- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: F. Sánchez; G. San Miguel;Abstract This paper describes the thermochemical transformation of residual whole olive stones from the industrial production of pitted and stuffed table olives by using a rotary reactor. This experimental investigation describes the chemical, physical and fuel properties of the resulting solids and liquids obtained in the temperature range between 200 °C and 900 °C. Optimum torrefaction conditions, intended to maximize mass and energy yields, were obtained at 278 °C and resulted in a solid product with 68 wt% volatile matter, 29 wt% fixed carbon, 58 wt% elemental carbon, 0.55 O/C ratio, 23.4 MJ/kg of HHV, 11.25 GJ/m 3 apparent energy density for an energy yield of 89%. The carbonized solids obtained at temperatures between 500 °C and 900 °C exhibited LHV and apparent energy density up to 57–66% higher than the original biomass. The carbonization process generates a condensable liquid that represents 50–53 wt% of the original biomass and contains between 57 and 61 wt% water and 39–43 wt% organic products. The carbon content (up to 25 wt%) and heating value (HHV and LHV up to 5.2 MJ/kg and 2.8 MJ/kg, respectively) of this liquid is limited. A model has been tested and a series of equations have been produced which allow us to predict the chemical and energy properties of the solid fraction derived from the torrefaction and carbonization process. This model has found linear correlations between the solid yield and elemental/proximate composition of the solids, and exponential correlations between solid and energy yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: F. Sánchez; G. San Miguel;Abstract This paper describes the thermochemical transformation of residual whole olive stones from the industrial production of pitted and stuffed table olives by using a rotary reactor. This experimental investigation describes the chemical, physical and fuel properties of the resulting solids and liquids obtained in the temperature range between 200 °C and 900 °C. Optimum torrefaction conditions, intended to maximize mass and energy yields, were obtained at 278 °C and resulted in a solid product with 68 wt% volatile matter, 29 wt% fixed carbon, 58 wt% elemental carbon, 0.55 O/C ratio, 23.4 MJ/kg of HHV, 11.25 GJ/m 3 apparent energy density for an energy yield of 89%. The carbonized solids obtained at temperatures between 500 °C and 900 °C exhibited LHV and apparent energy density up to 57–66% higher than the original biomass. The carbonization process generates a condensable liquid that represents 50–53 wt% of the original biomass and contains between 57 and 61 wt% water and 39–43 wt% organic products. The carbon content (up to 25 wt%) and heating value (HHV and LHV up to 5.2 MJ/kg and 2.8 MJ/kg, respectively) of this liquid is limited. A model has been tested and a series of equations have been produced which allow us to predict the chemical and energy properties of the solid fraction derived from the torrefaction and carbonization process. This model has found linear correlations between the solid yield and elemental/proximate composition of the solids, and exponential correlations between solid and energy yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Denmark, NetherlandsPublisher:Wiley Authors: Corona, B.; Bozhilova-Kisheva, K.P.; Olsen, S.I.; San Miguel, G.;doi: 10.1111/jiec.12541
SummaryMeasuring the sustainability of goods and services in a systematic and objective manner has become an issue of paramount importance. Life cycle sustainability assessment (LCSA) is a holistic methodology whose aim is to integrate into a compatible format the analysis of the three pillars of sustainability, namely, economy, environment, and society. Social life cycle assessment (S‐LCA) is a novel methodology still under development, used to cover the social aspects of sustainability within LCSA. The aim of this article is to provide additional discussion on the practical application of S‐LCA by suggesting a new classification and characterization model that builds upon previous methodological developments. The structure of the social analysis has been adapted to maintain coherence with that of standard LCA. The application of this methodology is demonstrated using a case study—the analysis of power generation in a concentrated solar power plant in Spain. The inventory phase was completed by using the indicators proposed by the United Nations Environment Program/Society for Environmental Toxicology and Chemistry (UNEP/SETAC) Guidelines on S‐LCA. The impact assessment phase was approached by developing a social performance indicator that builds on performance reference points, an activity variable, and a numeric scale with positive and negative values. The social performance indicator obtained (+0.42 over a range of –2 to +2) shows that the deployment of the solar power plant increases the social welfare of Spain, especially in the impact categories of socioeconomic sustainability and fairness of relationships, whose results were 1.38 and 0.29, respectively.
Journal of Industria... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyJournal of Industrial EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyJournal of Industrial EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Denmark, NetherlandsPublisher:Wiley Authors: Corona, B.; Bozhilova-Kisheva, K.P.; Olsen, S.I.; San Miguel, G.;doi: 10.1111/jiec.12541
SummaryMeasuring the sustainability of goods and services in a systematic and objective manner has become an issue of paramount importance. Life cycle sustainability assessment (LCSA) is a holistic methodology whose aim is to integrate into a compatible format the analysis of the three pillars of sustainability, namely, economy, environment, and society. Social life cycle assessment (S‐LCA) is a novel methodology still under development, used to cover the social aspects of sustainability within LCSA. The aim of this article is to provide additional discussion on the practical application of S‐LCA by suggesting a new classification and characterization model that builds upon previous methodological developments. The structure of the social analysis has been adapted to maintain coherence with that of standard LCA. The application of this methodology is demonstrated using a case study—the analysis of power generation in a concentrated solar power plant in Spain. The inventory phase was completed by using the indicators proposed by the United Nations Environment Program/Society for Environmental Toxicology and Chemistry (UNEP/SETAC) Guidelines on S‐LCA. The impact assessment phase was approached by developing a social performance indicator that builds on performance reference points, an activity variable, and a numeric scale with positive and negative values. The social performance indicator obtained (+0.42 over a range of –2 to +2) shows that the deployment of the solar power plant increases the social welfare of Spain, especially in the impact categories of socioeconomic sustainability and fairness of relationships, whose results were 1.38 and 0.29, respectively.
Journal of Industria... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyJournal of Industrial EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyJournal of Industrial EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Elsevier BV Funded by:EC | HYSOLEC| HYSOLAuthors: B. Corona; E. Cerrajero; D. López; G. San Miguel;Abstract The aim of this work is to investigate the use of Full Environmental Life Cycle Costing (FeLCC) methodology to evaluate the economic performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant operating in hybrid mode with different natural gas inputs (between 0% and 30%). The analysis is based on a plant located in Southern Spain and includes current financial incentives for the promotion of renewable energies. The analysis also incorporates an estimation of external costs associated with atmospheric emissions on six categories: Human Health, Loss of Biodiversity, Local and Global Damage to Crops, Damage to Materials and Climate Change. In a scenario where the project is funded through equity, the life cycle internal costs of the plant operating with solar energy only represent 82.8 €/MW h, while revenues from electricity sales amount to 85.7 €/MW h, resulting in a net present value of 2.95 €/MW h. Internal costs are attributable primarily to the purchase of materials and equipment incurred mainly during the Extraction and Manufacturing life cycle phase. In this scenario, external costs (calculated using CASES damage costs methodology) represent less than 2.6% of all the internal costs considered. Hybridizing CSP with natural gas allows higher overall power outputs due to extended operating hours. However, this strategy involves higher internal costs, resulting in a significant reduction in the revenues (per unit of power generated) and in the net present value of the project. Thus, the existing regulatory system in Spain makes CSP hybridization with natural gas economically unattractive. In addition, the use of natural gas in CSP installations results in a rapid increase in environmental damage as evidenced by higher external costs. For instance, external unit costs of CSP with 30% natural gas were up to 8.6 times higher than in solar-only operation, due primarily to increased greenhouse gas emissions. When the analysis is extended to consider financing through bank loan under common market conditions, the same project shows economic viability for percentages of natural gas hybridization up to 14%. However, solar-only operation remains as the best option.
Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Elsevier BV Funded by:EC | HYSOLEC| HYSOLAuthors: B. Corona; E. Cerrajero; D. López; G. San Miguel;Abstract The aim of this work is to investigate the use of Full Environmental Life Cycle Costing (FeLCC) methodology to evaluate the economic performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant operating in hybrid mode with different natural gas inputs (between 0% and 30%). The analysis is based on a plant located in Southern Spain and includes current financial incentives for the promotion of renewable energies. The analysis also incorporates an estimation of external costs associated with atmospheric emissions on six categories: Human Health, Loss of Biodiversity, Local and Global Damage to Crops, Damage to Materials and Climate Change. In a scenario where the project is funded through equity, the life cycle internal costs of the plant operating with solar energy only represent 82.8 €/MW h, while revenues from electricity sales amount to 85.7 €/MW h, resulting in a net present value of 2.95 €/MW h. Internal costs are attributable primarily to the purchase of materials and equipment incurred mainly during the Extraction and Manufacturing life cycle phase. In this scenario, external costs (calculated using CASES damage costs methodology) represent less than 2.6% of all the internal costs considered. Hybridizing CSP with natural gas allows higher overall power outputs due to extended operating hours. However, this strategy involves higher internal costs, resulting in a significant reduction in the revenues (per unit of power generated) and in the net present value of the project. Thus, the existing regulatory system in Spain makes CSP hybridization with natural gas economically unattractive. In addition, the use of natural gas in CSP installations results in a rapid increase in environmental damage as evidenced by higher external costs. For instance, external unit costs of CSP with 30% natural gas were up to 8.6 times higher than in solar-only operation, due primarily to increased greenhouse gas emissions. When the analysis is extended to consider financing through bank loan under common market conditions, the same project shows economic viability for percentages of natural gas hybridization up to 14%. However, solar-only operation remains as the best option.
Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, SpainPublisher:MDPI AG Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Diego Ruiz; Guillermo San Miguel;doi: 10.3390/en9060413
Concentrating Solar Power (CSP) technology is developing in order to achieve higher energy efficiency, reduced economic costs, and improved firmness and dispatchability in the generation of power on demand. To this purpose, a research project titled HYSOL has developed a new power plant, consisting of a combined cycle configuration with a 100 MWe steam turbine and an 80 MWe gas-fed turbine with biomethane. Technological developments must be supported by the identification, quantification, and evaluation of the environmental impacts produced. The aim of this paper is to evaluate the environmental performance of a CSP plant based on HYSOL technology using a Life Cycle Assessment (LCA) methodology while considering different locations. The scenarios investigated include different geographic locations (Spain, Chile, Kingdom of Saudi Arabia, Mexico, and South Africa), an alternative modelling procedure for biomethane, and the use of natural gas as an alternative fuel. Results indicate that the geographic location has a significant influence on the environmental profile of the HYSOL CSP plant. The results obtained for the HYSOL configuration located in different countries presented significant differences (between 35% and 43%, depending on the category), especially in climate change and water stress categories. The differences are mainly attributable to the local availability of solar and water resources and composition of the national electricity mix. In addition, HYSOL technology performs significantly better when hybridizing with biomethane instead of natural gas. This evidence is particularly relevant in the climate change category, where biomethane hybridization emits 27.9–45.9 kg CO2 eq per MWh (depending on the biomethane modelling scenario) and natural gas scenario emits 264 kg CO2 eq/MWh.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/413/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/doi:10.3390/...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/413/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/doi:10.3390/...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, SpainPublisher:MDPI AG Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Diego Ruiz; Guillermo San Miguel;doi: 10.3390/en9060413
Concentrating Solar Power (CSP) technology is developing in order to achieve higher energy efficiency, reduced economic costs, and improved firmness and dispatchability in the generation of power on demand. To this purpose, a research project titled HYSOL has developed a new power plant, consisting of a combined cycle configuration with a 100 MWe steam turbine and an 80 MWe gas-fed turbine with biomethane. Technological developments must be supported by the identification, quantification, and evaluation of the environmental impacts produced. The aim of this paper is to evaluate the environmental performance of a CSP plant based on HYSOL technology using a Life Cycle Assessment (LCA) methodology while considering different locations. The scenarios investigated include different geographic locations (Spain, Chile, Kingdom of Saudi Arabia, Mexico, and South Africa), an alternative modelling procedure for biomethane, and the use of natural gas as an alternative fuel. Results indicate that the geographic location has a significant influence on the environmental profile of the HYSOL CSP plant. The results obtained for the HYSOL configuration located in different countries presented significant differences (between 35% and 43%, depending on the category), especially in climate change and water stress categories. The differences are mainly attributable to the local availability of solar and water resources and composition of the national electricity mix. In addition, HYSOL technology performs significantly better when hybridizing with biomethane instead of natural gas. This evidence is particularly relevant in the climate change category, where biomethane hybridization emits 27.9–45.9 kg CO2 eq per MWh (depending on the biomethane modelling scenario) and natural gas scenario emits 264 kg CO2 eq/MWh.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/413/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/doi:10.3390/...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/413/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/doi:10.3390/...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Guillermo San Miguel; María Cerrato;doi: 10.3390/en13081896
This paper provides an investigation into the sustainability of the electrical system in Spain. The analysis covers historic inventories of power generation, installed capacity and technology mix since 1990 and also contemplates four alternative projections for 2030 and 2050. The sustainability is evaluated using eight indicators that provide objective information about the environmental (climate change, fossil depletion, ozone layer depletion, terrestrial acidification, human toxicity and photochemical smog), economic (levelized cost of electricity) and socio-economic (direct employment) performance of the system. The results show an increase in the magnitude of the environmental impacts between 1990 and 2008, due to a growing power demand triggered by economic expansion. After 2008, the environmental performance improves due to the economic recession and the penetration of renewable energies. Overall, the cost of power generation remains rather stable as rising expenses generated by renewables are compensated by a progressive reduction in the cost of fossil technologies. Direct employment generation has been strongly stimulated by the upsurge in renewables that has taken place in Spain after 2008. Regarding future scenarios, the results evidence that the most ambitious projections in terms of renewable penetration perform best in terms of environmental performance, employment generation and reduced costs (€/MWh). The significance of these benefits was particularly clear in the 2050 scenario. In the long term, the scenario considering higher fossil fuel contributions (ST) performed worst in all sustainability indicators.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/8/1896/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/8/1896/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Guillermo San Miguel; María Cerrato;doi: 10.3390/en13081896
This paper provides an investigation into the sustainability of the electrical system in Spain. The analysis covers historic inventories of power generation, installed capacity and technology mix since 1990 and also contemplates four alternative projections for 2030 and 2050. The sustainability is evaluated using eight indicators that provide objective information about the environmental (climate change, fossil depletion, ozone layer depletion, terrestrial acidification, human toxicity and photochemical smog), economic (levelized cost of electricity) and socio-economic (direct employment) performance of the system. The results show an increase in the magnitude of the environmental impacts between 1990 and 2008, due to a growing power demand triggered by economic expansion. After 2008, the environmental performance improves due to the economic recession and the penetration of renewable energies. Overall, the cost of power generation remains rather stable as rising expenses generated by renewables are compensated by a progressive reduction in the cost of fossil technologies. Direct employment generation has been strongly stimulated by the upsurge in renewables that has taken place in Spain after 2008. Regarding future scenarios, the results evidence that the most ambitious projections in terms of renewable penetration perform best in terms of environmental performance, employment generation and reduced costs (€/MWh). The significance of these benefits was particularly clear in the 2050 scenario. In the long term, the scenario considering higher fossil fuel contributions (ST) performed worst in all sustainability indicators.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/8/1896/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/8/1896/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:EC | REPHLECT, EC | HYSOLEC| REPHLECT ,EC| HYSOLCorona, Blanca; Escudero, Lidia; Quéméré, Goulven; Luque-Heredia, Ignacio; San Miguel, Guillermo;High concentrated photovoltaic (HCPV) technology transforms solar radiation into electricity at efficiencies far higher than conventional PV cells. The aim of this paper is to evaluate the environmental impact of a commercial HCPV plant located in Morocco by determining the impact of this technology on a wide range of environmental categories. The results are expected to contribute to a better environmental design and performance of the power plant. A complete life cycle inventory was gathered for a 1.008 MW HCPV power plant located in Casablanca (Morocco). The system was evaluated using a cradle to gate approach, considering 1 MWh as functional unit. ReCiPe Midpoint (World) evaluation method and Simapro Software were used for calculations. A sensitivity analysis on the life expectancy for 20, 25 and 30 years was also performed. Cumulative energy demand and energy payback time were determined for each scenario. The results showed an EPBT of 1.457 years and the following main environmental impacts: climate change 53.3 kg CO2 eq/MWh, freshwater eutrophication 28.3 g P eq/MWh, human toxicity 44.1 kg 1.4-DB eq/MWh, freshwater ecotoxicity 1.20 kg 1.4-DB eq/MWh and marine ecotoxicity 1.20 g 1.4-DB eq/kWh. Most of the impacts were associated with the extraction of raw materials and manufacturing of components, being aluminum and steel the materials with higher impacts. Normalization assigned the highest impacts to the toxicity categories, due mainly to the materials employed in the electronic devices and the aluminum used in the module manufacturing. The end-of-life stage had a significant positive effect on the performance of the plant, reducing the impact on each category by between 8 % (in ozone depletion) and 43 % (in particulate matter formation), due mainly to the recycling of steel and aluminum. The power plant components manufacturing and the electricity consumption from the grid presented a high impact in the life cycle of the plant, implying a significant importance of the local electricity mix. An adequate recycling of the materials is recommendable, since it reduces considerably the impact of the system. The sensitivity analysis revealed a significant improvement in the environmental performance when increasing lifetime expectancy from 20 to 30 years.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-016-1157-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-016-1157-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:EC | REPHLECT, EC | HYSOLEC| REPHLECT ,EC| HYSOLCorona, Blanca; Escudero, Lidia; Quéméré, Goulven; Luque-Heredia, Ignacio; San Miguel, Guillermo;High concentrated photovoltaic (HCPV) technology transforms solar radiation into electricity at efficiencies far higher than conventional PV cells. The aim of this paper is to evaluate the environmental impact of a commercial HCPV plant located in Morocco by determining the impact of this technology on a wide range of environmental categories. The results are expected to contribute to a better environmental design and performance of the power plant. A complete life cycle inventory was gathered for a 1.008 MW HCPV power plant located in Casablanca (Morocco). The system was evaluated using a cradle to gate approach, considering 1 MWh as functional unit. ReCiPe Midpoint (World) evaluation method and Simapro Software were used for calculations. A sensitivity analysis on the life expectancy for 20, 25 and 30 years was also performed. Cumulative energy demand and energy payback time were determined for each scenario. The results showed an EPBT of 1.457 years and the following main environmental impacts: climate change 53.3 kg CO2 eq/MWh, freshwater eutrophication 28.3 g P eq/MWh, human toxicity 44.1 kg 1.4-DB eq/MWh, freshwater ecotoxicity 1.20 kg 1.4-DB eq/MWh and marine ecotoxicity 1.20 g 1.4-DB eq/kWh. Most of the impacts were associated with the extraction of raw materials and manufacturing of components, being aluminum and steel the materials with higher impacts. Normalization assigned the highest impacts to the toxicity categories, due mainly to the materials employed in the electronic devices and the aluminum used in the module manufacturing. The end-of-life stage had a significant positive effect on the performance of the plant, reducing the impact on each category by between 8 % (in ozone depletion) and 43 % (in particulate matter formation), due mainly to the recycling of steel and aluminum. The power plant components manufacturing and the electricity consumption from the grid presented a high impact in the life cycle of the plant, implying a significant importance of the local electricity mix. An adequate recycling of the materials is recommendable, since it reduces considerably the impact of the system. The sensitivity analysis revealed a significant improvement in the environmental performance when increasing lifetime expectancy from 20 to 30 years.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-016-1157-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-016-1157-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV G. San Miguel; David P. Serrano; J.M. Rodríguez; José M. Escola; José María Aguado;Abstract Pyrolysis coupled with gas chromatographic separation and mass spectrometry detection (Py–GC/MS) has been used to study the catalytic degradation of low-density polyethylene (LDPE). This novel approach allowed rapid screening of the catalytic activity of different acid solids and permitted a straightforward analysis of the resulting products. The results obtained are comparable to those reported by other authors while very small sample and catalysts masses (less than 0.2 mg) were required. For the purpose of this work, three acid solids differing in their textural and acid properties (micrometer HZSM-5, nanocrystaline n -HZSM-5 and Al-MCM-41) were synthesized, characterised for their chemical and structural characteristics and tested for their thermal stability between 550 and 800 °C. Thermogravimetric (TG) analysis was then employed to evaluate their catalytic activity in the degradation of pure LDPE. This activity was related to their capacity to shift the degradation reaction to lower temperatures. Py–GC/MS analysis of pure LDPE at 700 °C generated a pyrogram with characteristic triplets corresponding to straight chain diene, alkene and alkane hydrocarbons of varying lengths. Catalytic degradation of LDPE over micrometer and nanocystalline HZSM-5 zeolites generated a similar range of degradation products with a marked increase in the light olefins and aromatic fractions (e.g. benzene, toluene, xylene) and complete elimination of heavier olefin and paraffin hydrocarbons. Despite its high catalytic activity, as determined by TG analysis, mesoporous Al-MCM-41 exhibited no shape selectivity in the products generated with a low proportion of aromatics and a higher content of olefin and paraffin species.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2004.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2004.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV G. San Miguel; David P. Serrano; J.M. Rodríguez; José M. Escola; José María Aguado;Abstract Pyrolysis coupled with gas chromatographic separation and mass spectrometry detection (Py–GC/MS) has been used to study the catalytic degradation of low-density polyethylene (LDPE). This novel approach allowed rapid screening of the catalytic activity of different acid solids and permitted a straightforward analysis of the resulting products. The results obtained are comparable to those reported by other authors while very small sample and catalysts masses (less than 0.2 mg) were required. For the purpose of this work, three acid solids differing in their textural and acid properties (micrometer HZSM-5, nanocrystaline n -HZSM-5 and Al-MCM-41) were synthesized, characterised for their chemical and structural characteristics and tested for their thermal stability between 550 and 800 °C. Thermogravimetric (TG) analysis was then employed to evaluate their catalytic activity in the degradation of pure LDPE. This activity was related to their capacity to shift the degradation reaction to lower temperatures. Py–GC/MS analysis of pure LDPE at 700 °C generated a pyrogram with characteristic triplets corresponding to straight chain diene, alkene and alkane hydrocarbons of varying lengths. Catalytic degradation of LDPE over micrometer and nanocystalline HZSM-5 zeolites generated a similar range of degradation products with a marked increase in the light olefins and aromatic fractions (e.g. benzene, toluene, xylene) and complete elimination of heavier olefin and paraffin hydrocarbons. Despite its high catalytic activity, as determined by TG analysis, mesoporous Al-MCM-41 exhibited no shape selectivity in the products generated with a low proportion of aromatics and a higher content of olefin and paraffin species.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2004.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2004.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 NetherlandsPublisher:Elsevier BV Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Cristina de la Rúa; Guillermo San Miguel;Concentrated Solar Power (CSP) is receiving increasing attention as a technology with the potential to provide clean electricity in a cost effective and dispatchable manner. Despite its renewable nature, solar power generation generates impacts that need to be adequately evaluated and managed. The objective of this paper is to estimate the socioeconomic and environmental life cycle impacts of the production of electricity by a commercial CSP plant using Multiregional Input Output Analysis. These effects have been estimated in terms of additional economic activity, value added, employment creation, climate change, acidification, photochemical oxidant formation and primary energy consumption. Additionally, the economic sectors and countries with higher effects in the value chain have been identified. The results are presented both in gross and net terms, including not only the effects of the system’s life cycle, but also the avoided effects derived from the displacement of other technologies in the Spanish electricity market. The effects of the displaced electricity have been calculated by estimating the Levelized Cost Of Energy of the mix of marginal technologies displaced by the CSP plant. The results indicate that producing electricity in a CSP plant and selling it into the Spanish electricity market results in net positive impacts on the economy, the employment and the environment both at a national and global scale. Taking into consideration the electricity technologies displaced by the CSP plant, the socioeconomic net effects amount to 167 €/MWh of goods and services generated, 87.9 €/MWh of value added and 4.67 h/MWh of employment creation. The global and net environmental impacts on climate change, photochemical oxidant formation, acidification and primary energy consumption amount to −188 kg eq CO2/MWh, 8 g eq NMVOC/MWh, −389 g eq SO2/MWh and −4169 MJ/MWh, respectively, implying a net prevention of pollutant emissions and primary energy consumption.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.03.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.03.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 NetherlandsPublisher:Elsevier BV Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Cristina de la Rúa; Guillermo San Miguel;Concentrated Solar Power (CSP) is receiving increasing attention as a technology with the potential to provide clean electricity in a cost effective and dispatchable manner. Despite its renewable nature, solar power generation generates impacts that need to be adequately evaluated and managed. The objective of this paper is to estimate the socioeconomic and environmental life cycle impacts of the production of electricity by a commercial CSP plant using Multiregional Input Output Analysis. These effects have been estimated in terms of additional economic activity, value added, employment creation, climate change, acidification, photochemical oxidant formation and primary energy consumption. Additionally, the economic sectors and countries with higher effects in the value chain have been identified. The results are presented both in gross and net terms, including not only the effects of the system’s life cycle, but also the avoided effects derived from the displacement of other technologies in the Spanish electricity market. The effects of the displaced electricity have been calculated by estimating the Levelized Cost Of Energy of the mix of marginal technologies displaced by the CSP plant. The results indicate that producing electricity in a CSP plant and selling it into the Spanish electricity market results in net positive impacts on the economy, the employment and the environment both at a national and global scale. Taking into consideration the electricity technologies displaced by the CSP plant, the socioeconomic net effects amount to 167 €/MWh of goods and services generated, 87.9 €/MWh of value added and 4.67 h/MWh of employment creation. The global and net environmental impacts on climate change, photochemical oxidant formation, acidification and primary energy consumption amount to −188 kg eq CO2/MWh, 8 g eq NMVOC/MWh, −389 g eq SO2/MWh and −4169 MJ/MWh, respectively, implying a net prevention of pollutant emissions and primary energy consumption.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.03.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.03.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:AIP Publishing Authors: P. Sanginés; M. P. Domínguez; F. Sánchez; G. San Miguel;doi: 10.1063/1.4923442
The aim of this work is to investigate the slow pyrolysis of olive stones in a rotary kiln as a means to increase the fuel properties and potential use of this renewable solid fuel. The pyrolysis process takes place primarily at temperatures between 300 and 500 °C resulting in the transformation of the solid biomass into a biochar, a pyrolysis liquid (up to 38.1 wt. %) and a non-condensable gas fraction (up to 35.4 wt. %). This thermal treatment has a positive influence in the fuel properties of the solid fraction in terms of increased C content (up to 75.9 wt. %), reduced O/C and H/C ratios (down to 0.28 and 0.03), reduced volatile matter and moisture content (down to 6.9 wt. % and below 1.0 wt. %, respectively), increased fixed carbon (up to 90.2 wt. %), increased Lower Heating Value (LHVo up to 37.1 MJ/kg) and energy density (26.7 GJ/m3). The process also involved changes in the surface chemistry (increasingly hydrophobic nature) and textural properties of the solid (formation of cracks and internal voids, resulting in the development of a pore structure of up to 0.193 cm3/g and a surface area up to 507 m2/g). The condensable and gas fractions resulting from the pyrolysis process may also be used for their fuel properties. Thus, the pyrolysis liquid exhibited a high water content (62.5 wt. %), a mass density of 1.063 kg/m3, a viscosity of 1.33 cSt, and a Higher Heating Value (HHVo) of 16.9 MJ/kg. The gas fraction resulting from the pyrolysis of olive stones contains high concentrations of combustible gases like CO and H2, and lower proportions of light hydrocarbons. The gas fraction exhibited HHV up to 6.83 MJ/Nm3 due primarily to CO and H2, while the formation of light hydrocarbons was very limited. The energy distribution resulting from the pyrolysis of olive stone at 700 °C (following completion of the thermal degradation) is as follows: solid fraction 48.2%; oil fraction 11.0%; and gas fraction and energy losses (by difference) 40.8%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4923442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4923442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:AIP Publishing Authors: P. Sanginés; M. P. Domínguez; F. Sánchez; G. San Miguel;doi: 10.1063/1.4923442
The aim of this work is to investigate the slow pyrolysis of olive stones in a rotary kiln as a means to increase the fuel properties and potential use of this renewable solid fuel. The pyrolysis process takes place primarily at temperatures between 300 and 500 °C resulting in the transformation of the solid biomass into a biochar, a pyrolysis liquid (up to 38.1 wt. %) and a non-condensable gas fraction (up to 35.4 wt. %). This thermal treatment has a positive influence in the fuel properties of the solid fraction in terms of increased C content (up to 75.9 wt. %), reduced O/C and H/C ratios (down to 0.28 and 0.03), reduced volatile matter and moisture content (down to 6.9 wt. % and below 1.0 wt. %, respectively), increased fixed carbon (up to 90.2 wt. %), increased Lower Heating Value (LHVo up to 37.1 MJ/kg) and energy density (26.7 GJ/m3). The process also involved changes in the surface chemistry (increasingly hydrophobic nature) and textural properties of the solid (formation of cracks and internal voids, resulting in the development of a pore structure of up to 0.193 cm3/g and a surface area up to 507 m2/g). The condensable and gas fractions resulting from the pyrolysis process may also be used for their fuel properties. Thus, the pyrolysis liquid exhibited a high water content (62.5 wt. %), a mass density of 1.063 kg/m3, a viscosity of 1.33 cSt, and a Higher Heating Value (HHVo) of 16.9 MJ/kg. The gas fraction resulting from the pyrolysis of olive stones contains high concentrations of combustible gases like CO and H2, and lower proportions of light hydrocarbons. The gas fraction exhibited HHV up to 6.83 MJ/Nm3 due primarily to CO and H2, while the formation of light hydrocarbons was very limited. The energy distribution resulting from the pyrolysis of olive stone at 700 °C (following completion of the thermal degradation) is as follows: solid fraction 48.2%; oil fraction 11.0%; and gas fraction and energy losses (by difference) 40.8%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4923442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4923442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Blanca Corona; Guillermo San Miguel;Purpose Life cycle sustainability analysis (LCSA) is being developed as a holistic tool to evaluate environmental, economic and social impacts of products or services throughout their life cycle. This study responds to the need expressed by the scientific community to develop and test LCSA methodology, by assessing the sustainability of a concentrated solar power (CSP) plant based on HYSOL technology (an innovative configuration delivering improved efficiency and power dispatchability). Methods The methodology proposed consists of three stages: goal and scope definition, modelling and application of tools, and interpretation of results. The goal of the case study was to investigate to what extent may the HYSOL technology improve the sustainability of power generation in the Spanish electricity sector. To this purpose, several sustainability sub-questions were framed and different analysis tools were applied as follows: attributional and consequential life cycle assessment, life cycle cost (LCC) analysis and multiregional input-output analysis (MRIO), and social life cycle assessment (S-LCA) in combination with social risk assessment (with the Social Hotspots Database). Visual diagrams representing the sustainability of the analysed scenarios were also produced to facilitate the interpretation of results and decision making. Results and discussion The results obtained in the three sustainability dimensions were integrated using a “questions and answers” layout, each answer describing a specific element of sustainability. The HYSOL technology was investigated considering two different operation modes: HYSOL BIO with biomethane as hybridization fuel and HYSOL NG with natural gas. The results indicated that the deployment of HYSOL technology would produce a reduction in the climate change impact of the electricity sector for both operation modes. The LCC analysis indicated economic benefits per MWh for a HYSOL NG power plant, but losses for a HYSOL BIO power plant. The MRIO analysis indicated an increase in goods and services generation, and value added for the HYSOL technology affecting primarily Spain and to a lower extent other foreign economies. The social analysis indicated that both alternatives would provide a slight increase of social welfare Spain. Conclusions The methodological approach described in this investigation provided flexibility in the selection of objectives and analysis tools, which helped to quantify the sustainability effect of the system at a micro and meso level in the three sustainability dimensions. The results indicated that the innovation of HYSOL power plants is well aimed to improve the sustainability of CSP technology and the Spanish electricity sector.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2019Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1568-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2019Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1568-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Blanca Corona; Guillermo San Miguel;Purpose Life cycle sustainability analysis (LCSA) is being developed as a holistic tool to evaluate environmental, economic and social impacts of products or services throughout their life cycle. This study responds to the need expressed by the scientific community to develop and test LCSA methodology, by assessing the sustainability of a concentrated solar power (CSP) plant based on HYSOL technology (an innovative configuration delivering improved efficiency and power dispatchability). Methods The methodology proposed consists of three stages: goal and scope definition, modelling and application of tools, and interpretation of results. The goal of the case study was to investigate to what extent may the HYSOL technology improve the sustainability of power generation in the Spanish electricity sector. To this purpose, several sustainability sub-questions were framed and different analysis tools were applied as follows: attributional and consequential life cycle assessment, life cycle cost (LCC) analysis and multiregional input-output analysis (MRIO), and social life cycle assessment (S-LCA) in combination with social risk assessment (with the Social Hotspots Database). Visual diagrams representing the sustainability of the analysed scenarios were also produced to facilitate the interpretation of results and decision making. Results and discussion The results obtained in the three sustainability dimensions were integrated using a “questions and answers” layout, each answer describing a specific element of sustainability. The HYSOL technology was investigated considering two different operation modes: HYSOL BIO with biomethane as hybridization fuel and HYSOL NG with natural gas. The results indicated that the deployment of HYSOL technology would produce a reduction in the climate change impact of the electricity sector for both operation modes. The LCC analysis indicated economic benefits per MWh for a HYSOL NG power plant, but losses for a HYSOL BIO power plant. The MRIO analysis indicated an increase in goods and services generation, and value added for the HYSOL technology affecting primarily Spain and to a lower extent other foreign economies. The social analysis indicated that both alternatives would provide a slight increase of social welfare Spain. Conclusions The methodological approach described in this investigation provided flexibility in the selection of objectives and analysis tools, which helped to quantify the sustainability effect of the system at a micro and meso level in the three sustainability dimensions. The results indicated that the innovation of HYSOL power plants is well aimed to improve the sustainability of CSP technology and the Spanish electricity sector.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2019Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1568-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2019Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1568-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: F. Sánchez; G. San Miguel;Abstract This paper describes the thermochemical transformation of residual whole olive stones from the industrial production of pitted and stuffed table olives by using a rotary reactor. This experimental investigation describes the chemical, physical and fuel properties of the resulting solids and liquids obtained in the temperature range between 200 °C and 900 °C. Optimum torrefaction conditions, intended to maximize mass and energy yields, were obtained at 278 °C and resulted in a solid product with 68 wt% volatile matter, 29 wt% fixed carbon, 58 wt% elemental carbon, 0.55 O/C ratio, 23.4 MJ/kg of HHV, 11.25 GJ/m 3 apparent energy density for an energy yield of 89%. The carbonized solids obtained at temperatures between 500 °C and 900 °C exhibited LHV and apparent energy density up to 57–66% higher than the original biomass. The carbonization process generates a condensable liquid that represents 50–53 wt% of the original biomass and contains between 57 and 61 wt% water and 39–43 wt% organic products. The carbon content (up to 25 wt%) and heating value (HHV and LHV up to 5.2 MJ/kg and 2.8 MJ/kg, respectively) of this liquid is limited. A model has been tested and a series of equations have been produced which allow us to predict the chemical and energy properties of the solid fraction derived from the torrefaction and carbonization process. This model has found linear correlations between the solid yield and elemental/proximate composition of the solids, and exponential correlations between solid and energy yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: F. Sánchez; G. San Miguel;Abstract This paper describes the thermochemical transformation of residual whole olive stones from the industrial production of pitted and stuffed table olives by using a rotary reactor. This experimental investigation describes the chemical, physical and fuel properties of the resulting solids and liquids obtained in the temperature range between 200 °C and 900 °C. Optimum torrefaction conditions, intended to maximize mass and energy yields, were obtained at 278 °C and resulted in a solid product with 68 wt% volatile matter, 29 wt% fixed carbon, 58 wt% elemental carbon, 0.55 O/C ratio, 23.4 MJ/kg of HHV, 11.25 GJ/m 3 apparent energy density for an energy yield of 89%. The carbonized solids obtained at temperatures between 500 °C and 900 °C exhibited LHV and apparent energy density up to 57–66% higher than the original biomass. The carbonization process generates a condensable liquid that represents 50–53 wt% of the original biomass and contains between 57 and 61 wt% water and 39–43 wt% organic products. The carbon content (up to 25 wt%) and heating value (HHV and LHV up to 5.2 MJ/kg and 2.8 MJ/kg, respectively) of this liquid is limited. A model has been tested and a series of equations have been produced which allow us to predict the chemical and energy properties of the solid fraction derived from the torrefaction and carbonization process. This model has found linear correlations between the solid yield and elemental/proximate composition of the solids, and exponential correlations between solid and energy yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Denmark, NetherlandsPublisher:Wiley Authors: Corona, B.; Bozhilova-Kisheva, K.P.; Olsen, S.I.; San Miguel, G.;doi: 10.1111/jiec.12541
SummaryMeasuring the sustainability of goods and services in a systematic and objective manner has become an issue of paramount importance. Life cycle sustainability assessment (LCSA) is a holistic methodology whose aim is to integrate into a compatible format the analysis of the three pillars of sustainability, namely, economy, environment, and society. Social life cycle assessment (S‐LCA) is a novel methodology still under development, used to cover the social aspects of sustainability within LCSA. The aim of this article is to provide additional discussion on the practical application of S‐LCA by suggesting a new classification and characterization model that builds upon previous methodological developments. The structure of the social analysis has been adapted to maintain coherence with that of standard LCA. The application of this methodology is demonstrated using a case study—the analysis of power generation in a concentrated solar power plant in Spain. The inventory phase was completed by using the indicators proposed by the United Nations Environment Program/Society for Environmental Toxicology and Chemistry (UNEP/SETAC) Guidelines on S‐LCA. The impact assessment phase was approached by developing a social performance indicator that builds on performance reference points, an activity variable, and a numeric scale with positive and negative values. The social performance indicator obtained (+0.42 over a range of –2 to +2) shows that the deployment of the solar power plant increases the social welfare of Spain, especially in the impact categories of socioeconomic sustainability and fairness of relationships, whose results were 1.38 and 0.29, respectively.
Journal of Industria... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyJournal of Industrial EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyJournal of Industrial EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Denmark, NetherlandsPublisher:Wiley Authors: Corona, B.; Bozhilova-Kisheva, K.P.; Olsen, S.I.; San Miguel, G.;doi: 10.1111/jiec.12541
SummaryMeasuring the sustainability of goods and services in a systematic and objective manner has become an issue of paramount importance. Life cycle sustainability assessment (LCSA) is a holistic methodology whose aim is to integrate into a compatible format the analysis of the three pillars of sustainability, namely, economy, environment, and society. Social life cycle assessment (S‐LCA) is a novel methodology still under development, used to cover the social aspects of sustainability within LCSA. The aim of this article is to provide additional discussion on the practical application of S‐LCA by suggesting a new classification and characterization model that builds upon previous methodological developments. The structure of the social analysis has been adapted to maintain coherence with that of standard LCA. The application of this methodology is demonstrated using a case study—the analysis of power generation in a concentrated solar power plant in Spain. The inventory phase was completed by using the indicators proposed by the United Nations Environment Program/Society for Environmental Toxicology and Chemistry (UNEP/SETAC) Guidelines on S‐LCA. The impact assessment phase was approached by developing a social performance indicator that builds on performance reference points, an activity variable, and a numeric scale with positive and negative values. The social performance indicator obtained (+0.42 over a range of –2 to +2) shows that the deployment of the solar power plant increases the social welfare of Spain, especially in the impact categories of socioeconomic sustainability and fairness of relationships, whose results were 1.38 and 0.29, respectively.
Journal of Industria... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyJournal of Industrial EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyJournal of Industrial EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Elsevier BV Funded by:EC | HYSOLEC| HYSOLAuthors: B. Corona; E. Cerrajero; D. López; G. San Miguel;Abstract The aim of this work is to investigate the use of Full Environmental Life Cycle Costing (FeLCC) methodology to evaluate the economic performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant operating in hybrid mode with different natural gas inputs (between 0% and 30%). The analysis is based on a plant located in Southern Spain and includes current financial incentives for the promotion of renewable energies. The analysis also incorporates an estimation of external costs associated with atmospheric emissions on six categories: Human Health, Loss of Biodiversity, Local and Global Damage to Crops, Damage to Materials and Climate Change. In a scenario where the project is funded through equity, the life cycle internal costs of the plant operating with solar energy only represent 82.8 €/MW h, while revenues from electricity sales amount to 85.7 €/MW h, resulting in a net present value of 2.95 €/MW h. Internal costs are attributable primarily to the purchase of materials and equipment incurred mainly during the Extraction and Manufacturing life cycle phase. In this scenario, external costs (calculated using CASES damage costs methodology) represent less than 2.6% of all the internal costs considered. Hybridizing CSP with natural gas allows higher overall power outputs due to extended operating hours. However, this strategy involves higher internal costs, resulting in a significant reduction in the revenues (per unit of power generated) and in the net present value of the project. Thus, the existing regulatory system in Spain makes CSP hybridization with natural gas economically unattractive. In addition, the use of natural gas in CSP installations results in a rapid increase in environmental damage as evidenced by higher external costs. For instance, external unit costs of CSP with 30% natural gas were up to 8.6 times higher than in solar-only operation, due primarily to increased greenhouse gas emissions. When the analysis is extended to consider financing through bank loan under common market conditions, the same project shows economic viability for percentages of natural gas hybridization up to 14%. However, solar-only operation remains as the best option.
Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Elsevier BV Funded by:EC | HYSOLEC| HYSOLAuthors: B. Corona; E. Cerrajero; D. López; G. San Miguel;Abstract The aim of this work is to investigate the use of Full Environmental Life Cycle Costing (FeLCC) methodology to evaluate the economic performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant operating in hybrid mode with different natural gas inputs (between 0% and 30%). The analysis is based on a plant located in Southern Spain and includes current financial incentives for the promotion of renewable energies. The analysis also incorporates an estimation of external costs associated with atmospheric emissions on six categories: Human Health, Loss of Biodiversity, Local and Global Damage to Crops, Damage to Materials and Climate Change. In a scenario where the project is funded through equity, the life cycle internal costs of the plant operating with solar energy only represent 82.8 €/MW h, while revenues from electricity sales amount to 85.7 €/MW h, resulting in a net present value of 2.95 €/MW h. Internal costs are attributable primarily to the purchase of materials and equipment incurred mainly during the Extraction and Manufacturing life cycle phase. In this scenario, external costs (calculated using CASES damage costs methodology) represent less than 2.6% of all the internal costs considered. Hybridizing CSP with natural gas allows higher overall power outputs due to extended operating hours. However, this strategy involves higher internal costs, resulting in a significant reduction in the revenues (per unit of power generated) and in the net present value of the project. Thus, the existing regulatory system in Spain makes CSP hybridization with natural gas economically unattractive. In addition, the use of natural gas in CSP installations results in a rapid increase in environmental damage as evidenced by higher external costs. For instance, external unit costs of CSP with 30% natural gas were up to 8.6 times higher than in solar-only operation, due primarily to increased greenhouse gas emissions. When the analysis is extended to consider financing through bank loan under common market conditions, the same project shows economic viability for percentages of natural gas hybridization up to 14%. However, solar-only operation remains as the best option.
Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, SpainPublisher:MDPI AG Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Diego Ruiz; Guillermo San Miguel;doi: 10.3390/en9060413
Concentrating Solar Power (CSP) technology is developing in order to achieve higher energy efficiency, reduced economic costs, and improved firmness and dispatchability in the generation of power on demand. To this purpose, a research project titled HYSOL has developed a new power plant, consisting of a combined cycle configuration with a 100 MWe steam turbine and an 80 MWe gas-fed turbine with biomethane. Technological developments must be supported by the identification, quantification, and evaluation of the environmental impacts produced. The aim of this paper is to evaluate the environmental performance of a CSP plant based on HYSOL technology using a Life Cycle Assessment (LCA) methodology while considering different locations. The scenarios investigated include different geographic locations (Spain, Chile, Kingdom of Saudi Arabia, Mexico, and South Africa), an alternative modelling procedure for biomethane, and the use of natural gas as an alternative fuel. Results indicate that the geographic location has a significant influence on the environmental profile of the HYSOL CSP plant. The results obtained for the HYSOL configuration located in different countries presented significant differences (between 35% and 43%, depending on the category), especially in climate change and water stress categories. The differences are mainly attributable to the local availability of solar and water resources and composition of the national electricity mix. In addition, HYSOL technology performs significantly better when hybridizing with biomethane instead of natural gas. This evidence is particularly relevant in the climate change category, where biomethane hybridization emits 27.9–45.9 kg CO2 eq per MWh (depending on the biomethane modelling scenario) and natural gas scenario emits 264 kg CO2 eq/MWh.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/413/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/doi:10.3390/...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/413/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/doi:10.3390/...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, SpainPublisher:MDPI AG Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Diego Ruiz; Guillermo San Miguel;doi: 10.3390/en9060413
Concentrating Solar Power (CSP) technology is developing in order to achieve higher energy efficiency, reduced economic costs, and improved firmness and dispatchability in the generation of power on demand. To this purpose, a research project titled HYSOL has developed a new power plant, consisting of a combined cycle configuration with a 100 MWe steam turbine and an 80 MWe gas-fed turbine with biomethane. Technological developments must be supported by the identification, quantification, and evaluation of the environmental impacts produced. The aim of this paper is to evaluate the environmental performance of a CSP plant based on HYSOL technology using a Life Cycle Assessment (LCA) methodology while considering different locations. The scenarios investigated include different geographic locations (Spain, Chile, Kingdom of Saudi Arabia, Mexico, and South Africa), an alternative modelling procedure for biomethane, and the use of natural gas as an alternative fuel. Results indicate that the geographic location has a significant influence on the environmental profile of the HYSOL CSP plant. The results obtained for the HYSOL configuration located in different countries presented significant differences (between 35% and 43%, depending on the category), especially in climate change and water stress categories. The differences are mainly attributable to the local availability of solar and water resources and composition of the national electricity mix. In addition, HYSOL technology performs significantly better when hybridizing with biomethane instead of natural gas. This evidence is particularly relevant in the climate change category, where biomethane hybridization emits 27.9–45.9 kg CO2 eq per MWh (depending on the biomethane modelling scenario) and natural gas scenario emits 264 kg CO2 eq/MWh.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/413/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/doi:10.3390/...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/413/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/doi:10.3390/...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Guillermo San Miguel; María Cerrato;doi: 10.3390/en13081896
This paper provides an investigation into the sustainability of the electrical system in Spain. The analysis covers historic inventories of power generation, installed capacity and technology mix since 1990 and also contemplates four alternative projections for 2030 and 2050. The sustainability is evaluated using eight indicators that provide objective information about the environmental (climate change, fossil depletion, ozone layer depletion, terrestrial acidification, human toxicity and photochemical smog), economic (levelized cost of electricity) and socio-economic (direct employment) performance of the system. The results show an increase in the magnitude of the environmental impacts between 1990 and 2008, due to a growing power demand triggered by economic expansion. After 2008, the environmental performance improves due to the economic recession and the penetration of renewable energies. Overall, the cost of power generation remains rather stable as rising expenses generated by renewables are compensated by a progressive reduction in the cost of fossil technologies. Direct employment generation has been strongly stimulated by the upsurge in renewables that has taken place in Spain after 2008. Regarding future scenarios, the results evidence that the most ambitious projections in terms of renewable penetration perform best in terms of environmental performance, employment generation and reduced costs (€/MWh). The significance of these benefits was particularly clear in the 2050 scenario. In the long term, the scenario considering higher fossil fuel contributions (ST) performed worst in all sustainability indicators.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/8/1896/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/8/1896/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Guillermo San Miguel; María Cerrato;doi: 10.3390/en13081896
This paper provides an investigation into the sustainability of the electrical system in Spain. The analysis covers historic inventories of power generation, installed capacity and technology mix since 1990 and also contemplates four alternative projections for 2030 and 2050. The sustainability is evaluated using eight indicators that provide objective information about the environmental (climate change, fossil depletion, ozone layer depletion, terrestrial acidification, human toxicity and photochemical smog), economic (levelized cost of electricity) and socio-economic (direct employment) performance of the system. The results show an increase in the magnitude of the environmental impacts between 1990 and 2008, due to a growing power demand triggered by economic expansion. After 2008, the environmental performance improves due to the economic recession and the penetration of renewable energies. Overall, the cost of power generation remains rather stable as rising expenses generated by renewables are compensated by a progressive reduction in the cost of fossil technologies. Direct employment generation has been strongly stimulated by the upsurge in renewables that has taken place in Spain after 2008. Regarding future scenarios, the results evidence that the most ambitious projections in terms of renewable penetration perform best in terms of environmental performance, employment generation and reduced costs (€/MWh). The significance of these benefits was particularly clear in the 2050 scenario. In the long term, the scenario considering higher fossil fuel contributions (ST) performed worst in all sustainability indicators.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/8/1896/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/8/1896/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:EC | REPHLECT, EC | HYSOLEC| REPHLECT ,EC| HYSOLCorona, Blanca; Escudero, Lidia; Quéméré, Goulven; Luque-Heredia, Ignacio; San Miguel, Guillermo;High concentrated photovoltaic (HCPV) technology transforms solar radiation into electricity at efficiencies far higher than conventional PV cells. The aim of this paper is to evaluate the environmental impact of a commercial HCPV plant located in Morocco by determining the impact of this technology on a wide range of environmental categories. The results are expected to contribute to a better environmental design and performance of the power plant. A complete life cycle inventory was gathered for a 1.008 MW HCPV power plant located in Casablanca (Morocco). The system was evaluated using a cradle to gate approach, considering 1 MWh as functional unit. ReCiPe Midpoint (World) evaluation method and Simapro Software were used for calculations. A sensitivity analysis on the life expectancy for 20, 25 and 30 years was also performed. Cumulative energy demand and energy payback time were determined for each scenario. The results showed an EPBT of 1.457 years and the following main environmental impacts: climate change 53.3 kg CO2 eq/MWh, freshwater eutrophication 28.3 g P eq/MWh, human toxicity 44.1 kg 1.4-DB eq/MWh, freshwater ecotoxicity 1.20 kg 1.4-DB eq/MWh and marine ecotoxicity 1.20 g 1.4-DB eq/kWh. Most of the impacts were associated with the extraction of raw materials and manufacturing of components, being aluminum and steel the materials with higher impacts. Normalization assigned the highest impacts to the toxicity categories, due mainly to the materials employed in the electronic devices and the aluminum used in the module manufacturing. The end-of-life stage had a significant positive effect on the performance of the plant, reducing the impact on each category by between 8 % (in ozone depletion) and 43 % (in particulate matter formation), due mainly to the recycling of steel and aluminum. The power plant components manufacturing and the electricity consumption from the grid presented a high impact in the life cycle of the plant, implying a significant importance of the local electricity mix. An adequate recycling of the materials is recommendable, since it reduces considerably the impact of the system. The sensitivity analysis revealed a significant improvement in the environmental performance when increasing lifetime expectancy from 20 to 30 years.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-016-1157-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-016-1157-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:EC | REPHLECT, EC | HYSOLEC| REPHLECT ,EC| HYSOLCorona, Blanca; Escudero, Lidia; Quéméré, Goulven; Luque-Heredia, Ignacio; San Miguel, Guillermo;High concentrated photovoltaic (HCPV) technology transforms solar radiation into electricity at efficiencies far higher than conventional PV cells. The aim of this paper is to evaluate the environmental impact of a commercial HCPV plant located in Morocco by determining the impact of this technology on a wide range of environmental categories. The results are expected to contribute to a better environmental design and performance of the power plant. A complete life cycle inventory was gathered for a 1.008 MW HCPV power plant located in Casablanca (Morocco). The system was evaluated using a cradle to gate approach, considering 1 MWh as functional unit. ReCiPe Midpoint (World) evaluation method and Simapro Software were used for calculations. A sensitivity analysis on the life expectancy for 20, 25 and 30 years was also performed. Cumulative energy demand and energy payback time were determined for each scenario. The results showed an EPBT of 1.457 years and the following main environmental impacts: climate change 53.3 kg CO2 eq/MWh, freshwater eutrophication 28.3 g P eq/MWh, human toxicity 44.1 kg 1.4-DB eq/MWh, freshwater ecotoxicity 1.20 kg 1.4-DB eq/MWh and marine ecotoxicity 1.20 g 1.4-DB eq/kWh. Most of the impacts were associated with the extraction of raw materials and manufacturing of components, being aluminum and steel the materials with higher impacts. Normalization assigned the highest impacts to the toxicity categories, due mainly to the materials employed in the electronic devices and the aluminum used in the module manufacturing. The end-of-life stage had a significant positive effect on the performance of the plant, reducing the impact on each category by between 8 % (in ozone depletion) and 43 % (in particulate matter formation), due mainly to the recycling of steel and aluminum. The power plant components manufacturing and the electricity consumption from the grid presented a high impact in the life cycle of the plant, implying a significant importance of the local electricity mix. An adequate recycling of the materials is recommendable, since it reduces considerably the impact of the system. The sensitivity analysis revealed a significant improvement in the environmental performance when increasing lifetime expectancy from 20 to 30 years.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-016-1157-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2016 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-016-1157-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV G. San Miguel; David P. Serrano; J.M. Rodríguez; José M. Escola; José María Aguado;Abstract Pyrolysis coupled with gas chromatographic separation and mass spectrometry detection (Py–GC/MS) has been used to study the catalytic degradation of low-density polyethylene (LDPE). This novel approach allowed rapid screening of the catalytic activity of different acid solids and permitted a straightforward analysis of the resulting products. The results obtained are comparable to those reported by other authors while very small sample and catalysts masses (less than 0.2 mg) were required. For the purpose of this work, three acid solids differing in their textural and acid properties (micrometer HZSM-5, nanocrystaline n -HZSM-5 and Al-MCM-41) were synthesized, characterised for their chemical and structural characteristics and tested for their thermal stability between 550 and 800 °C. Thermogravimetric (TG) analysis was then employed to evaluate their catalytic activity in the degradation of pure LDPE. This activity was related to their capacity to shift the degradation reaction to lower temperatures. Py–GC/MS analysis of pure LDPE at 700 °C generated a pyrogram with characteristic triplets corresponding to straight chain diene, alkene and alkane hydrocarbons of varying lengths. Catalytic degradation of LDPE over micrometer and nanocystalline HZSM-5 zeolites generated a similar range of degradation products with a marked increase in the light olefins and aromatic fractions (e.g. benzene, toluene, xylene) and complete elimination of heavier olefin and paraffin hydrocarbons. Despite its high catalytic activity, as determined by TG analysis, mesoporous Al-MCM-41 exhibited no shape selectivity in the products generated with a low proportion of aromatics and a higher content of olefin and paraffin species.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2004.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2004.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV G. San Miguel; David P. Serrano; J.M. Rodríguez; José M. Escola; José María Aguado;Abstract Pyrolysis coupled with gas chromatographic separation and mass spectrometry detection (Py–GC/MS) has been used to study the catalytic degradation of low-density polyethylene (LDPE). This novel approach allowed rapid screening of the catalytic activity of different acid solids and permitted a straightforward analysis of the resulting products. The results obtained are comparable to those reported by other authors while very small sample and catalysts masses (less than 0.2 mg) were required. For the purpose of this work, three acid solids differing in their textural and acid properties (micrometer HZSM-5, nanocrystaline n -HZSM-5 and Al-MCM-41) were synthesized, characterised for their chemical and structural characteristics and tested for their thermal stability between 550 and 800 °C. Thermogravimetric (TG) analysis was then employed to evaluate their catalytic activity in the degradation of pure LDPE. This activity was related to their capacity to shift the degradation reaction to lower temperatures. Py–GC/MS analysis of pure LDPE at 700 °C generated a pyrogram with characteristic triplets corresponding to straight chain diene, alkene and alkane hydrocarbons of varying lengths. Catalytic degradation of LDPE over micrometer and nanocystalline HZSM-5 zeolites generated a similar range of degradation products with a marked increase in the light olefins and aromatic fractions (e.g. benzene, toluene, xylene) and complete elimination of heavier olefin and paraffin hydrocarbons. Despite its high catalytic activity, as determined by TG analysis, mesoporous Al-MCM-41 exhibited no shape selectivity in the products generated with a low proportion of aromatics and a higher content of olefin and paraffin species.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2004.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2004.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 NetherlandsPublisher:Elsevier BV Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Cristina de la Rúa; Guillermo San Miguel;Concentrated Solar Power (CSP) is receiving increasing attention as a technology with the potential to provide clean electricity in a cost effective and dispatchable manner. Despite its renewable nature, solar power generation generates impacts that need to be adequately evaluated and managed. The objective of this paper is to estimate the socioeconomic and environmental life cycle impacts of the production of electricity by a commercial CSP plant using Multiregional Input Output Analysis. These effects have been estimated in terms of additional economic activity, value added, employment creation, climate change, acidification, photochemical oxidant formation and primary energy consumption. Additionally, the economic sectors and countries with higher effects in the value chain have been identified. The results are presented both in gross and net terms, including not only the effects of the system’s life cycle, but also the avoided effects derived from the displacement of other technologies in the Spanish electricity market. The effects of the displaced electricity have been calculated by estimating the Levelized Cost Of Energy of the mix of marginal technologies displaced by the CSP plant. The results indicate that producing electricity in a CSP plant and selling it into the Spanish electricity market results in net positive impacts on the economy, the employment and the environment both at a national and global scale. Taking into consideration the electricity technologies displaced by the CSP plant, the socioeconomic net effects amount to 167 €/MWh of goods and services generated, 87.9 €/MWh of value added and 4.67 h/MWh of employment creation. The global and net environmental impacts on climate change, photochemical oxidant formation, acidification and primary energy consumption amount to −188 kg eq CO2/MWh, 8 g eq NMVOC/MWh, −389 g eq SO2/MWh and −4169 MJ/MWh, respectively, implying a net prevention of pollutant emissions and primary energy consumption.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.03.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.03.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 NetherlandsPublisher:Elsevier BV Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Cristina de la Rúa; Guillermo San Miguel;Concentrated Solar Power (CSP) is receiving increasing attention as a technology with the potential to provide clean electricity in a cost effective and dispatchable manner. Despite its renewable nature, solar power generation generates impacts that need to be adequately evaluated and managed. The objective of this paper is to estimate the socioeconomic and environmental life cycle impacts of the production of electricity by a commercial CSP plant using Multiregional Input Output Analysis. These effects have been estimated in terms of additional economic activity, value added, employment creation, climate change, acidification, photochemical oxidant formation and primary energy consumption. Additionally, the economic sectors and countries with higher effects in the value chain have been identified. The results are presented both in gross and net terms, including not only the effects of the system’s life cycle, but also the avoided effects derived from the displacement of other technologies in the Spanish electricity market. The effects of the displaced electricity have been calculated by estimating the Levelized Cost Of Energy of the mix of marginal technologies displaced by the CSP plant. The results indicate that producing electricity in a CSP plant and selling it into the Spanish electricity market results in net positive impacts on the economy, the employment and the environment both at a national and global scale. Taking into consideration the electricity technologies displaced by the CSP plant, the socioeconomic net effects amount to 167 €/MWh of goods and services generated, 87.9 €/MWh of value added and 4.67 h/MWh of employment creation. The global and net environmental impacts on climate change, photochemical oxidant formation, acidification and primary energy consumption amount to −188 kg eq CO2/MWh, 8 g eq NMVOC/MWh, −389 g eq SO2/MWh and −4169 MJ/MWh, respectively, implying a net prevention of pollutant emissions and primary energy consumption.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.03.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.03.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:AIP Publishing Authors: P. Sanginés; M. P. Domínguez; F. Sánchez; G. San Miguel;doi: 10.1063/1.4923442
The aim of this work is to investigate the slow pyrolysis of olive stones in a rotary kiln as a means to increase the fuel properties and potential use of this renewable solid fuel. The pyrolysis process takes place primarily at temperatures between 300 and 500 °C resulting in the transformation of the solid biomass into a biochar, a pyrolysis liquid (up to 38.1 wt. %) and a non-condensable gas fraction (up to 35.4 wt. %). This thermal treatment has a positive influence in the fuel properties of the solid fraction in terms of increased C content (up to 75.9 wt. %), reduced O/C and H/C ratios (down to 0.28 and 0.03), reduced volatile matter and moisture content (down to 6.9 wt. % and below 1.0 wt. %, respectively), increased fixed carbon (up to 90.2 wt. %), increased Lower Heating Value (LHVo up to 37.1 MJ/kg) and energy density (26.7 GJ/m3). The process also involved changes in the surface chemistry (increasingly hydrophobic nature) and textural properties of the solid (formation of cracks and internal voids, resulting in the development of a pore structure of up to 0.193 cm3/g and a surface area up to 507 m2/g). The condensable and gas fractions resulting from the pyrolysis process may also be used for their fuel properties. Thus, the pyrolysis liquid exhibited a high water content (62.5 wt. %), a mass density of 1.063 kg/m3, a viscosity of 1.33 cSt, and a Higher Heating Value (HHVo) of 16.9 MJ/kg. The gas fraction resulting from the pyrolysis of olive stones contains high concentrations of combustible gases like CO and H2, and lower proportions of light hydrocarbons. The gas fraction exhibited HHV up to 6.83 MJ/Nm3 due primarily to CO and H2, while the formation of light hydrocarbons was very limited. The energy distribution resulting from the pyrolysis of olive stone at 700 °C (following completion of the thermal degradation) is as follows: solid fraction 48.2%; oil fraction 11.0%; and gas fraction and energy losses (by difference) 40.8%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4923442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4923442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:AIP Publishing Authors: P. Sanginés; M. P. Domínguez; F. Sánchez; G. San Miguel;doi: 10.1063/1.4923442
The aim of this work is to investigate the slow pyrolysis of olive stones in a rotary kiln as a means to increase the fuel properties and potential use of this renewable solid fuel. The pyrolysis process takes place primarily at temperatures between 300 and 500 °C resulting in the transformation of the solid biomass into a biochar, a pyrolysis liquid (up to 38.1 wt. %) and a non-condensable gas fraction (up to 35.4 wt. %). This thermal treatment has a positive influence in the fuel properties of the solid fraction in terms of increased C content (up to 75.9 wt. %), reduced O/C and H/C ratios (down to 0.28 and 0.03), reduced volatile matter and moisture content (down to 6.9 wt. % and below 1.0 wt. %, respectively), increased fixed carbon (up to 90.2 wt. %), increased Lower Heating Value (LHVo up to 37.1 MJ/kg) and energy density (26.7 GJ/m3). The process also involved changes in the surface chemistry (increasingly hydrophobic nature) and textural properties of the solid (formation of cracks and internal voids, resulting in the development of a pore structure of up to 0.193 cm3/g and a surface area up to 507 m2/g). The condensable and gas fractions resulting from the pyrolysis process may also be used for their fuel properties. Thus, the pyrolysis liquid exhibited a high water content (62.5 wt. %), a mass density of 1.063 kg/m3, a viscosity of 1.33 cSt, and a Higher Heating Value (HHVo) of 16.9 MJ/kg. The gas fraction resulting from the pyrolysis of olive stones contains high concentrations of combustible gases like CO and H2, and lower proportions of light hydrocarbons. The gas fraction exhibited HHV up to 6.83 MJ/Nm3 due primarily to CO and H2, while the formation of light hydrocarbons was very limited. The energy distribution resulting from the pyrolysis of olive stone at 700 °C (following completion of the thermal degradation) is as follows: solid fraction 48.2%; oil fraction 11.0%; and gas fraction and energy losses (by difference) 40.8%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4923442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4923442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Blanca Corona; Guillermo San Miguel;Purpose Life cycle sustainability analysis (LCSA) is being developed as a holistic tool to evaluate environmental, economic and social impacts of products or services throughout their life cycle. This study responds to the need expressed by the scientific community to develop and test LCSA methodology, by assessing the sustainability of a concentrated solar power (CSP) plant based on HYSOL technology (an innovative configuration delivering improved efficiency and power dispatchability). Methods The methodology proposed consists of three stages: goal and scope definition, modelling and application of tools, and interpretation of results. The goal of the case study was to investigate to what extent may the HYSOL technology improve the sustainability of power generation in the Spanish electricity sector. To this purpose, several sustainability sub-questions were framed and different analysis tools were applied as follows: attributional and consequential life cycle assessment, life cycle cost (LCC) analysis and multiregional input-output analysis (MRIO), and social life cycle assessment (S-LCA) in combination with social risk assessment (with the Social Hotspots Database). Visual diagrams representing the sustainability of the analysed scenarios were also produced to facilitate the interpretation of results and decision making. Results and discussion The results obtained in the three sustainability dimensions were integrated using a “questions and answers” layout, each answer describing a specific element of sustainability. The HYSOL technology was investigated considering two different operation modes: HYSOL BIO with biomethane as hybridization fuel and HYSOL NG with natural gas. The results indicated that the deployment of HYSOL technology would produce a reduction in the climate change impact of the electricity sector for both operation modes. The LCC analysis indicated economic benefits per MWh for a HYSOL NG power plant, but losses for a HYSOL BIO power plant. The MRIO analysis indicated an increase in goods and services generation, and value added for the HYSOL technology affecting primarily Spain and to a lower extent other foreign economies. The social analysis indicated that both alternatives would provide a slight increase of social welfare Spain. Conclusions The methodological approach described in this investigation provided flexibility in the selection of objectives and analysis tools, which helped to quantify the sustainability effect of the system at a micro and meso level in the three sustainability dimensions. The results indicated that the innovation of HYSOL power plants is well aimed to improve the sustainability of CSP technology and the Spanish electricity sector.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2019Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1568-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2019Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1568-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HYSOLEC| HYSOLAuthors: Blanca Corona; Blanca Corona; Guillermo San Miguel;Purpose Life cycle sustainability analysis (LCSA) is being developed as a holistic tool to evaluate environmental, economic and social impacts of products or services throughout their life cycle. This study responds to the need expressed by the scientific community to develop and test LCSA methodology, by assessing the sustainability of a concentrated solar power (CSP) plant based on HYSOL technology (an innovative configuration delivering improved efficiency and power dispatchability). Methods The methodology proposed consists of three stages: goal and scope definition, modelling and application of tools, and interpretation of results. The goal of the case study was to investigate to what extent may the HYSOL technology improve the sustainability of power generation in the Spanish electricity sector. To this purpose, several sustainability sub-questions were framed and different analysis tools were applied as follows: attributional and consequential life cycle assessment, life cycle cost (LCC) analysis and multiregional input-output analysis (MRIO), and social life cycle assessment (S-LCA) in combination with social risk assessment (with the Social Hotspots Database). Visual diagrams representing the sustainability of the analysed scenarios were also produced to facilitate the interpretation of results and decision making. Results and discussion The results obtained in the three sustainability dimensions were integrated using a “questions and answers” layout, each answer describing a specific element of sustainability. The HYSOL technology was investigated considering two different operation modes: HYSOL BIO with biomethane as hybridization fuel and HYSOL NG with natural gas. The results indicated that the deployment of HYSOL technology would produce a reduction in the climate change impact of the electricity sector for both operation modes. The LCC analysis indicated economic benefits per MWh for a HYSOL NG power plant, but losses for a HYSOL BIO power plant. The MRIO analysis indicated an increase in goods and services generation, and value added for the HYSOL technology affecting primarily Spain and to a lower extent other foreign economies. The social analysis indicated that both alternatives would provide a slight increase of social welfare Spain. Conclusions The methodological approach described in this investigation provided flexibility in the selection of objectives and analysis tools, which helped to quantify the sustainability effect of the system at a micro and meso level in the three sustainability dimensions. The results indicated that the innovation of HYSOL power plants is well aimed to improve the sustainability of CSP technology and the Spanish electricity sector.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2019Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1568-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2019Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1568-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu