- home
- Advanced Search
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2019Embargo end date: 03 Feb 2020Publisher:NERC Environmental Information Data Centre Cunliffe, A.M.; McIntire, C.; Boschetti, F.; Sauer, K.J.; Litvak, L.; Brazier, R.E.; Anderson, K.;The dataset consists of observations of aboveground biomass, canopy area, maximum height, stem diameter and sapwood area of Juniperus monosperma (Oneseed Juniper) trees, measured at a site in central New Mexico in 2018 and 2019. In total, 200 stems for sapwood area were measured, and 18 trees for full biomass determinations. Observations were collected by a variety of measurement techniques, including destructive harvesting and UAV proximal remote sensing. For further information see the detailed description of methods in the supporting documentation and the associated article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/871443a9-6634-4eba-abb5-286a1ab58e9b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/871443a9-6634-4eba-abb5-286a1ab58e9b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, United Kingdom, France, Germany, United Kingdom, United KingdomPublisher:The Royal Society Funded by:EC | ERA, EC | TiPESEC| ERA ,EC| TiPESTimothy M. Lenton; Joshua E. Buxton; David I. Armstrong McKay; Jesse F. Abrams; Chris A. Boulton; Kirsten Lees; Thomas W. R. Powell; Niklas Boers; Andrew M. Cunliffe; Vasilis Dakos;We are in a climate and ecological emergency, where climate change and direct anthropogenic interference with the biosphere are risking abrupt and/or irreversible changes that threaten our life-support systems. Efforts are underway to increase the resilience of some ecosystems that are under threat, yet collective awareness and action are modest at best. Here, we highlight the potential for a biosphere resilience sensing system to make it easier to see where things are going wrong, and to see whether deliberate efforts to make things better are working. We focus on global resilience sensing of the terrestrial biosphere at high spatial and temporal resolution through satellite remote sensing, utilizing the generic mathematical behaviour of complex systems—loss of resilience corresponds to slower recovery from perturbations, gain of resilience equates to faster recovery. We consider what subset of biosphere resilience remote sensing can monitor, critically reviewing existing studies. Then we present illustrative, global results for vegetation resilience and trends in resilience over the last 20 years, from both satellite data and model simulations. We close by discussing how resilience sensing nested across global, biome-ecoregion, and local ecosystem scales could aid management and governance at these different scales, and identify priorities for further work. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/129110Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03835579Data sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2021.0383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/129110Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03835579Data sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2021.0383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:Wiley Deon Arey; Joseph S. Boyle; Haydn J.D. Thomas; Paden Lennie; Samuel McLeod; Edward McLeod; Cameron D. Eckert; Richard R. Gordon; Jakob J. Assmann; Sandra Angers-Blondin; Andrew M. Cunliffe; Meagan M. Grabowski; Gergana N. Daskalova; Ricky Joe; Isla H. Myers-Smith; Anne D. Bjorkman; Anne D. Bjorkman;AbstractThe Arctic tundra is warming rapidly, yet the exact mechanisms linking warming and observed ecological changes are often unclear. Understanding mechanisms of change requires long‐term monitoring of multiple ecological parameters. Here, we present the findings of a collaboration between government scientists, local people, park rangers, and academic researchers that provide insights into changes in plant composition, phenology, and growth over 18 yr on Qikiqtaruk‐Herschel Island, Canada. Qikiqtaruk is an important focal research site located at the latitudinal tall shrub line in the western Arctic. This unique ecological monitoring program indicates the following findings: (1) nine days per decade advance of spring phenology, (2) a doubling of average plant canopy height per decade, but no directional change in shrub radial growth, and (3) a doubling of shrub and graminoid abundance and a decrease by one‐half in bare ground cover per decade. Ecological changes are concurrent with satellite‐observed greening and, when integrated, suggest that indirect warming from increased growing season length and active layer depths, rather than warming summer air temperatures alone, could be important drivers of the observed tundra vegetation change. Our results highlight the vital role that long‐term and multi‐parameter ecological monitoring plays in both the detection and attribution of global change.
Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Wiley Elise C. Gallois; Isla H. Myers‐Smith; Gergana N. Daskalova; Jeffrey T. Kerby; Haydn J. D. Thomas; Andrew M. Cunliffe;doi: 10.1111/oik.10261
Tundra soils are one of the world's largest organic carbon stores, yet this carbon is vulnerable to accelerated decomposition as climate warming progresses. The landscape‐scale controls of litter decomposition are poorly understood in tundra ecosystems, which hinders our understanding of the global carbon cycle. We examined the extent to which the thermal sum of surface air temperature, soil moisture and permafrost thaw depth influenced litter mass loss and decomposition rates (k), and at which spatial thresholds an environmental variable becomes a reliable predictor of decomposition, using the Tea Bag Index protocol across a heterogeneous tundra landscape on Qikiqtaruk–Herschel Island, Yukon, Canada. We found greater green tea litter mass loss and faster decomposition rates (k) in wetter areas within the landscape, and to a lesser extent in areas with deeper permafrost active layer thickness and higher surface thermal sums. We also found higher decomposition rates (k) on north‐facing relative to south‐facing aspects at microsites that were wetter rather than warmer. Spatially heterogeneous belowground conditions (soil moisture and active layer depth) explained variation in decomposition metrics at local scales (< 50 m2) better than thermal sum. Surprisingly, there was no strong control of elevation or slope on litter decomposition. Our results reveal that there is considerable scale dependency in the environmental controls of tundra litter decomposition, with moisture playing a greater role than the thermal sum at < 50 m2scales. Our findings highlight the importance and complexity of microenvironmental controls on litter decomposition in estimates of carbon cycling in a rapidly warming tundra biome.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/oik.10261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/oik.10261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United KingdomPublisher:Elsevier BV Authors: Cunliffe, A; Brazier, RE; Anderson, K;handle: 10871/21978
AbstractCovering 40% of the terrestrial surface, dryland ecosystems characteristically have distinct vegetation structures that are strongly linked to their function. Existing survey approaches cannot provide sufficiently fine-resolution data at landscape-level extents to quantify this structure appropriately. Using a small, unpiloted aerial system (UAS) to acquire aerial photographs and processing theses using structure-from-motion (SfM) photogrammetry, three-dimensional models were produced describing the vegetation structure of semi-arid ecosystems at seven sites across a grass–to shrub transition zone. This approach yielded ultra-fine (<1cm2) spatial resolution canopy height models over landscape-levels (10ha), which resolved individual grass tussocks just a few cm3 in volume. Canopy height cumulative distributions for each site illustrated ecologically-significant differences in ecosystem structure. Strong coefficients of determination (r2 from 0.64 to 0.95) supported prediction of above-ground biomass from canopy volume. Canopy volumes, above-ground biomass and carbon stocks were shown to be sensitive to spatial changes in the structure of vegetation communities. The grain of data produced and sensitivity of this approach is invaluable to capture even subtle differences in the structure (and therefore function) of these heterogeneous ecosystems subject to rapid environmental change. The results demonstrate how products from inexpensive UAS coupled with SfM photogrammetry can produce ultra-fine grain biophysical data products, which have the potential to revolutionise scientific understanding of ecology in ecosystems with either spatially or temporally discontinuous canopy cover.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10871/21978Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2016.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 300 citations 300 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10871/21978Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2016.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2019Embargo end date: 03 Feb 2020Publisher:NERC Environmental Information Data Centre Cunliffe, A.M.; McIntire, C.; Boschetti, F.; Sauer, K.J.; Litvak, L.; Brazier, R.E.; Anderson, K.;The dataset consists of observations of aboveground biomass, canopy area, maximum height, stem diameter and sapwood area of Juniperus monosperma (Oneseed Juniper) trees, measured at a site in central New Mexico in 2018 and 2019. In total, 200 stems for sapwood area were measured, and 18 trees for full biomass determinations. Observations were collected by a variety of measurement techniques, including destructive harvesting and UAV proximal remote sensing. For further information see the detailed description of methods in the supporting documentation and the associated article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/871443a9-6634-4eba-abb5-286a1ab58e9b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/871443a9-6634-4eba-abb5-286a1ab58e9b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, United Kingdom, France, Germany, United Kingdom, United KingdomPublisher:The Royal Society Funded by:EC | ERA, EC | TiPESEC| ERA ,EC| TiPESTimothy M. Lenton; Joshua E. Buxton; David I. Armstrong McKay; Jesse F. Abrams; Chris A. Boulton; Kirsten Lees; Thomas W. R. Powell; Niklas Boers; Andrew M. Cunliffe; Vasilis Dakos;We are in a climate and ecological emergency, where climate change and direct anthropogenic interference with the biosphere are risking abrupt and/or irreversible changes that threaten our life-support systems. Efforts are underway to increase the resilience of some ecosystems that are under threat, yet collective awareness and action are modest at best. Here, we highlight the potential for a biosphere resilience sensing system to make it easier to see where things are going wrong, and to see whether deliberate efforts to make things better are working. We focus on global resilience sensing of the terrestrial biosphere at high spatial and temporal resolution through satellite remote sensing, utilizing the generic mathematical behaviour of complex systems—loss of resilience corresponds to slower recovery from perturbations, gain of resilience equates to faster recovery. We consider what subset of biosphere resilience remote sensing can monitor, critically reviewing existing studies. Then we present illustrative, global results for vegetation resilience and trends in resilience over the last 20 years, from both satellite data and model simulations. We close by discussing how resilience sensing nested across global, biome-ecoregion, and local ecosystem scales could aid management and governance at these different scales, and identify priorities for further work. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/129110Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03835579Data sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2021.0383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/129110Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03835579Data sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2021.0383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:Wiley Deon Arey; Joseph S. Boyle; Haydn J.D. Thomas; Paden Lennie; Samuel McLeod; Edward McLeod; Cameron D. Eckert; Richard R. Gordon; Jakob J. Assmann; Sandra Angers-Blondin; Andrew M. Cunliffe; Meagan M. Grabowski; Gergana N. Daskalova; Ricky Joe; Isla H. Myers-Smith; Anne D. Bjorkman; Anne D. Bjorkman;AbstractThe Arctic tundra is warming rapidly, yet the exact mechanisms linking warming and observed ecological changes are often unclear. Understanding mechanisms of change requires long‐term monitoring of multiple ecological parameters. Here, we present the findings of a collaboration between government scientists, local people, park rangers, and academic researchers that provide insights into changes in plant composition, phenology, and growth over 18 yr on Qikiqtaruk‐Herschel Island, Canada. Qikiqtaruk is an important focal research site located at the latitudinal tall shrub line in the western Arctic. This unique ecological monitoring program indicates the following findings: (1) nine days per decade advance of spring phenology, (2) a doubling of average plant canopy height per decade, but no directional change in shrub radial growth, and (3) a doubling of shrub and graminoid abundance and a decrease by one‐half in bare ground cover per decade. Ecological changes are concurrent with satellite‐observed greening and, when integrated, suggest that indirect warming from increased growing season length and active layer depths, rather than warming summer air temperatures alone, could be important drivers of the observed tundra vegetation change. Our results highlight the vital role that long‐term and multi‐parameter ecological monitoring plays in both the detection and attribution of global change.
Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Monograph... arrow_drop_down Ecological MonographsArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecm.1351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Wiley Elise C. Gallois; Isla H. Myers‐Smith; Gergana N. Daskalova; Jeffrey T. Kerby; Haydn J. D. Thomas; Andrew M. Cunliffe;doi: 10.1111/oik.10261
Tundra soils are one of the world's largest organic carbon stores, yet this carbon is vulnerable to accelerated decomposition as climate warming progresses. The landscape‐scale controls of litter decomposition are poorly understood in tundra ecosystems, which hinders our understanding of the global carbon cycle. We examined the extent to which the thermal sum of surface air temperature, soil moisture and permafrost thaw depth influenced litter mass loss and decomposition rates (k), and at which spatial thresholds an environmental variable becomes a reliable predictor of decomposition, using the Tea Bag Index protocol across a heterogeneous tundra landscape on Qikiqtaruk–Herschel Island, Yukon, Canada. We found greater green tea litter mass loss and faster decomposition rates (k) in wetter areas within the landscape, and to a lesser extent in areas with deeper permafrost active layer thickness and higher surface thermal sums. We also found higher decomposition rates (k) on north‐facing relative to south‐facing aspects at microsites that were wetter rather than warmer. Spatially heterogeneous belowground conditions (soil moisture and active layer depth) explained variation in decomposition metrics at local scales (< 50 m2) better than thermal sum. Surprisingly, there was no strong control of elevation or slope on litter decomposition. Our results reveal that there is considerable scale dependency in the environmental controls of tundra litter decomposition, with moisture playing a greater role than the thermal sum at < 50 m2scales. Our findings highlight the importance and complexity of microenvironmental controls on litter decomposition in estimates of carbon cycling in a rapidly warming tundra biome.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/oik.10261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/oik.10261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United KingdomPublisher:Elsevier BV Authors: Cunliffe, A; Brazier, RE; Anderson, K;handle: 10871/21978
AbstractCovering 40% of the terrestrial surface, dryland ecosystems characteristically have distinct vegetation structures that are strongly linked to their function. Existing survey approaches cannot provide sufficiently fine-resolution data at landscape-level extents to quantify this structure appropriately. Using a small, unpiloted aerial system (UAS) to acquire aerial photographs and processing theses using structure-from-motion (SfM) photogrammetry, three-dimensional models were produced describing the vegetation structure of semi-arid ecosystems at seven sites across a grass–to shrub transition zone. This approach yielded ultra-fine (<1cm2) spatial resolution canopy height models over landscape-levels (10ha), which resolved individual grass tussocks just a few cm3 in volume. Canopy height cumulative distributions for each site illustrated ecologically-significant differences in ecosystem structure. Strong coefficients of determination (r2 from 0.64 to 0.95) supported prediction of above-ground biomass from canopy volume. Canopy volumes, above-ground biomass and carbon stocks were shown to be sensitive to spatial changes in the structure of vegetation communities. The grain of data produced and sensitivity of this approach is invaluable to capture even subtle differences in the structure (and therefore function) of these heterogeneous ecosystems subject to rapid environmental change. The results demonstrate how products from inexpensive UAS coupled with SfM photogrammetry can produce ultra-fine grain biophysical data products, which have the potential to revolutionise scientific understanding of ecology in ecosystems with either spatially or temporally discontinuous canopy cover.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10871/21978Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2016.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 300 citations 300 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10871/21978Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2016.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu