: 10.1111/jfb.12255
pmid: 24383807
The effect of water temperature on growth responses of three common seagrass fish species that co‐occur as juveniles in the estuaries in Sydney (34° S) but have differing latitudinal ranges was measured: Pelates sexlineatus (subtropical to warm temperate: 27–35° S), Centropogon australis (primarily subtropical to warm temperate: 24–37° S) and Acanthaluteres spilomelanurus (warm to cool temperate: below 32° S). Replicate individuals of each species were acclimated over a 7 day period in one of three temperature treatments (control: 22° C, low: 18° C and high: 26° C) and their somatic growth was assessed within treatments over 10 days. Growth of all three species was affected by water temperature, with the highest growth of both northern species (P. sexlineatus and C. australis) at 22 and 26° C, whereas growth of the southern ranging species (A. spilomelanurus) was reduced at temperatures higher than 18° C, suggesting that predicted increase in estuarine water temperatures through climate change may change relative performance of seagrass fish assemblages.
Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.12255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jfb.12255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170101722Authors: Sasaki, M.; Michell, A.; Booth, D.J.; Nagelkerken, I.;Global warming facilitates species range-expansions, leading to novel biological interactions between local and range-expanding species. Little is still known of how such novel interactions modify the performance of interacting species or how these interactions might be altered under climate change. Here, we used an aquarium experiment to investigate the novel ecological interactions between a poleward range-extending coral reef damselfish ("tropical-vagrant") and a local temperate species ("temperate-local") collected from a climate warming hotspot in SE Australia. We measured the effect of novel interactions (isolated vs. paired fish species) on energy expenditure (activity levels, oxidative stress, and antioxidant responses), energy gain (feeding rates), and growth rates of both fish species under present-day (23 °C) and future ocean temperatures (26 °C). Short-term growth rates were faster in both species under novel interactions (paired species), regardless of elevated temperature. Compared to isolated species, activity level, feeding rate and oxidative stress level were also higher in the paired temperate fish but not in the paired tropical fish. The tropical fish showed an increased feeding rate and long-term growth under elevated temperature, irrespective of novel interactions. We conclude that novel ecological interactions under climate change can be an important driver of physiological traits in sympatric tropical and temperate fishes and can mediate critical physiological performance of fishes under ocean warming.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Funded by:ARC | Ocean acidification and r..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran...ARC| Ocean acidification and rising sea temperature effect on fish ,ARC| Discovery Projects - Grant ID: DP150104263 ,ARC| Discovery Projects - Grant ID: DP170101722Coni, Ericka O C; Nagelkerken, Ivan; Ferreira, Camilo M; Connell, Sean D; Booth, David J;Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-07-26.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170101722Authors: Ericka O. C. Coni; David J. Booth; Camilo M. Ferreira; Ivan Nagelkerken;Abstract Coral‐reef fishes are shifting their distributions poleward in response to human‐mediated ocean warming; yet, the consequences for recipient temperate fish communities remain poorly understood. Behavioural modification is often the first response of species to environmental change, but we know little about how this might shape the ongoing colonisation by tropical fishes of temperate‐latitude ecosystems under climate change. In a global hotspot of ocean warming (southeast Australia), we quantified 14 behavioural traits of invading tropical and local co‐occurring temperate fishes at 10 sites across a 730 km latitudinal gradient as a proxy of species behavioural niche space in different climate ranges (subtropical, warm‐temperate and cold‐temperate). We found that tropical fishes (four species) modified their behavioural niches as well as increased their overall behavioural niche breadth in their novel temperate ranges where temperate species predominate, but maintained a moderate to high niche segregation with native temperate species across latitudinal range position. Temperate species (three co‐occurring species) also modified their niches, but in contrast to tropical species, experienced an increased niche breadth towards subtropical ranges. Alterations to feeding and shoaling behaviours contributed most to niche modifications in tropical and temperate species, while behaviours related to alertness and escape from potential threats contributed least. We here show that at warmer and colder range edges where community structures are being reshuffled due to climate change, behavioural generalism and niche modification are potential mechanisms adopted by tropical range extenders and native temperate fishes to adjust to novel species interactions under climate change.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu