
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Behavioural generalism could facilitate coexistence of tropical and temperate fishes under climate change

Abstract Coral‐reef fishes are shifting their distributions poleward in response to human‐mediated ocean warming; yet, the consequences for recipient temperate fish communities remain poorly understood. Behavioural modification is often the first response of species to environmental change, but we know little about how this might shape the ongoing colonisation by tropical fishes of temperate‐latitude ecosystems under climate change. In a global hotspot of ocean warming (southeast Australia), we quantified 14 behavioural traits of invading tropical and local co‐occurring temperate fishes at 10 sites across a 730 km latitudinal gradient as a proxy of species behavioural niche space in different climate ranges (subtropical, warm‐temperate and cold‐temperate). We found that tropical fishes (four species) modified their behavioural niches as well as increased their overall behavioural niche breadth in their novel temperate ranges where temperate species predominate, but maintained a moderate to high niche segregation with native temperate species across latitudinal range position. Temperate species (three co‐occurring species) also modified their niches, but in contrast to tropical species, experienced an increased niche breadth towards subtropical ranges. Alterations to feeding and shoaling behaviours contributed most to niche modifications in tropical and temperate species, while behaviours related to alertness and escape from potential threats contributed least. We here show that at warmer and colder range edges where community structures are being reshuffled due to climate change, behavioural generalism and niche modification are potential mechanisms adopted by tropical range extenders and native temperate fishes to adjust to novel species interactions under climate change.
- University of Adelaide Australia
- University of Technology Sydney Australia
- University of Adelaide Australia
- University of Technology Sydney Australia
Tropical Climate, Coral Reefs, range extensions, Climate Change, Fishes, ocean warming, Phenotype, niche segregation, temperate ecosystems, Animals, tropicalisation, tropical vagrant fishes, Ecosystem, behavioural niche breadth
Tropical Climate, Coral Reefs, range extensions, Climate Change, Fishes, ocean warming, Phenotype, niche segregation, temperate ecosystems, Animals, tropicalisation, tropical vagrant fishes, Ecosystem, behavioural niche breadth
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
