- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Jin Hyeok Kim; Jihun Kim; Junsung Jang; Dong-Seon Lee; Jong Ha Moon; Hyeong-Jin Kim;Abstract The doping of Mg and Ga into ZnO is a method for obtaining excellent optical and electrical properties for a window layer in an inorganic solar cell. Because a tradeoff exists between the electrical and optical properties in the window layer, balancing them is important for enhancing the performance of the solar cells. From this viewpoint, the thickness change of the window layer affects the transmittance and the conductivity. In particular, it affects the transmittance in the NIR-IR region significantly, which can enhance the current collection but lead to poor conductivity when the transmittance of the window layer is increased. We examine the thickness effect of MGZO films for CZTSSe solar cells in order to determine the optimal conversion efficiency. The enhanced transmittance in the NIR-IR region with a thin MGZO layer contributed to a high current density, although the electrical resistivity was relatively high. An enhanced conversion efficiency of 7.54% was eventually recorded for an optimal thickness of the MGZO layer with an improved current density over 7 mA/cm2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Mingrui He; Jihun Kim; Dong-Seon Lee; Woo-Lim Jeong; Mahesh P. Suryawanshi; Jin Hyeok Kim; Junsung Jang; Ju-Yeon Lee; Jae Ho Yun;Abstract Cu2Sn(SxSe1−x)3 (CTSSe) (0 ≤ x ≤ 0.03) thin films are prepared using sputtered metal precursors. The influence of the quantity of selenium doped during an annealing process on the properties of CTSSe thin films and solar cells is investigated. The synthesized CTSSe thin films are grown in the monoclinic crystal structure with a densely packed morphology. The growth of the CTSSe thin films is successfully demonstrated by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. The band gap energy of the CTSSe thin films are extrapolated from the optical spectra of the band edge region to be 0.86 eV and 0.88 eV. A compositional analysis using X-ray fluorescence (XRF) spectroscopy shows a consistent increase in the selenium content with increase in the quantity of added selenium. This dependence is confirmed by changes in the crystallinity, composition, optical and electrical properties. CTSSe thin-film solar cells (TFSCs) were fabricated with a structure of Mo/CTSSe/CdS/i-ZnO/AZO/Al. The best efficiency of 2.49% was achieved for the fabricated CTSSe TFSC with a Voc of 190.8 mV, Jsc of 34.6 mA/cm2, and FF of 37%.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Chang Woo Hong; Jihun Kim; Jin Hyeok Kim; Myeng Gil Gang; R.B.V. Chalapathy; Jae Ho Yun; Jun Sun Jang;Abstract In this work, earth-abundant CZTSSe thin film solar cells were fabricated by sulfo-selenization of the Mo/Zn/Cu/Sn/Cu metallic precursors. The influences of morphological and compositional properties of the absorbers on performance of solar cells were investigated by tuning Cu content in the films. The Raman analysis showed that absorbers consist of a kesterite CZTSSe phase with ZnSe as a minor secondary phase. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surfaces are Cu depleted and Zn enriched compared with the bulk composition of the absorbers. The results indicate that during sulfo-selenization the Cu diffused into the film and the Zn towards the film surface. The performance of the solar cells initially improved with the increasing of the Cu content and then decreased. By tuning the Cu content in the absorbers, the minority-carrier life time improved from 0.8 to 1.6 ns. The power conversion efficiency increased from 5.1 to 8.03% with fine controlling of Cu composition of the CZTSSe absorbers. The diode-ideality factors are higher than 2, suggesting an increased interfacial recombination in the devices. The high ideality-factors A and low minority carrier life times may originate from surface and bulk related defects, which in turn limits the Voc and the achievable high conversion efficiency for the CZTSSe thin film solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.10.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.10.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Dong-Seon Lee; Jin Hyeok Kim; Mingrui He; Jihun Kim; Abhishek C. Lokhande; Mahesh P. Suryawanshi; Uma V. Ghorpade; Myengil Gang;Abstract Ge alloyed Cu 2 SnS 3 (CTGS) thin films were prepared by annealing the sputtered deposited Cu-Ge-Sn precursor films under sulfur atmosphere at different annealing temperatures. The influence of different annealing temperatures on morphological, compositional, crystal structure of CTGS thin films were investigated. It was found that the annealing temperature of 550 °C provides a favorable sulfurization environment to promote grain growth leading to a compact thin film formation. Improved performance is ascribed to high Ge contents as evidenced from X-ray fluorescence (XRF) studies. Well incorporated Ge atoms into CTS thin film can be confirmed by X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) study provides an evidence of existence of Ge atoms where its binding energy located at 25.78 and 26.78 eV, respectively. However, the decreased performance was found at unsuitable annealing temperatures such as 500 °C, 520 °C, 580 °C and 600 °C. Finally, with annealing temperatures of 550 °C, the best power conversion efficiency (PCE) of 2.14% was attained with an open circuit voltage ( V oc ) of 220 mV, a short circuit current density ( J sc ) of 23.74 mA/cm 2 and a fill factor ( FF ) of 41%.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Jin Hyeok Kim; Jihun Kim; Junsung Jang; Dong-Seon Lee; Jong Ha Moon; Hyeong-Jin Kim;Abstract The doping of Mg and Ga into ZnO is a method for obtaining excellent optical and electrical properties for a window layer in an inorganic solar cell. Because a tradeoff exists between the electrical and optical properties in the window layer, balancing them is important for enhancing the performance of the solar cells. From this viewpoint, the thickness change of the window layer affects the transmittance and the conductivity. In particular, it affects the transmittance in the NIR-IR region significantly, which can enhance the current collection but lead to poor conductivity when the transmittance of the window layer is increased. We examine the thickness effect of MGZO films for CZTSSe solar cells in order to determine the optimal conversion efficiency. The enhanced transmittance in the NIR-IR region with a thin MGZO layer contributed to a high current density, although the electrical resistivity was relatively high. An enhanced conversion efficiency of 7.54% was eventually recorded for an optimal thickness of the MGZO layer with an improved current density over 7 mA/cm2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Mingrui He; Jihun Kim; Dong-Seon Lee; Woo-Lim Jeong; Mahesh P. Suryawanshi; Jin Hyeok Kim; Junsung Jang; Ju-Yeon Lee; Jae Ho Yun;Abstract Cu2Sn(SxSe1−x)3 (CTSSe) (0 ≤ x ≤ 0.03) thin films are prepared using sputtered metal precursors. The influence of the quantity of selenium doped during an annealing process on the properties of CTSSe thin films and solar cells is investigated. The synthesized CTSSe thin films are grown in the monoclinic crystal structure with a densely packed morphology. The growth of the CTSSe thin films is successfully demonstrated by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. The band gap energy of the CTSSe thin films are extrapolated from the optical spectra of the band edge region to be 0.86 eV and 0.88 eV. A compositional analysis using X-ray fluorescence (XRF) spectroscopy shows a consistent increase in the selenium content with increase in the quantity of added selenium. This dependence is confirmed by changes in the crystallinity, composition, optical and electrical properties. CTSSe thin-film solar cells (TFSCs) were fabricated with a structure of Mo/CTSSe/CdS/i-ZnO/AZO/Al. The best efficiency of 2.49% was achieved for the fabricated CTSSe TFSC with a Voc of 190.8 mV, Jsc of 34.6 mA/cm2, and FF of 37%.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Chang Woo Hong; Jihun Kim; Jin Hyeok Kim; Myeng Gil Gang; R.B.V. Chalapathy; Jae Ho Yun; Jun Sun Jang;Abstract In this work, earth-abundant CZTSSe thin film solar cells were fabricated by sulfo-selenization of the Mo/Zn/Cu/Sn/Cu metallic precursors. The influences of morphological and compositional properties of the absorbers on performance of solar cells were investigated by tuning Cu content in the films. The Raman analysis showed that absorbers consist of a kesterite CZTSSe phase with ZnSe as a minor secondary phase. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surfaces are Cu depleted and Zn enriched compared with the bulk composition of the absorbers. The results indicate that during sulfo-selenization the Cu diffused into the film and the Zn towards the film surface. The performance of the solar cells initially improved with the increasing of the Cu content and then decreased. By tuning the Cu content in the absorbers, the minority-carrier life time improved from 0.8 to 1.6 ns. The power conversion efficiency increased from 5.1 to 8.03% with fine controlling of Cu composition of the CZTSSe absorbers. The diode-ideality factors are higher than 2, suggesting an increased interfacial recombination in the devices. The high ideality-factors A and low minority carrier life times may originate from surface and bulk related defects, which in turn limits the Voc and the achievable high conversion efficiency for the CZTSSe thin film solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.10.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.10.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Dong-Seon Lee; Jin Hyeok Kim; Mingrui He; Jihun Kim; Abhishek C. Lokhande; Mahesh P. Suryawanshi; Uma V. Ghorpade; Myengil Gang;Abstract Ge alloyed Cu 2 SnS 3 (CTGS) thin films were prepared by annealing the sputtered deposited Cu-Ge-Sn precursor films under sulfur atmosphere at different annealing temperatures. The influence of different annealing temperatures on morphological, compositional, crystal structure of CTGS thin films were investigated. It was found that the annealing temperature of 550 °C provides a favorable sulfurization environment to promote grain growth leading to a compact thin film formation. Improved performance is ascribed to high Ge contents as evidenced from X-ray fluorescence (XRF) studies. Well incorporated Ge atoms into CTS thin film can be confirmed by X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) study provides an evidence of existence of Ge atoms where its binding energy located at 25.78 and 26.78 eV, respectively. However, the decreased performance was found at unsuitable annealing temperatures such as 500 °C, 520 °C, 580 °C and 600 °C. Finally, with annealing temperatures of 550 °C, the best power conversion efficiency (PCE) of 2.14% was attained with an open circuit voltage ( V oc ) of 220 mV, a short circuit current density ( J sc ) of 23.74 mA/cm 2 and a fill factor ( FF ) of 41%.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu