- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Wiley Mark G. Tjoelker; Catriona A. Macdonald; Brajesh K. Singh; Peter B. Reich; Peter B. Reich; David S. Ellsworth; Ian C. Anderson; Kristine Y. Crous; Teresa E. Gimeno; Teresa E. Gimeno; John E. Drake;doi: 10.1111/gcb.13109
pmid: 26426394
AbstractProjections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free‐Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short‐term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light‐saturated photosynthesis of canopy leaves (Asat) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2. The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:Springer Science and Business Media LLC Reich, Peter B; Knops, Jean; Tilman, David; Craine, Joseph; Ellsworth, David; Tjoelker, Mark; Lee, Tali; Wedin, David; Naeem, Shahid; Bahauddin, Dan; Hendrey, George; Jose, Shibu; Wrage, Keith; Goth, Jenny; Bengston, Wendy;Human actions are causing declines in plant biodiversity, increases in atmospheric CO2 concentrations and increases in nitrogen deposition; however, the interactive effects of these factors on ecosystem processes are unknown. Reduced biodiversity has raised numerous concerns, including the possibility that ecosystem functioning may be affected negatively, which might be particularly important in the face of other global changes. Here we present results of a grassland field experiment in Minnesota, USA, that tests the hypothesis that plant diversity and composition influence the enhancement of biomass and carbon acquisition in ecosystems subjected to elevated atmospheric CO2 concentrations and nitrogen deposition. The study experimentally controlled plant diversity (1, 4, 9 or 16 species), soil nitrogen (unamended versus deposition of 4 g of nitrogen per m2 per yr) and atmospheric CO2 concentrations using free-air CO2 enrichment (ambient, 368 micromol mol-1, versus elevated, 560 micromol mol-1). We found that the enhanced biomass accumulation in response to elevated levels of CO2 or nitrogen, or their combination, is less in species-poor than in species-rich assemblages.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/35071062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 527 citations 527 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/35071062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United Kingdom, France, Italy, Spain, Switzerland, Italy, Netherlands, NetherlandsPublisher:Wiley Funded by:EC | QUINCY, EC | IMBALANCE-PEC| QUINCY ,EC| IMBALANCE-PMingkai Jiang; Anthony P. Walker; Christian Körner; César Terrer; Kelly A. Heilman; Kristine Grace Cabugao; Benton N. Taylor; Elliott Campbell; Susan E. Trumbore; Margaret S. Torn; Jürgen Knauer; Josep Peñuelas; Julia Pongratz; Julia Pongratz; David S. Ellsworth; William K. Smith; Sean M. McMahon; Manon Sabot; Natasha MacBean; David J. P. Moore; Graham D. Farquhar; Roel J. W. Brienen; Phillip J. van Mantgem; A. Shafer Powell; Sönke Zaehle; Victor O. Leshyk; Martin G. De Kauwe; Terhi Riutta; Heather Graven; Steve L. Voelker; Fortunat Joos; Kathleen K. Treseder; Philippe Ciais; Simone Fatichi; Simone Fatichi; Benjamin N. Sulman; Lianhong Gu; Bruce A. Hungate; Martin Heimann; Juergen Schleucher; Matthew E. Craig; Pieter A. Zuidema; Stephen Sitch; Joshua B. Fisher; Colleen M. Iversen; Belinda E. Medlyn; Ralph F. Keeling; Mary E. Whelan; Ana Bastos; Yadvinder Malhi; David Frank; Katerina Georgiou; Maxime Cailleret; Maxime Cailleret; Tim R. McVicar; Tim R. McVicar; Sebastian Leuzinger; Soumaya Belmecheri; Yao Liu; Josep G. Canadell; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Trevor F. Keenan; Trevor F. Keenan; Richard J. Norby; Anna T. Trugman; Giovanna Battipaglia; Vanessa Haverd;doi: 10.1111/nph.16866 , 10.48350/153006
pmid: 32789857
SummaryAtmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 404 citations 404 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:Wiley Reich, Peter B.; Tilman, David; Craine, Joseph M.; Ellsworth, David S.; Tjoelker, Mark G.; Knops, Jean; Wedin, David; Naeem, Shahid; Bahauddin, Dan; Goth, Jenny; Bengston, Wendy; Lee, Tali D.;Summary To evaluate whether functional groups have a similar response to global change, the responses to CO2 concentration and N availability of grassland species from several functional groups are reported here. Sixteen perennial grassland species from four trait‐based functional groups (C3 grasses, C4 grasses, non‐leguminous forbs, legumes) were grown in field monocultures under ambient or elevated (560 µmol mol−1) CO2 using free‐air CO2 enrichment (FACE), in low N (unamended field soil) or high N (field soil +4 g N m−2 years−1) treatments. There were no CO2 × N interactions. Functional groups responded differently to CO2 and N in terms of biomass, tissue N concentration and soil solution N. Under elevated CO2, forbs, legumes and C3 grasses increased total biomass by 31%, 18%, and 9%, respectively, whereas biomass was reduced in C4‐grass monocultures. Two of the four legume species increased biomass and total plant N pools under elevated CO2, probably due to stimulated N‐fixation. Only one species markedly shifted the proportional distribution of below‐ vs aboveground biomass in response to CO2 or N. Although functional groups varied in responses to CO2 and N, there was also substantial variation in responses among species within groups. These results suggest that current trait‐based functional classifications might be useful, but not sufficient, for understanding plant and ecosystem responses to elevated CO2 and N availability.
New Phytologist arrow_drop_down New PhytologistArticle . 2001 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1046/j.1469-8137.2001.00114.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 242 citations 242 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2001 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1046/j.1469-8137.2001.00114.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Wiley Kristine Y. Crous; Ensheng Weng; Anthony P. Walker; Ram Oren; Ram Oren; Soenke Zaehle; David S. Ellsworth; Thomas Hickler; Peter E. Thornton; I. Colin Prentice; Jeffrey M. Warren; David Wårlind; Paul J. Hanson; Michael Dietze; William J. Parton; Atul K. Jain; Belinda E. Medlyn; Shusen Wang; Martin G. De Kauwe; Hyun-Seok Kim; Yiqi Luo; Ying-Ping Wang; Richard J. Norby; Benjamin Smith;AbstractPredicted responses of transpiration to elevated atmospheric CO2 concentration (eCO2) are highly variable amongst process‐based models. To better understand and constrain this variability amongst models, we conducted an intercomparison of 11 ecosystem models applied to data from two forest free‐air CO2 enrichment (FACE) experiments at Duke University and Oak Ridge National Laboratory. We analysed model structures to identify the key underlying assumptions causing differences in model predictions of transpiration and canopy water use efficiency. We then compared the models against data to identify model assumptions that are incorrect or are large sources of uncertainty. We found that model‐to‐model and model‐to‐observations differences resulted from four key sets of assumptions, namely (i) the nature of the stomatal response to elevated CO2 (coupling between photosynthesis and stomata was supported by the data); (ii) the roles of the leaf and atmospheric boundary layer (models which assumed multiple conductance terms in series predicted more decoupled fluxes than observed at the broadleaf site); (iii) the treatment of canopy interception (large intermodel variability, 2–15%); and (iv) the impact of soil moisture stress (process uncertainty in how models limit carbon and water fluxes during moisture stress). Overall, model predictions of the CO2 effect on WUE were reasonable (intermodel μ = approximately 28% ± 10%) compared to the observations (μ = approximately 30% ± 13%) at the well‐coupled coniferous site (Duke), but poor (intermodel μ = approximately 24% ± 6%; observations μ = approximately 38% ± 7%) at the broadleaf site (Oak Ridge). The study yields a framework for analysing and interpreting model predictions of transpiration responses to eCO2, and highlights key improvements to these types of models.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu334 citations 334 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Netherlands, Netherlands, France, Netherlands, Switzerland, United Kingdom, Netherlands, Spain, MoroccoPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | Discovery Early Career Re..., ANR | CLAND, NSF | BII-Implementation: The c... +2 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE210101654 ,ANR| CLAND ,NSF| BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world ,ARC| Australian Laureate Fellowships - Grant ID: FL190100003 ,EC| QUINCYJiang, Mingkai; Medlyn, Belinda; Wårlind, David; Knauer, Jürgen; Fleischer, Katrin; Goll, Daniel; Olin, Stefan; Yang, Xiaojuan; Yu, Lin; Zaehle, Sönke; Zhang, Haicheng; Lv, He; Crous, Kristine; Carrillo, Yolima; Macdonald, Catriona; Anderson, Ian; Boer, Matthias; Farrell, Mark; Gherlenda, Andrew; Castañeda-Gómez, Laura; Hasegawa, Shun; Jarosch, Klaus; Milham, Paul; Ochoa-Hueso, Raúl; Pathare, Varsha; Pihlblad, Johanna; Nevado, Juan Piñeiro; Powell, Jeff; Power, Sally; Reich, Peter; Riegler, Markus; Ellsworth, David; Smith, Benjamin;pmid: 38959317
pmc: PMC11221523
The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO 2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO 2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO 2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO 2 -driven carbon sink is overestimated by models.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Science AdvancesArticle . 2024Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2024License: CC BY NC NDUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adl5822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Science AdvancesArticle . 2024Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2024License: CC BY NC NDUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adl5822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Funded by:ARC | Eucalypt growth in past a..., ARC | Insect herbivore and plan...ARC| Eucalypt growth in past and future environments - a novel approach to understanding the impacts of atmospheric CO2 and climate ,ARC| Insect herbivore and plant responses in eucalypt forests under climate change at physiological, species and community scalesDavid S. Ellsworth; Markus Riegler; T. J. Murray; T. J. Murray; David T. Tissue;pmid: 23053228
Both atmospheric [CO2] and average surface temperatures are predicted to increase with potentially different, additive or opposing, effects on leaf quality and insect herbivore activity. Few studies have directly measured the interactive effects of concurrent changes in [CO2] and temperature on insect herbivores. None have done so over the entire developmental period of a tree-feeding insect, and none have compared responses to low pre-industrial [CO2] and present day [CO2] to estimate responses to future increases. Eucalypt herbivores may be particularly sensitive to climate-driven shifts in plant chemistry, as eucalypt foliage is naturally low in [N]. In this study, we assessed the development of the eucalypt herbivore Doratifera quadriguttata exposed concurrently to variable [CO2] (290, 400, 650 μmol mol(-1)) and temperature (ambient, ambient +4 °C) on glasshouse-grown Eucalyptus tereticornis. Overall, insects performed best on foliage grown at pre-industrial [CO2], indicating that modern insect herbivores have already experienced nutritional shifts since industrialisation. Rising [CO2] increased specific leaf mass and leaf carbohydrate concentration, subsequently reducing leaf [N]. Lower leaf [N] induced compensatory feeding and impeded insect performance, particularly by prolonging larval development. Importantly, elevated temperature dampened the negative effects of rising [CO2] on larval performance. Therefore, rising [CO2] over the past 200 years may have reduced forage quality for eucalypt insects, but concurrent temperature increases may have partially compensated for this, and may continue to do so in the future. These results highlight the importance of assessing plant-insect interactions within the context of multiple climate-change factors because of the interactive and potentially opposing effects of different factors within and between trophic levels.
Oecologia arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-012-2467-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-012-2467-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 United StatesPublisher:Proceedings of the National Academy of Sciences Reich, Peter B; Tilman, David; Naeem, Shahid; Ellsworth, David S; Knops, Johannes; Craine, Joseph; Wedin, David; Trost, Jared;The characteristics of plant assemblages influence ecosystem processes such as biomass accumulation and modulate terrestrial responses to global change factors such as elevated atmospheric CO 2 and N deposition, but covariation between species richness ( S ) and functional group richness ( F ) among assemblages obscures the specific role of each in these ecosystem responses. In a 4-year study of grassland species grown under ambient and elevated CO 2 and N in Minnesota, we experimentally varied plant S and F to assess their independent effects. We show here that at all CO 2 and N levels, biomass increased with S , even with F constant at 1 or 4 groups. Likewise, with S at 4, biomass increased as F varied continuously from 1 to 4. The S and F effects were not dependent upon specific species or functional groups or combinations and resulted from complementarity. Biomass increases in response to CO 2 and N, moreover, varied with time but were generally larger with increasing S (with F constant) and with increasing F (with S constant). These results indicate that S and F independently influence biomass accumulation and its response to elevated CO 2 and N.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2004 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0306602101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 238 citations 238 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2004 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0306602101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, Spain, United States, SwedenPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Australian Laureate Fello..., UKRI | Quinquennial (half-decada...ARC| Discovery Early Career Researcher Award - Grant ID: DE210101654 ,ARC| Australian Laureate Fellowships - Grant ID: FL190100003 ,UKRI| Quinquennial (half-decadal) carbon and nutrient dynamics in temperate forests: Implications for carbon sequestration in a high carbon dioxide worldAnna Gardner; Mingkai Jiang; David S. Ellsworth; A. Robert MacKenzie; Jeremy Pritchard; Martin Karl‐Friedrich Bader; Craig V. M. Barton; Carl Bernacchi; Carlo Calfapietra; Kristine Y. Crous; Mirindi Eric Dusenge; Teresa E. Gimeno; Marianne Hall; Shubhangi Lamba; Sebastian Leuzinger; Johan Uddling; Jeffrey Warren; Göran Wallin; Belinda E. Medlyn;Summary Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (Anet) and minimise transpirational water loss to achieve optimal intrinsic water‐use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO2 (eCO2), and whether it can capture differences in responsiveness among woody plant functional types (PFTs). We conducted a meta‐analysis of tree studies of the effect of eCO2 on iWUE and its components Anet and stomatal conductance (gs). We compared three PFTs, using the unified stomatal optimisation (USO) model to account for confounding effects of leaf–air vapour pressure difference (D). We expected smaller gs, but greater Anet, responses to eCO2 in gymnosperms compared with angiosperm PFTs. We found that iWUE increased in proportion to increasing eCO2 in all PFTs, and that increases in Anet had stronger effects than reductions in gs. The USO model correctly captured stomatal behaviour with eCO2 across most datasets. The chief difference among PFTs was a lower stomatal slope parameter (g1) for the gymnosperm, compared with angiosperm, species. Land surface models can use the USO model to describe stomatal behaviour under changing atmospheric CO2 conditions.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2023License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/482421/1/Optimal%20stomatal%20theory%20predicts.pdfData sources: IRIS CnrUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2023License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/482421/1/Optimal%20stomatal%20theory%20predicts.pdfData sources: IRIS CnrUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United StatesPublisher:Springer Science and Business Media LLC Reich, Peter B; Hobbie, Sarah E; Lee, Tali; Ellsworth, David S; West, Jason B; Tilman, David; Knops, Johannes M H; Naeem, Shahid; Trost, Jared;Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world. Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation, soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.
Nature arrow_drop_down University of Michigan: Deep BlueArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature04486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 785 citations 785 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down University of Michigan: Deep BlueArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature04486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Wiley Mark G. Tjoelker; Catriona A. Macdonald; Brajesh K. Singh; Peter B. Reich; Peter B. Reich; David S. Ellsworth; Ian C. Anderson; Kristine Y. Crous; Teresa E. Gimeno; Teresa E. Gimeno; John E. Drake;doi: 10.1111/gcb.13109
pmid: 26426394
AbstractProjections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free‐Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short‐term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light‐saturated photosynthesis of canopy leaves (Asat) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2. The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:Springer Science and Business Media LLC Reich, Peter B; Knops, Jean; Tilman, David; Craine, Joseph; Ellsworth, David; Tjoelker, Mark; Lee, Tali; Wedin, David; Naeem, Shahid; Bahauddin, Dan; Hendrey, George; Jose, Shibu; Wrage, Keith; Goth, Jenny; Bengston, Wendy;Human actions are causing declines in plant biodiversity, increases in atmospheric CO2 concentrations and increases in nitrogen deposition; however, the interactive effects of these factors on ecosystem processes are unknown. Reduced biodiversity has raised numerous concerns, including the possibility that ecosystem functioning may be affected negatively, which might be particularly important in the face of other global changes. Here we present results of a grassland field experiment in Minnesota, USA, that tests the hypothesis that plant diversity and composition influence the enhancement of biomass and carbon acquisition in ecosystems subjected to elevated atmospheric CO2 concentrations and nitrogen deposition. The study experimentally controlled plant diversity (1, 4, 9 or 16 species), soil nitrogen (unamended versus deposition of 4 g of nitrogen per m2 per yr) and atmospheric CO2 concentrations using free-air CO2 enrichment (ambient, 368 micromol mol-1, versus elevated, 560 micromol mol-1). We found that the enhanced biomass accumulation in response to elevated levels of CO2 or nitrogen, or their combination, is less in species-poor than in species-rich assemblages.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/35071062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 527 citations 527 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/35071062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United Kingdom, France, Italy, Spain, Switzerland, Italy, Netherlands, NetherlandsPublisher:Wiley Funded by:EC | QUINCY, EC | IMBALANCE-PEC| QUINCY ,EC| IMBALANCE-PMingkai Jiang; Anthony P. Walker; Christian Körner; César Terrer; Kelly A. Heilman; Kristine Grace Cabugao; Benton N. Taylor; Elliott Campbell; Susan E. Trumbore; Margaret S. Torn; Jürgen Knauer; Josep Peñuelas; Julia Pongratz; Julia Pongratz; David S. Ellsworth; William K. Smith; Sean M. McMahon; Manon Sabot; Natasha MacBean; David J. P. Moore; Graham D. Farquhar; Roel J. W. Brienen; Phillip J. van Mantgem; A. Shafer Powell; Sönke Zaehle; Victor O. Leshyk; Martin G. De Kauwe; Terhi Riutta; Heather Graven; Steve L. Voelker; Fortunat Joos; Kathleen K. Treseder; Philippe Ciais; Simone Fatichi; Simone Fatichi; Benjamin N. Sulman; Lianhong Gu; Bruce A. Hungate; Martin Heimann; Juergen Schleucher; Matthew E. Craig; Pieter A. Zuidema; Stephen Sitch; Joshua B. Fisher; Colleen M. Iversen; Belinda E. Medlyn; Ralph F. Keeling; Mary E. Whelan; Ana Bastos; Yadvinder Malhi; David Frank; Katerina Georgiou; Maxime Cailleret; Maxime Cailleret; Tim R. McVicar; Tim R. McVicar; Sebastian Leuzinger; Soumaya Belmecheri; Yao Liu; Josep G. Canadell; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Trevor F. Keenan; Trevor F. Keenan; Richard J. Norby; Anna T. Trugman; Giovanna Battipaglia; Vanessa Haverd;doi: 10.1111/nph.16866 , 10.48350/153006
pmid: 32789857
SummaryAtmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 404 citations 404 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:Wiley Reich, Peter B.; Tilman, David; Craine, Joseph M.; Ellsworth, David S.; Tjoelker, Mark G.; Knops, Jean; Wedin, David; Naeem, Shahid; Bahauddin, Dan; Goth, Jenny; Bengston, Wendy; Lee, Tali D.;Summary To evaluate whether functional groups have a similar response to global change, the responses to CO2 concentration and N availability of grassland species from several functional groups are reported here. Sixteen perennial grassland species from four trait‐based functional groups (C3 grasses, C4 grasses, non‐leguminous forbs, legumes) were grown in field monocultures under ambient or elevated (560 µmol mol−1) CO2 using free‐air CO2 enrichment (FACE), in low N (unamended field soil) or high N (field soil +4 g N m−2 years−1) treatments. There were no CO2 × N interactions. Functional groups responded differently to CO2 and N in terms of biomass, tissue N concentration and soil solution N. Under elevated CO2, forbs, legumes and C3 grasses increased total biomass by 31%, 18%, and 9%, respectively, whereas biomass was reduced in C4‐grass monocultures. Two of the four legume species increased biomass and total plant N pools under elevated CO2, probably due to stimulated N‐fixation. Only one species markedly shifted the proportional distribution of below‐ vs aboveground biomass in response to CO2 or N. Although functional groups varied in responses to CO2 and N, there was also substantial variation in responses among species within groups. These results suggest that current trait‐based functional classifications might be useful, but not sufficient, for understanding plant and ecosystem responses to elevated CO2 and N availability.
New Phytologist arrow_drop_down New PhytologistArticle . 2001 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1046/j.1469-8137.2001.00114.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 242 citations 242 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2001 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1046/j.1469-8137.2001.00114.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Wiley Kristine Y. Crous; Ensheng Weng; Anthony P. Walker; Ram Oren; Ram Oren; Soenke Zaehle; David S. Ellsworth; Thomas Hickler; Peter E. Thornton; I. Colin Prentice; Jeffrey M. Warren; David Wårlind; Paul J. Hanson; Michael Dietze; William J. Parton; Atul K. Jain; Belinda E. Medlyn; Shusen Wang; Martin G. De Kauwe; Hyun-Seok Kim; Yiqi Luo; Ying-Ping Wang; Richard J. Norby; Benjamin Smith;AbstractPredicted responses of transpiration to elevated atmospheric CO2 concentration (eCO2) are highly variable amongst process‐based models. To better understand and constrain this variability amongst models, we conducted an intercomparison of 11 ecosystem models applied to data from two forest free‐air CO2 enrichment (FACE) experiments at Duke University and Oak Ridge National Laboratory. We analysed model structures to identify the key underlying assumptions causing differences in model predictions of transpiration and canopy water use efficiency. We then compared the models against data to identify model assumptions that are incorrect or are large sources of uncertainty. We found that model‐to‐model and model‐to‐observations differences resulted from four key sets of assumptions, namely (i) the nature of the stomatal response to elevated CO2 (coupling between photosynthesis and stomata was supported by the data); (ii) the roles of the leaf and atmospheric boundary layer (models which assumed multiple conductance terms in series predicted more decoupled fluxes than observed at the broadleaf site); (iii) the treatment of canopy interception (large intermodel variability, 2–15%); and (iv) the impact of soil moisture stress (process uncertainty in how models limit carbon and water fluxes during moisture stress). Overall, model predictions of the CO2 effect on WUE were reasonable (intermodel μ = approximately 28% ± 10%) compared to the observations (μ = approximately 30% ± 13%) at the well‐coupled coniferous site (Duke), but poor (intermodel μ = approximately 24% ± 6%; observations μ = approximately 38% ± 7%) at the broadleaf site (Oak Ridge). The study yields a framework for analysing and interpreting model predictions of transpiration responses to eCO2, and highlights key improvements to these types of models.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu334 citations 334 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Netherlands, Netherlands, France, Netherlands, Switzerland, United Kingdom, Netherlands, Spain, MoroccoPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | Discovery Early Career Re..., ANR | CLAND, NSF | BII-Implementation: The c... +2 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE210101654 ,ANR| CLAND ,NSF| BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world ,ARC| Australian Laureate Fellowships - Grant ID: FL190100003 ,EC| QUINCYJiang, Mingkai; Medlyn, Belinda; Wårlind, David; Knauer, Jürgen; Fleischer, Katrin; Goll, Daniel; Olin, Stefan; Yang, Xiaojuan; Yu, Lin; Zaehle, Sönke; Zhang, Haicheng; Lv, He; Crous, Kristine; Carrillo, Yolima; Macdonald, Catriona; Anderson, Ian; Boer, Matthias; Farrell, Mark; Gherlenda, Andrew; Castañeda-Gómez, Laura; Hasegawa, Shun; Jarosch, Klaus; Milham, Paul; Ochoa-Hueso, Raúl; Pathare, Varsha; Pihlblad, Johanna; Nevado, Juan Piñeiro; Powell, Jeff; Power, Sally; Reich, Peter; Riegler, Markus; Ellsworth, David; Smith, Benjamin;pmid: 38959317
pmc: PMC11221523
The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO 2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO 2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO 2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO 2 -driven carbon sink is overestimated by models.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Science AdvancesArticle . 2024Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2024License: CC BY NC NDUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adl5822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2024 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Science AdvancesArticle . 2024Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2024License: CC BY NC NDUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adl5822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Funded by:ARC | Eucalypt growth in past a..., ARC | Insect herbivore and plan...ARC| Eucalypt growth in past and future environments - a novel approach to understanding the impacts of atmospheric CO2 and climate ,ARC| Insect herbivore and plant responses in eucalypt forests under climate change at physiological, species and community scalesDavid S. Ellsworth; Markus Riegler; T. J. Murray; T. J. Murray; David T. Tissue;pmid: 23053228
Both atmospheric [CO2] and average surface temperatures are predicted to increase with potentially different, additive or opposing, effects on leaf quality and insect herbivore activity. Few studies have directly measured the interactive effects of concurrent changes in [CO2] and temperature on insect herbivores. None have done so over the entire developmental period of a tree-feeding insect, and none have compared responses to low pre-industrial [CO2] and present day [CO2] to estimate responses to future increases. Eucalypt herbivores may be particularly sensitive to climate-driven shifts in plant chemistry, as eucalypt foliage is naturally low in [N]. In this study, we assessed the development of the eucalypt herbivore Doratifera quadriguttata exposed concurrently to variable [CO2] (290, 400, 650 μmol mol(-1)) and temperature (ambient, ambient +4 °C) on glasshouse-grown Eucalyptus tereticornis. Overall, insects performed best on foliage grown at pre-industrial [CO2], indicating that modern insect herbivores have already experienced nutritional shifts since industrialisation. Rising [CO2] increased specific leaf mass and leaf carbohydrate concentration, subsequently reducing leaf [N]. Lower leaf [N] induced compensatory feeding and impeded insect performance, particularly by prolonging larval development. Importantly, elevated temperature dampened the negative effects of rising [CO2] on larval performance. Therefore, rising [CO2] over the past 200 years may have reduced forage quality for eucalypt insects, but concurrent temperature increases may have partially compensated for this, and may continue to do so in the future. These results highlight the importance of assessing plant-insect interactions within the context of multiple climate-change factors because of the interactive and potentially opposing effects of different factors within and between trophic levels.
Oecologia arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-012-2467-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-012-2467-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 United StatesPublisher:Proceedings of the National Academy of Sciences Reich, Peter B; Tilman, David; Naeem, Shahid; Ellsworth, David S; Knops, Johannes; Craine, Joseph; Wedin, David; Trost, Jared;The characteristics of plant assemblages influence ecosystem processes such as biomass accumulation and modulate terrestrial responses to global change factors such as elevated atmospheric CO 2 and N deposition, but covariation between species richness ( S ) and functional group richness ( F ) among assemblages obscures the specific role of each in these ecosystem responses. In a 4-year study of grassland species grown under ambient and elevated CO 2 and N in Minnesota, we experimentally varied plant S and F to assess their independent effects. We show here that at all CO 2 and N levels, biomass increased with S , even with F constant at 1 or 4 groups. Likewise, with S at 4, biomass increased as F varied continuously from 1 to 4. The S and F effects were not dependent upon specific species or functional groups or combinations and resulted from complementarity. Biomass increases in response to CO 2 and N, moreover, varied with time but were generally larger with increasing S (with F constant) and with increasing F (with S constant). These results indicate that S and F independently influence biomass accumulation and its response to elevated CO 2 and N.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2004 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0306602101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 238 citations 238 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2004 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0306602101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, Spain, United States, SwedenPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | Australian Laureate Fello..., UKRI | Quinquennial (half-decada...ARC| Discovery Early Career Researcher Award - Grant ID: DE210101654 ,ARC| Australian Laureate Fellowships - Grant ID: FL190100003 ,UKRI| Quinquennial (half-decadal) carbon and nutrient dynamics in temperate forests: Implications for carbon sequestration in a high carbon dioxide worldAnna Gardner; Mingkai Jiang; David S. Ellsworth; A. Robert MacKenzie; Jeremy Pritchard; Martin Karl‐Friedrich Bader; Craig V. M. Barton; Carl Bernacchi; Carlo Calfapietra; Kristine Y. Crous; Mirindi Eric Dusenge; Teresa E. Gimeno; Marianne Hall; Shubhangi Lamba; Sebastian Leuzinger; Johan Uddling; Jeffrey Warren; Göran Wallin; Belinda E. Medlyn;Summary Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (Anet) and minimise transpirational water loss to achieve optimal intrinsic water‐use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO2 (eCO2), and whether it can capture differences in responsiveness among woody plant functional types (PFTs). We conducted a meta‐analysis of tree studies of the effect of eCO2 on iWUE and its components Anet and stomatal conductance (gs). We compared three PFTs, using the unified stomatal optimisation (USO) model to account for confounding effects of leaf–air vapour pressure difference (D). We expected smaller gs, but greater Anet, responses to eCO2 in gymnosperms compared with angiosperm PFTs. We found that iWUE increased in proportion to increasing eCO2 in all PFTs, and that increases in Anet had stronger effects than reductions in gs. The USO model correctly captured stomatal behaviour with eCO2 across most datasets. The chief difference among PFTs was a lower stomatal slope parameter (g1) for the gymnosperm, compared with angiosperm, species. Land surface models can use the USO model to describe stomatal behaviour under changing atmospheric CO2 conditions.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2023License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/482421/1/Optimal%20stomatal%20theory%20predicts.pdfData sources: IRIS CnrUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2023License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/482421/1/Optimal%20stomatal%20theory%20predicts.pdfData sources: IRIS CnrUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United StatesPublisher:Springer Science and Business Media LLC Reich, Peter B; Hobbie, Sarah E; Lee, Tali; Ellsworth, David S; West, Jason B; Tilman, David; Knops, Johannes M H; Naeem, Shahid; Trost, Jared;Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world. Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation, soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.
Nature arrow_drop_down University of Michigan: Deep BlueArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature04486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 785 citations 785 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down University of Michigan: Deep BlueArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature04486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu