Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Research Exeterarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-IRD
Article . 2022
Data sources: HAL-IRD
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Philosophical Transactions of the Royal Society B Biological Sciences
Article . 2022 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A resilience sensing system for the biosphere

Authors: Timothy M. Lenton; Joshua E. Buxton; David I. Armstrong McKay; Jesse F. Abrams; Chris A. Boulton; Kirsten Lees; Thomas W. R. Powell; +3 Authors

A resilience sensing system for the biosphere

Abstract

We are in a climate and ecological emergency, where climate change and direct anthropogenic interference with the biosphere are risking abrupt and/or irreversible changes that threaten our life-support systems. Efforts are underway to increase the resilience of some ecosystems that are under threat, yet collective awareness and action are modest at best. Here, we highlight the potential for a biosphere resilience sensing system to make it easier to see where things are going wrong, and to see whether deliberate efforts to make things better are working. We focus on global resilience sensing of the terrestrial biosphere at high spatial and temporal resolution through satellite remote sensing, utilizing the generic mathematical behaviour of complex systems—loss of resilience corresponds to slower recovery from perturbations, gain of resilience equates to faster recovery. We consider what subset of biosphere resilience remote sensing can monitor, critically reviewing existing studies. Then we present illustrative, global results for vegetation resilience and trends in resilience over the last 20 years, from both satellite data and model simulations. We close by discussing how resilience sensing nested across global, biome-ecoregion, and local ecosystem scales could aid management and governance at these different scales, and identify priorities for further work. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.

Countries
France, United Kingdom, France, Germany, United Kingdom, United Kingdom
Keywords

[SDE] Environmental Sciences, biosphere, 550, Climate Change, biosphere resilience, 333, remote sensing, [SDV.EE]Life Sciences [q-bio]/Ecology, [SDV.EE.ECO] Life Sciences [q-bio]/Ecology, environment/Ecosystems, climate and ecological emergency, resilience, Ecosystem, Resilience, 500, [SDE.BE] Environmental Sciences/Biodiversity and Ecology, [SDV.EE] Life Sciences [q-bio]/Ecology, environment, climate change, recovery rate, [SDE]Environmental Sciences, [SDV.EE.ECO]Life Sciences [q-bio]/Ecology, [SDE.BE]Environmental Sciences/Biodiversity and Ecology, environment/Ecosystems, ecosystems, environment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green