- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 BelgiumPublisher:Elsevier BV Ward De Paepe; Diederik Coppitters; Diederik Coppitters; Francesco Contino; Francesco Contino;Abstract To solve the problem of large time shifts between renewable energy supply and user demand, power-to-H2 is a well-known option. In this framework, previous studies have shown that the direct coupling of a photovoltaic array with an electrolyzer stack is a viable solution. However, these studies assumed perfectly known operating parameters to optimize the setup. Moreover, they focused on maximizing hydrogen and minimizing the energy loss, while the cost was not addressed. We have performed an optimization including uncertainty quantification (i.e. surrogate-assisted robust design optimization) for several locations with the Levelized Cost Of Hydrogen (LCOH) as objective. This paper provides the least sensitive design to uncertainties and shows which parameters are most affecting the variability of the LCOH for that design. The robust design optimization illustrates that the mean and standard deviation of the LCOH are non-conflicting objectives for the robust designs of all considered locations. The optimal robust design is established at the considered location with the highest average yearly solar irradiance, achieving a mean LCOH of 6.6 €/kg and a standard deviation of 0.72 €/kg. The discount rate uncertainty is the main contributor to the LCOH variation. Therefore, installing a PV-electrolyzer system in locations with a high average yearly solar irradiation is favorable for both the LCOH mean and standard deviation, while de-risking the technology has the highest impact on further reducing the LCOH variation. Future works will focus on including accurate probability distributions and adding batteries to the system.
Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2019Data sources: Vrije Universiteit Brussel Research PortalDépôt Institutionel de l’Université catholique de Louvain et de l’Université Saint-LouisArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2019Data sources: Vrije Universiteit Brussel Research PortalDépôt Institutionel de l’Université catholique de Louvain et de l’Université Saint-LouisArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 BelgiumPublisher:SAE International Authors: Lhuillier, Charles; Brequigny, Pierre; Contino, Francesco; Mounaïm-Rousselle, Christine;While the optimization of the internal combustion engine (ICE) remains a very important topic, alternative fuels are also expected to play a significant role in the reduction of CO2 emissions. High energy densities and handling ease are their main advantages amongst other energy carriers. Ammonia (NH3) additionally contains no carbon and has a worldwide existing transport and storage infrastructure. It could be produced directly from renewable electricity, water and air, and is thus currently considered as a smart energy carrier and combustion fuel. However, ammonia presents a low combustion intensity and the risk of elevated nitrogen-based emissions, thus rendering in-depth investigation of its suitability as an ICE fuel necessary.In the present study, a recent single-cylinder spark-ignition engine is fueled with gaseous ammonia/hydrogen/air mixtures at various hydrogen fractions, equivalence ratios and intake pressures. A small hydrogen fraction is used as combustion promoter and might be generated in-situ through NH3 catalytic or heat-assisted dissociation. The in-cylinder pressure and exhaust concentrations of selected species are recorded and analyzed. Results show that ammonia is a very suitable fuel for SI engine operation, since high power outputs could be achieved with indicated efficiencies higher than 37% by taking advantage of the promoting effects of supercharging and hydrogen enrichment around 10% by volume. High NOx and unburned NH3 exhaust concentrations were also observed under fuel-lean and fuel-rich conditions, respectively. While hydrogen enrichment promotes the NH3 combustion efficiency and helps reducing its exhaust concentration, it has a promoting effect on NOx formation, assumedly due to higher flame temperatures. Therefore, it is recommended to take advantage of the simultaneous presence of exhaust heat, NOx and NH3 in a dedicated after-treatment device to ensure the economic and environmental viability of future ammonia-fueled engine systems.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2019Vrije Universiteit Brussel Research PortalConference object . 2019Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2019Vrije Universiteit Brussel Research PortalConference object . 2019Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 BelgiumPublisher:Elsevier BV Z. Bruyr; J. Hameete; L. Choisez; F. Halter; F. Contino;handle: 2078.1/300292
This study explores the combustion of single iron particles, emphasizing the phenomenon of an unmixed surface during the liquid-phase combustion regime. While previous single-particle combustion experiments have advanced the understanding of the combustion process, the exact configuration of the liquid phases remains unclear. In addition, insights derived from ex situ microstructure analysis are limited by uncertainties introduced during particle cooling, which can alter the internal structure. To address this, we utilized an electrodynamic levitator and laser ignition to study suspended iron particles heated to a high initial temperature (between 1820 K and 2092 K). The combined use of a high-speed color camera and a luminance acquisition system enables high-resolution in situ imaging and luminance tracking. A distinct “unmixed surface period” is observed, during which two immiscible liquid phases – pure iron (L1) and iron oxide (L2) – coexist at the particle surface. Initially, the surface is fully covered with L2, followed by the appearance of moving L1 spots, likely driven by a Marangoni flow. This period concludes with the formation of a core–shell structure. These findings provide new insights into the dynamics of liquid-phase oxidation in iron combustion, as the unmixed surface configuration might influence both the rate-limiting mechanism and evaporation dynamics. Such observations contribute to improving numerical models, particularly in capturing the initial stages of the liquid-state combustion. Moreover, particle size analysis indicates that smaller particles deviate further from a fully external-diffusion-limited regime, underscoring the role of alternative rate-limiting mechanisms in their combustion behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 BelgiumPublisher:American Chemical Society (ACS) Authors: Contino, Francesco; Foucher, Fabrice; Mounaïm-Rousselle, Christine; Jeanmart, Hervé;The homogeneous charge compression ignition (HCCI) engine can be run on a large range of fuels if the appropriate operating conditions are chosen. This can improve the efficiency of biofuel production from low-value biomass by suppressing the need for the transformation process to obtain products that are compatible with spark ignition or compression ignition engines. A simple biochemical process that includes acidogenic fermentation and produces a mixture of various esters can take advantage of this flexibility. However, the behavior of this mixture under HCCI conditions needs to be characterized. It can also have a great impact on the HCCI operating limits and its successful implementation. Using an HCCI engine, we investigated how the operating limits are modified by the combustion characteristics of three of these esters: ethyl acetate, ethyl propionate, and ethyl butanoate. This paper reports the experimental results for each of these products and for ethanol taken as the reference fuel. It also analyzes their effects on the ignition timing and the combustion rate. For the selected operating conditions, stable HCCI operations on a large range of equivalence ratios were obtained for every fuel The difference in specific heats of the air/fuel mixtures and in the ignition kinetics both contributed to the ignition characteristics. Ethanol ignites earlier, which leads to a low upper limit, whereas the late ignition of ethyl acetate shifts the operating zone upward due to smoothed high loads but unstable low loads. As a consequence, these low-grade products can be used in an HCCI engine. Fuel blends of these products may take advantage of the different combustion characteristics to extend the HCCI zone. Still, the range of this extension is difficult to estimate and the research of the optimal fuel blend composition will, therefore, remain the focus of future work.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef101602q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef101602q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2014 BelgiumPublisher:Elsevier BV Montero Carrero, Marina; De Paepe, Ward; Parente, Alessandro; Blondeau, Julien; Laget, Hannes; Contino, Francesco;AbstractMicro Gas Turbines (mGT) appear as a promising technology for small-scale (up to 500kW) Combined Heat and Power (CHP) production. However, their rather low electric efficiency limits their profitability when the heat demand decreases. Hot liquid water injection in mGTs –particularly within the micro Humid Air Turbine (mHAT) cycle– allows increasing electric efficiency by making use of the flue gas residual heat in moments of low heat demand.Based on simulations performed on a Turbec T100 mGT –modified to operate as an mHAT– installed at the VUB, this paper presents an analysis of the economic profitability of such facility running on real network conditions. The study is performed assuming typical electricity and heat demand profiles for a domestic consumer. 25 natural gas and electricity price combinations have been taken into consideration, along with two types of domestic customers –with higher and lower heat demands. Results show that the profitability of the mHAT with respect to the equivalent CHP facility increases with higher electricity and lower natural gas prices. In particular, given a certain number of CHP running hours and a natural gas price, there is a threshold for the electricity price above which the net income of the mHAT unit is always higher than that of the corresponding CHP unit. In addition, water-cleaning costs for the mHAT case appear to constitute only 1 to 2.5% of total running costs.
Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2014Data sources: Vrije Universiteit Brussel Research PortalVrije Universiteit Brussel Research PortalArticle . 2015Data sources: Vrije Universiteit Brussel Research PortalVrije Universiteit Brussel Research PortalArticle . 2014Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2014Data sources: Vrije Universiteit Brussel Research PortalVrije Universiteit Brussel Research PortalArticle . 2015Data sources: Vrije Universiteit Brussel Research PortalVrije Universiteit Brussel Research PortalArticle . 2014Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 BelgiumPublisher:Elsevier BV Pierre Brequigny; Fabian Mauss; Krishna Prasad Shrestha; Amanda Alves Barbosa; Christine Mounaïm-Rousselle; Lars Seidel; Charles Lhuillier; Charles Lhuillier; Francesco Contino;Laminar flame speeds of ammonia with oxygen-enriched air (oxygen content varying from 21-30 vol.%) and ammonia-hydrogen-air mixtures (fuel hydrogen content varying from 0-30 vol.%) at elevated pressure (1-10 bar) and temperature (298-473 K) were determined experimentally using a constant volume combustion chamber. Moreover, ammonia laminar flame speeds with helium as an inert were measured for the first time. Using these experimental data along with published ones, we have developed a newly compiled kinetic model for the prediction of the oxidation of ammonia and ammonia-hydrogen blends in freely propagating and burner stabilized premixed flames, as well as in shock tubes, rapid compression machines and a jet-stirred reactor. The reaction mechanism also considers the formation of nitrogen oxides, as well as the reduction of nitrogen oxides depending on the conditions of the surrounding gas phase. The experimental results from the present work and the literature are interpreted with the help of the kinetic model derived here. The experiments show that increasing the initial temperature, fuel hydrogen content, or oxidizer oxygen content causes the laminar flame speed to increase, while it decreases when increasing the initial pressure. The proposed kinetic model predicts the same trends than experiments and a good agreement is found with measurements for a wide range of conditions. The model suggests that under rich conditions the N2H2 formation path is favored compared to stoichiometric condition. The most important reactions under rich conditions are: NH2+NH=N2H2+H, NH2+NH2=N2H2+H2, N2H2+H=NNH+H2 and N2H2+M=NNH+H+M. These reactions were also found to be among the most sensitive reactions for predicting the laminar flame speed for all the cases investigated.
Hyper Article en Lig... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalProceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 391 citations 391 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalProceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 BelgiumPublisher:MDPI AG Xavier Rixhon; Gauthier Limpens; Diederik Coppitters; Hervé Jeanmart; Francesco Contino;Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials, one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels, such as hydrogen, methane, and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion, economical storage solution for high capacity, and ability to couple sectors (i.e., electricity to transport, to heat, or to industry). However, the level of contribution of electric-energy carriers is unknown. To assess their role in the future, we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g., price of natural gas, efficiency of heat pump) to represent as closely as possible the future energy system. However, these parameters can be highly uncertain, especially for long-term planning. Consequently, this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that, compared to the deterministic cost-optimum situation, the system cost, accounting for uncertainties, becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties, their higher price, and uncertainty.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/4027/pdfData sources: Multidisciplinary Digital Publishing InstituteVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14134027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/4027/pdfData sources: Multidisciplinary Digital Publishing InstituteVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14134027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Belgium, FrancePublisher:American Chemical Society (ACS) Axel Coussement; Q. Van Haute; Steven Tipler; Steven Tipler; Guillaume Vanhove; C. S. Mergulhão; Francesco Contino; Francesco Contino;Waste to energy is a key driver to achieve a clean and virtuous renewable cycle. Among others, the processes to convert organic matter in wastes from automotive residues, mainly composed of rubbers...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.9b00649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.9b00649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2015 Italy, BelgiumPublisher:American Society of Mechanical Engineers Carrero, M. M.; FERRARI, MARIO LUIGI; De Paepe, W.; Parente, A.; Bram, S.; Contino, F.;Micro Gas Turbines (mGTs) have arisen as a promising technology for Combined Heat and Power (CHP) thanks to their overall energy efficiencies of 80% (30% electrical + 50% thermal) and the advantages they offer with respect to internal combustion engines. The main limitation of mGTs lies in their rather low electrical efficiency: whenever there is no heat demand, the exhaust gases are directly blown off and the efficiency of the unit is reduced to 30%. Operation in such conditions is generally not economical and can eventually lead to shutdown of the machine. To address this issue, the mGT cycle can be modified so that in moments of low heat demand the heat in the exhaust gases is used to warm up water which is then re-injected in the cycle, thereby increasing the electrical efficiency. The introduction of a saturation tower allows for water injection in mGTs: the resulting cycle is known as a micro Humid Air Turbine (mHAT). The static performance of the mGT Turbec T100 working as an mHAT has been characterised through previous numerical and experimental work at Vrije Universiteit Brussel (VUB). However, the dynamic behaviour of such a complex system is key to protect the components during transient operation. Thus, we have modelled the Turbec T100 mHAT with the TRANSEO tool in order to simulate how the cycle performs when the demanded power output fluctuates. Steady-state results showed that when operating with water injection, the electrical efficiency of the unit is incremented by 3.4% absolute. The transient analysis revealed that power increase ramps higher than 4.2 kW/s or power decrease ramps lower than 3.5 kW/s (absolute value) lead to oscillations which enter the unstable operation region of the compressor. Since power ramps in the controller of the Turbec T100 mGT are limited to 2kW/s, it should be safe to vary the power output of the T100 mHAT when operating with water injection.
Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2015Data sources: Vrije Universiteit Brussel Research PortalArchivio istituzionale della ricerca - Università di GenovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2015-43277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2015Data sources: Vrije Universiteit Brussel Research PortalArchivio istituzionale della ricerca - Università di GenovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2015-43277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 BelgiumPublisher:Elsevier BV Authors: Panagiotis Tsirikoglou; Panagiotis Tsirikoglou; Francesco Contino; Francesco Contino; +6 AuthorsPanagiotis Tsirikoglou; Panagiotis Tsirikoglou; Francesco Contino; Francesco Contino; Ghader Ghorbaniasl; Ghader Ghorbaniasl; Ward De Paepe; Simon Michel Abraham; Simon Michel Abraham; Alessandro Parente;Abstract Micro Gas Turbines (mGTs) offer great potential for use in co-, tri or polygeneration applications. In these applications, where the heat from the exhaust gases is used in an efficient way, the mGTs achieve very high efficiencies. To be able to determine the number of units, the nominal parameters of the units and the specific operating strategy of the mGT, it is key to know precisely the performance of these units. Generally in co-, tri- or polygeneration applications with mGTs, this performance is considered to be known and fixed, and is therefore directly used to determine the operational strategy of the network, possibly linked with an economic analysis. In real world operating conditions, the parameters characterizing the operation of the mGT are measured with uncertainties. Depending on the model sensitivity to input parameters, these uncertainties may have a tremendous effect on the performance of the mGT. These uncertainties should be taken into consideration by the designers in an early stage of the design process to achieve a so-called robust design. In this paper, we present the operational optimization of a typical mGT, the Turbec T100 mGT, using a deterministic approach. In this approach, the parameter uncertainties are not taken into account, however, it is an important first step towards a full robust design, since it will set the reference. By varying Turbine Outlet Temperature (TOT) and compressor rotational speed, a Pareto front for maximal electrical power output and electrical efficiency is found. The two objectives are conflicting, making that the maximal electrical efficiency cannot be reached at maximal electrical power output. The results of this optimization will be used in our future study on the design optimization under uncertainties.
Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2017Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2017Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 BelgiumPublisher:Elsevier BV Ward De Paepe; Diederik Coppitters; Diederik Coppitters; Francesco Contino; Francesco Contino;Abstract To solve the problem of large time shifts between renewable energy supply and user demand, power-to-H2 is a well-known option. In this framework, previous studies have shown that the direct coupling of a photovoltaic array with an electrolyzer stack is a viable solution. However, these studies assumed perfectly known operating parameters to optimize the setup. Moreover, they focused on maximizing hydrogen and minimizing the energy loss, while the cost was not addressed. We have performed an optimization including uncertainty quantification (i.e. surrogate-assisted robust design optimization) for several locations with the Levelized Cost Of Hydrogen (LCOH) as objective. This paper provides the least sensitive design to uncertainties and shows which parameters are most affecting the variability of the LCOH for that design. The robust design optimization illustrates that the mean and standard deviation of the LCOH are non-conflicting objectives for the robust designs of all considered locations. The optimal robust design is established at the considered location with the highest average yearly solar irradiance, achieving a mean LCOH of 6.6 €/kg and a standard deviation of 0.72 €/kg. The discount rate uncertainty is the main contributor to the LCOH variation. Therefore, installing a PV-electrolyzer system in locations with a high average yearly solar irradiation is favorable for both the LCOH mean and standard deviation, while de-risking the technology has the highest impact on further reducing the LCOH variation. Future works will focus on including accurate probability distributions and adding batteries to the system.
Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2019Data sources: Vrije Universiteit Brussel Research PortalDépôt Institutionel de l’Université catholique de Louvain et de l’Université Saint-LouisArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2019Data sources: Vrije Universiteit Brussel Research PortalDépôt Institutionel de l’Université catholique de Louvain et de l’Université Saint-LouisArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 BelgiumPublisher:SAE International Authors: Lhuillier, Charles; Brequigny, Pierre; Contino, Francesco; Mounaïm-Rousselle, Christine;While the optimization of the internal combustion engine (ICE) remains a very important topic, alternative fuels are also expected to play a significant role in the reduction of CO2 emissions. High energy densities and handling ease are their main advantages amongst other energy carriers. Ammonia (NH3) additionally contains no carbon and has a worldwide existing transport and storage infrastructure. It could be produced directly from renewable electricity, water and air, and is thus currently considered as a smart energy carrier and combustion fuel. However, ammonia presents a low combustion intensity and the risk of elevated nitrogen-based emissions, thus rendering in-depth investigation of its suitability as an ICE fuel necessary.In the present study, a recent single-cylinder spark-ignition engine is fueled with gaseous ammonia/hydrogen/air mixtures at various hydrogen fractions, equivalence ratios and intake pressures. A small hydrogen fraction is used as combustion promoter and might be generated in-situ through NH3 catalytic or heat-assisted dissociation. The in-cylinder pressure and exhaust concentrations of selected species are recorded and analyzed. Results show that ammonia is a very suitable fuel for SI engine operation, since high power outputs could be achieved with indicated efficiencies higher than 37% by taking advantage of the promoting effects of supercharging and hydrogen enrichment around 10% by volume. High NOx and unburned NH3 exhaust concentrations were also observed under fuel-lean and fuel-rich conditions, respectively. While hydrogen enrichment promotes the NH3 combustion efficiency and helps reducing its exhaust concentration, it has a promoting effect on NOx formation, assumedly due to higher flame temperatures. Therefore, it is recommended to take advantage of the simultaneous presence of exhaust heat, NOx and NH3 in a dedicated after-treatment device to ensure the economic and environmental viability of future ammonia-fueled engine systems.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2019Vrije Universiteit Brussel Research PortalConference object . 2019Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2019Vrije Universiteit Brussel Research PortalConference object . 2019Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 BelgiumPublisher:Elsevier BV Z. Bruyr; J. Hameete; L. Choisez; F. Halter; F. Contino;handle: 2078.1/300292
This study explores the combustion of single iron particles, emphasizing the phenomenon of an unmixed surface during the liquid-phase combustion regime. While previous single-particle combustion experiments have advanced the understanding of the combustion process, the exact configuration of the liquid phases remains unclear. In addition, insights derived from ex situ microstructure analysis are limited by uncertainties introduced during particle cooling, which can alter the internal structure. To address this, we utilized an electrodynamic levitator and laser ignition to study suspended iron particles heated to a high initial temperature (between 1820 K and 2092 K). The combined use of a high-speed color camera and a luminance acquisition system enables high-resolution in situ imaging and luminance tracking. A distinct “unmixed surface period” is observed, during which two immiscible liquid phases – pure iron (L1) and iron oxide (L2) – coexist at the particle surface. Initially, the surface is fully covered with L2, followed by the appearance of moving L1 spots, likely driven by a Marangoni flow. This period concludes with the formation of a core–shell structure. These findings provide new insights into the dynamics of liquid-phase oxidation in iron combustion, as the unmixed surface configuration might influence both the rate-limiting mechanism and evaporation dynamics. Such observations contribute to improving numerical models, particularly in capturing the initial stages of the liquid-state combustion. Moreover, particle size analysis indicates that smaller particles deviate further from a fully external-diffusion-limited regime, underscoring the role of alternative rate-limiting mechanisms in their combustion behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2025.135261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 BelgiumPublisher:American Chemical Society (ACS) Authors: Contino, Francesco; Foucher, Fabrice; Mounaïm-Rousselle, Christine; Jeanmart, Hervé;The homogeneous charge compression ignition (HCCI) engine can be run on a large range of fuels if the appropriate operating conditions are chosen. This can improve the efficiency of biofuel production from low-value biomass by suppressing the need for the transformation process to obtain products that are compatible with spark ignition or compression ignition engines. A simple biochemical process that includes acidogenic fermentation and produces a mixture of various esters can take advantage of this flexibility. However, the behavior of this mixture under HCCI conditions needs to be characterized. It can also have a great impact on the HCCI operating limits and its successful implementation. Using an HCCI engine, we investigated how the operating limits are modified by the combustion characteristics of three of these esters: ethyl acetate, ethyl propionate, and ethyl butanoate. This paper reports the experimental results for each of these products and for ethanol taken as the reference fuel. It also analyzes their effects on the ignition timing and the combustion rate. For the selected operating conditions, stable HCCI operations on a large range of equivalence ratios were obtained for every fuel The difference in specific heats of the air/fuel mixtures and in the ignition kinetics both contributed to the ignition characteristics. Ethanol ignites earlier, which leads to a low upper limit, whereas the late ignition of ethyl acetate shifts the operating zone upward due to smoothed high loads but unstable low loads. As a consequence, these low-grade products can be used in an HCCI engine. Fuel blends of these products may take advantage of the different combustion characteristics to extend the HCCI zone. Still, the range of this extension is difficult to estimate and the research of the optimal fuel blend composition will, therefore, remain the focus of future work.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef101602q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef101602q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2014 BelgiumPublisher:Elsevier BV Montero Carrero, Marina; De Paepe, Ward; Parente, Alessandro; Blondeau, Julien; Laget, Hannes; Contino, Francesco;AbstractMicro Gas Turbines (mGT) appear as a promising technology for small-scale (up to 500kW) Combined Heat and Power (CHP) production. However, their rather low electric efficiency limits their profitability when the heat demand decreases. Hot liquid water injection in mGTs –particularly within the micro Humid Air Turbine (mHAT) cycle– allows increasing electric efficiency by making use of the flue gas residual heat in moments of low heat demand.Based on simulations performed on a Turbec T100 mGT –modified to operate as an mHAT– installed at the VUB, this paper presents an analysis of the economic profitability of such facility running on real network conditions. The study is performed assuming typical electricity and heat demand profiles for a domestic consumer. 25 natural gas and electricity price combinations have been taken into consideration, along with two types of domestic customers –with higher and lower heat demands. Results show that the profitability of the mHAT with respect to the equivalent CHP facility increases with higher electricity and lower natural gas prices. In particular, given a certain number of CHP running hours and a natural gas price, there is a threshold for the electricity price above which the net income of the mHAT unit is always higher than that of the corresponding CHP unit. In addition, water-cleaning costs for the mHAT case appear to constitute only 1 to 2.5% of total running costs.
Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2014Data sources: Vrije Universiteit Brussel Research PortalVrije Universiteit Brussel Research PortalArticle . 2015Data sources: Vrije Universiteit Brussel Research PortalVrije Universiteit Brussel Research PortalArticle . 2014Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2014Data sources: Vrije Universiteit Brussel Research PortalVrije Universiteit Brussel Research PortalArticle . 2015Data sources: Vrije Universiteit Brussel Research PortalVrije Universiteit Brussel Research PortalArticle . 2014Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 BelgiumPublisher:Elsevier BV Pierre Brequigny; Fabian Mauss; Krishna Prasad Shrestha; Amanda Alves Barbosa; Christine Mounaïm-Rousselle; Lars Seidel; Charles Lhuillier; Charles Lhuillier; Francesco Contino;Laminar flame speeds of ammonia with oxygen-enriched air (oxygen content varying from 21-30 vol.%) and ammonia-hydrogen-air mixtures (fuel hydrogen content varying from 0-30 vol.%) at elevated pressure (1-10 bar) and temperature (298-473 K) were determined experimentally using a constant volume combustion chamber. Moreover, ammonia laminar flame speeds with helium as an inert were measured for the first time. Using these experimental data along with published ones, we have developed a newly compiled kinetic model for the prediction of the oxidation of ammonia and ammonia-hydrogen blends in freely propagating and burner stabilized premixed flames, as well as in shock tubes, rapid compression machines and a jet-stirred reactor. The reaction mechanism also considers the formation of nitrogen oxides, as well as the reduction of nitrogen oxides depending on the conditions of the surrounding gas phase. The experimental results from the present work and the literature are interpreted with the help of the kinetic model derived here. The experiments show that increasing the initial temperature, fuel hydrogen content, or oxidizer oxygen content causes the laminar flame speed to increase, while it decreases when increasing the initial pressure. The proposed kinetic model predicts the same trends than experiments and a good agreement is found with measurements for a wide range of conditions. The model suggests that under rich conditions the N2H2 formation path is favored compared to stoichiometric condition. The most important reactions under rich conditions are: NH2+NH=N2H2+H, NH2+NH2=N2H2+H2, N2H2+H=NNH+H2 and N2H2+M=NNH+H+M. These reactions were also found to be among the most sensitive reactions for predicting the laminar flame speed for all the cases investigated.
Hyper Article en Lig... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalProceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 391 citations 391 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalProceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 BelgiumPublisher:MDPI AG Xavier Rixhon; Gauthier Limpens; Diederik Coppitters; Hervé Jeanmart; Francesco Contino;Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials, one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels, such as hydrogen, methane, and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion, economical storage solution for high capacity, and ability to couple sectors (i.e., electricity to transport, to heat, or to industry). However, the level of contribution of electric-energy carriers is unknown. To assess their role in the future, we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g., price of natural gas, efficiency of heat pump) to represent as closely as possible the future energy system. However, these parameters can be highly uncertain, especially for long-term planning. Consequently, this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that, compared to the deterministic cost-optimum situation, the system cost, accounting for uncertainties, becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties, their higher price, and uncertainty.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/4027/pdfData sources: Multidisciplinary Digital Publishing InstituteVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14134027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/4027/pdfData sources: Multidisciplinary Digital Publishing InstituteVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14134027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Belgium, FrancePublisher:American Chemical Society (ACS) Axel Coussement; Q. Van Haute; Steven Tipler; Steven Tipler; Guillaume Vanhove; C. S. Mergulhão; Francesco Contino; Francesco Contino;Waste to energy is a key driver to achieve a clean and virtuous renewable cycle. Among others, the processes to convert organic matter in wastes from automotive residues, mainly composed of rubbers...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.9b00649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.9b00649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2015 Italy, BelgiumPublisher:American Society of Mechanical Engineers Carrero, M. M.; FERRARI, MARIO LUIGI; De Paepe, W.; Parente, A.; Bram, S.; Contino, F.;Micro Gas Turbines (mGTs) have arisen as a promising technology for Combined Heat and Power (CHP) thanks to their overall energy efficiencies of 80% (30% electrical + 50% thermal) and the advantages they offer with respect to internal combustion engines. The main limitation of mGTs lies in their rather low electrical efficiency: whenever there is no heat demand, the exhaust gases are directly blown off and the efficiency of the unit is reduced to 30%. Operation in such conditions is generally not economical and can eventually lead to shutdown of the machine. To address this issue, the mGT cycle can be modified so that in moments of low heat demand the heat in the exhaust gases is used to warm up water which is then re-injected in the cycle, thereby increasing the electrical efficiency. The introduction of a saturation tower allows for water injection in mGTs: the resulting cycle is known as a micro Humid Air Turbine (mHAT). The static performance of the mGT Turbec T100 working as an mHAT has been characterised through previous numerical and experimental work at Vrije Universiteit Brussel (VUB). However, the dynamic behaviour of such a complex system is key to protect the components during transient operation. Thus, we have modelled the Turbec T100 mHAT with the TRANSEO tool in order to simulate how the cycle performs when the demanded power output fluctuates. Steady-state results showed that when operating with water injection, the electrical efficiency of the unit is incremented by 3.4% absolute. The transient analysis revealed that power increase ramps higher than 4.2 kW/s or power decrease ramps lower than 3.5 kW/s (absolute value) lead to oscillations which enter the unstable operation region of the compressor. Since power ramps in the controller of the Turbec T100 mGT are limited to 2kW/s, it should be safe to vary the power output of the T100 mHAT when operating with water injection.
Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2015Data sources: Vrije Universiteit Brussel Research PortalArchivio istituzionale della ricerca - Università di GenovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2015-43277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2015Data sources: Vrije Universiteit Brussel Research PortalArchivio istituzionale della ricerca - Università di GenovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2015-43277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 BelgiumPublisher:Elsevier BV Authors: Panagiotis Tsirikoglou; Panagiotis Tsirikoglou; Francesco Contino; Francesco Contino; +6 AuthorsPanagiotis Tsirikoglou; Panagiotis Tsirikoglou; Francesco Contino; Francesco Contino; Ghader Ghorbaniasl; Ghader Ghorbaniasl; Ward De Paepe; Simon Michel Abraham; Simon Michel Abraham; Alessandro Parente;Abstract Micro Gas Turbines (mGTs) offer great potential for use in co-, tri or polygeneration applications. In these applications, where the heat from the exhaust gases is used in an efficient way, the mGTs achieve very high efficiencies. To be able to determine the number of units, the nominal parameters of the units and the specific operating strategy of the mGT, it is key to know precisely the performance of these units. Generally in co-, tri- or polygeneration applications with mGTs, this performance is considered to be known and fixed, and is therefore directly used to determine the operational strategy of the network, possibly linked with an economic analysis. In real world operating conditions, the parameters characterizing the operation of the mGT are measured with uncertainties. Depending on the model sensitivity to input parameters, these uncertainties may have a tremendous effect on the performance of the mGT. These uncertainties should be taken into consideration by the designers in an early stage of the design process to achieve a so-called robust design. In this paper, we present the operational optimization of a typical mGT, the Turbec T100 mGT, using a deterministic approach. In this approach, the parameter uncertainties are not taken into account, however, it is an important first step towards a full robust design, since it will set the reference. By varying Turbine Outlet Temperature (TOT) and compressor rotational speed, a Pareto front for maximal electrical power output and electrical efficiency is found. The two objectives are conflicting, making that the maximal electrical efficiency cannot be reached at maximal electrical power output. The results of this optimization will be used in our future study on the design optimization under uncertainties.
Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2017Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2017Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu