- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCChanghong Wang; Shuo Wang; Xudong Liu; Yanlong Wu; Ruizhi Yu; Hui Duan; Jung Tae Kim; Huan Huang; Jiantao Wang; Yifei Mo; Xueliang Sun;doi: 10.1039/d3ee01119d
Achieving a balance between lithium ion and vacant site contents plays a crucial role in obtaining optimal ionic conductivity in halide electrolytes, especially with a hexagonal close packing (hcp) anion framework.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01119d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01119d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Zhongxin Song; Junjie Li; Qianling Zhang; Yongliang Li; Xiangzhong Ren; Lei Zhang; Xueliang Sun;doi: 10.1002/cey2.342
AbstractA fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy. Although noble metals show good activity in fuel cell‐related electrochemical reactions, their ever‐increasing price considerably hinders their industrial application. Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts, and this allows for the use of fewer catalysts, saving greatly on the cost. Thus, single‐atom catalysts (SACs) with an atom utilization efficiency of 100% have been widely developed, which show remarkable performance in fuel cells. In this review, we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications. First, we will introduce several effective routes for the synthesis of SACs. The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity. Then, we will systematically summarize the application of Pt group metal (PGM) and nonprecious group metal (non‐PGM) catalysts in membrane electrode assembly of fuel cells. This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Funded by:NSERCNSERCZhongxin Song; Qi Wang; Junjie Li; Keegan Adair; Ruying Li; Lei Zhang; Meng Gu; Xueliang Sun;doi: 10.1002/eom2.12351
AbstractPt‐Ir catalysts have been widely applied in unitized regenerative fuel cells due to their great activity for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the application of noble metals is seriously hindered by their high cost and low abundance. To reduce the noble metals loading and catalyst cost, the atomic layer deposition is applied to selectively surface anchoring of Ir single atoms (SA) on Pt nanoparticles (NP). With the formation of SA‐NP composite structure, the IrSA‐PtNP catalyst exhibits significantly improved performance, achieving 2.0‐ and 90‐times mass activity by comparison with the benchmark Pt/C catalyst for the ORR and OER, respectively. Density functional theory calculations indicate that the SA‐NP cooperation synergy endows the IrSA‐PtNP catalyst to surpass the bifunctional catalytic activity limit of Pt‐Ir NPs. This work provides a novel strategy for the construction of high‐performing dual catalyst through designing the single atom anchoring on NPs.image
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCChanghong Wang; Jianwen Liang; Yang Zhao; Matthew Zheng; Xiaona Li; Xueliang Sun;doi: 10.1039/d1ee00551k
This review summarizes the latest fundamental research advances on all-solid-state lithium batteries with sulfide electrolytes and provides an energy-density-oriented roadmap for practical solid-state pouch cells.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee00551k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 148 citations 148 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee00551k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Funded by:NSERCNSERCWei Xia; Yang Zhao; Feipeng Zhao; Keegan Adair; Ruo Zhao; Shuai Li; Ruqiang Zou; Yusheng Zhao; Xueliang Sun;pmid: 35015520
Solid-state batteries have fascinated the research community over the past decade, largely due to their improved safety properties and potential for high-energy density. Searching for fast ion conductors with sufficient electrochemical and chemical stabilities is at the heart of solid-state battery research and applications. Recently, significant progress has been made in solid-state electrolyte development. Sulfide-, oxide-, and halide-based electrolytes have been able to achieve high ionic conductivities of more than 10-3 S/cm at room temperature, which are comparable to liquid-based electrolytes. However, their stability toward Li metal anodes poses significant challenges for these electrolytes. The existence of non-Li cations that can be reduced by Li metal in these electrolytes hinders the application of Li anode and therefore poses an obstacle toward achieving high-energy density. The finding of antiperovskites as ionic conductors in recent years has demonstrated a new and exciting solution. These materials, mainly constructed from Li (or Na), O, and Cl (or Br), are lightweight and electrochemically stable toward metallic Li and possess promising ionic conductivity. Because of the structural flexibility and tunability, antiperovskite electrolytes are excellent candidates for solid-state battery applications, and researchers are still exploring the relationship between their structure and ion diffusion behavior. Herein, the recent progress of antiperovskites for solid-state batteries is reviewed, and the strategies to tune the ionic conductivity by structural manipulation are summarized. Major challenges and future directions are discussed to facilitate the development of antiperovskite-based solid-state batteries.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.1c00594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 147 citations 147 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.1c00594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Royal Society of Chemistry (RSC) Funded by:NSERC, NSF | Collaborative Research: I...NSERC ,NSF| Collaborative Research: Integrating Physics and Generative Machine-Learning Models for Inverse Materials DesignFeipeng Zhao; Shumin Zhang; Shuo Wang; Carmen M. Andrei; Hui Yuan; Jigang Zhou; Jian Wang; Zengqing Zhuo; Yu Zhong; Han Su; Jung Tae Kim; Ruizhi Yu; Yingjie Gao; Jinghua Guo; Tsun-Kong Sham; Yifei Mo; Xueliang Sun;doi: 10.1039/d4ee00750f
The superionic conductor, lithium tantalum oxychloride (LTOC), exhibits unprecedented stability with Co-lean and Ni-rich cathodes, while lowering the working temperature proves effective in regulating the Co-rich cathode interface with LTOC.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee00750f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee00750f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCYipeng Sun; Changtai Zhao; Keegan R. Adair; Yang Zhao; Lyudmila V. Goncharova; Jianneng Liang; Changhong Wang; Junjie Li; Ruying Li; Mei Cai; Tsun-Kong Sham; Xueliang Sun;doi: 10.1039/d1ee01140e
A functional polyurea protective coating with the gradient distribution of an inorganic component was constructed to achieve a high-performance lithium metal anode.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee01140e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee01140e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCYipeng Sun; Jinjin Ma; Duojie Wu; Changhong Wang; Yang Zhao; Matthew Zheng; Ruizhi Yu; Weihan Li; Minsi Li; Yingjie Gao; Xiaoting Lin; Hui Duan; Jiamin Fu; Zhiqiang Wang; Ruying Li; M. Danny Gu; Tsun-Kong Sham; Xueliang Sun;doi: 10.1039/d4ee01254b
A thin molecular level surface modification layer is constructed for a nickel-rich layered oxide cathode to boost long-term cycling stability.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee01254b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee01254b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Wiley Jianwen Liang; Eveline van der Maas; Jing Luo; Xiaona Li; Ning Chen; Keegan R. Adair; Weihan Li; Junjie Li; Yongfeng Hu; Jue Liu; Li Zhang; Shangqian Zhao; Shigang Lu; Jiantao Wang; Huan Huang; Wenxuan Zhao; Steven Parnell; Ronald I. Smith; Swapna Ganapathy; Marnix Wagemaker; Xueliang Sun;AbstractUnderstanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of superionic conductors. Here, a series of Li3‐3xM1+xCl6 (−0.14 < x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm) solid electrolytes with orthorhombic and trigonal structures are reported. The orthorhombic phase of Li–M–Cl shows an approximately one order of magnitude increase in ionic conductivities when compared to their trigonal phase. Using the Li–Ho–Cl components as an example, their structures, phase transition, ionic conductivity, and electrochemical stability are studied. Molecular dynamics simulations reveal the facile diffusion in the z‐direction in the orthorhombic structure, rationalizing the improved ionic conductivities. All‐solid‐state batteries of NMC811/Li2.73Ho1.09Cl6/In demonstrate excellent electrochemical performance at both 25 and −10 °C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy guides the design of halide superionic conductors.
Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202103921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202103921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Tingyi Zhou; Yi Guan; Changjie He; Lei Zhang; Xueliang Sun; Zhongxin Song; Qianling Zhang; Chuanxin He; Xiantao Jiang; Zhaoyan Luo; Wei Xing; Xiangzhong Ren;doi: 10.1002/cey2.477
AbstractThe high‐temperature pyrolysis process for preparing M–N–C single‐atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms (SAs), atomic clusters to nanoparticles. Therefore, understanding the interactions among these components, especially the synergistic effects between single atomic sites and cluster sites, is crucial for improving the oxygen reduction reaction (ORR) activity of M–N–C catalysts. Accordingly, herein, we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy. We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron‐withdrawing –OH ligands and decreasing the d‐band center of the Fe center. The as‐developed catalyst exhibits encouraging ORR activity with half‐wave potentials (E1/2) of 0.831 and 0.905 V in acidic and alkaline media, respectively. Moreover, the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst. The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metal–air battery device. Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of single‐atom site catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCChanghong Wang; Shuo Wang; Xudong Liu; Yanlong Wu; Ruizhi Yu; Hui Duan; Jung Tae Kim; Huan Huang; Jiantao Wang; Yifei Mo; Xueliang Sun;doi: 10.1039/d3ee01119d
Achieving a balance between lithium ion and vacant site contents plays a crucial role in obtaining optimal ionic conductivity in halide electrolytes, especially with a hexagonal close packing (hcp) anion framework.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01119d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01119d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Zhongxin Song; Junjie Li; Qianling Zhang; Yongliang Li; Xiangzhong Ren; Lei Zhang; Xueliang Sun;doi: 10.1002/cey2.342
AbstractA fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy. Although noble metals show good activity in fuel cell‐related electrochemical reactions, their ever‐increasing price considerably hinders their industrial application. Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts, and this allows for the use of fewer catalysts, saving greatly on the cost. Thus, single‐atom catalysts (SACs) with an atom utilization efficiency of 100% have been widely developed, which show remarkable performance in fuel cells. In this review, we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications. First, we will introduce several effective routes for the synthesis of SACs. The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity. Then, we will systematically summarize the application of Pt group metal (PGM) and nonprecious group metal (non‐PGM) catalysts in membrane electrode assembly of fuel cells. This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Funded by:NSERCNSERCZhongxin Song; Qi Wang; Junjie Li; Keegan Adair; Ruying Li; Lei Zhang; Meng Gu; Xueliang Sun;doi: 10.1002/eom2.12351
AbstractPt‐Ir catalysts have been widely applied in unitized regenerative fuel cells due to their great activity for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the application of noble metals is seriously hindered by their high cost and low abundance. To reduce the noble metals loading and catalyst cost, the atomic layer deposition is applied to selectively surface anchoring of Ir single atoms (SA) on Pt nanoparticles (NP). With the formation of SA‐NP composite structure, the IrSA‐PtNP catalyst exhibits significantly improved performance, achieving 2.0‐ and 90‐times mass activity by comparison with the benchmark Pt/C catalyst for the ORR and OER, respectively. Density functional theory calculations indicate that the SA‐NP cooperation synergy endows the IrSA‐PtNP catalyst to surpass the bifunctional catalytic activity limit of Pt‐Ir NPs. This work provides a novel strategy for the construction of high‐performing dual catalyst through designing the single atom anchoring on NPs.image
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCChanghong Wang; Jianwen Liang; Yang Zhao; Matthew Zheng; Xiaona Li; Xueliang Sun;doi: 10.1039/d1ee00551k
This review summarizes the latest fundamental research advances on all-solid-state lithium batteries with sulfide electrolytes and provides an energy-density-oriented roadmap for practical solid-state pouch cells.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee00551k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 148 citations 148 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee00551k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Funded by:NSERCNSERCWei Xia; Yang Zhao; Feipeng Zhao; Keegan Adair; Ruo Zhao; Shuai Li; Ruqiang Zou; Yusheng Zhao; Xueliang Sun;pmid: 35015520
Solid-state batteries have fascinated the research community over the past decade, largely due to their improved safety properties and potential for high-energy density. Searching for fast ion conductors with sufficient electrochemical and chemical stabilities is at the heart of solid-state battery research and applications. Recently, significant progress has been made in solid-state electrolyte development. Sulfide-, oxide-, and halide-based electrolytes have been able to achieve high ionic conductivities of more than 10-3 S/cm at room temperature, which are comparable to liquid-based electrolytes. However, their stability toward Li metal anodes poses significant challenges for these electrolytes. The existence of non-Li cations that can be reduced by Li metal in these electrolytes hinders the application of Li anode and therefore poses an obstacle toward achieving high-energy density. The finding of antiperovskites as ionic conductors in recent years has demonstrated a new and exciting solution. These materials, mainly constructed from Li (or Na), O, and Cl (or Br), are lightweight and electrochemically stable toward metallic Li and possess promising ionic conductivity. Because of the structural flexibility and tunability, antiperovskite electrolytes are excellent candidates for solid-state battery applications, and researchers are still exploring the relationship between their structure and ion diffusion behavior. Herein, the recent progress of antiperovskites for solid-state batteries is reviewed, and the strategies to tune the ionic conductivity by structural manipulation are summarized. Major challenges and future directions are discussed to facilitate the development of antiperovskite-based solid-state batteries.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.1c00594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 147 citations 147 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.1c00594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Royal Society of Chemistry (RSC) Funded by:NSERC, NSF | Collaborative Research: I...NSERC ,NSF| Collaborative Research: Integrating Physics and Generative Machine-Learning Models for Inverse Materials DesignFeipeng Zhao; Shumin Zhang; Shuo Wang; Carmen M. Andrei; Hui Yuan; Jigang Zhou; Jian Wang; Zengqing Zhuo; Yu Zhong; Han Su; Jung Tae Kim; Ruizhi Yu; Yingjie Gao; Jinghua Guo; Tsun-Kong Sham; Yifei Mo; Xueliang Sun;doi: 10.1039/d4ee00750f
The superionic conductor, lithium tantalum oxychloride (LTOC), exhibits unprecedented stability with Co-lean and Ni-rich cathodes, while lowering the working temperature proves effective in regulating the Co-rich cathode interface with LTOC.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee00750f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee00750f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCYipeng Sun; Changtai Zhao; Keegan R. Adair; Yang Zhao; Lyudmila V. Goncharova; Jianneng Liang; Changhong Wang; Junjie Li; Ruying Li; Mei Cai; Tsun-Kong Sham; Xueliang Sun;doi: 10.1039/d1ee01140e
A functional polyurea protective coating with the gradient distribution of an inorganic component was constructed to achieve a high-performance lithium metal anode.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee01140e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee01140e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCYipeng Sun; Jinjin Ma; Duojie Wu; Changhong Wang; Yang Zhao; Matthew Zheng; Ruizhi Yu; Weihan Li; Minsi Li; Yingjie Gao; Xiaoting Lin; Hui Duan; Jiamin Fu; Zhiqiang Wang; Ruying Li; M. Danny Gu; Tsun-Kong Sham; Xueliang Sun;doi: 10.1039/d4ee01254b
A thin molecular level surface modification layer is constructed for a nickel-rich layered oxide cathode to boost long-term cycling stability.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee01254b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee01254b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Wiley Jianwen Liang; Eveline van der Maas; Jing Luo; Xiaona Li; Ning Chen; Keegan R. Adair; Weihan Li; Junjie Li; Yongfeng Hu; Jue Liu; Li Zhang; Shangqian Zhao; Shigang Lu; Jiantao Wang; Huan Huang; Wenxuan Zhao; Steven Parnell; Ronald I. Smith; Swapna Ganapathy; Marnix Wagemaker; Xueliang Sun;AbstractUnderstanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of superionic conductors. Here, a series of Li3‐3xM1+xCl6 (−0.14 < x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm) solid electrolytes with orthorhombic and trigonal structures are reported. The orthorhombic phase of Li–M–Cl shows an approximately one order of magnitude increase in ionic conductivities when compared to their trigonal phase. Using the Li–Ho–Cl components as an example, their structures, phase transition, ionic conductivity, and electrochemical stability are studied. Molecular dynamics simulations reveal the facile diffusion in the z‐direction in the orthorhombic structure, rationalizing the improved ionic conductivities. All‐solid‐state batteries of NMC811/Li2.73Ho1.09Cl6/In demonstrate excellent electrochemical performance at both 25 and −10 °C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy guides the design of halide superionic conductors.
Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202103921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202103921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Tingyi Zhou; Yi Guan; Changjie He; Lei Zhang; Xueliang Sun; Zhongxin Song; Qianling Zhang; Chuanxin He; Xiantao Jiang; Zhaoyan Luo; Wei Xing; Xiangzhong Ren;doi: 10.1002/cey2.477
AbstractThe high‐temperature pyrolysis process for preparing M–N–C single‐atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms (SAs), atomic clusters to nanoparticles. Therefore, understanding the interactions among these components, especially the synergistic effects between single atomic sites and cluster sites, is crucial for improving the oxygen reduction reaction (ORR) activity of M–N–C catalysts. Accordingly, herein, we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy. We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron‐withdrawing –OH ligands and decreasing the d‐band center of the Fe center. The as‐developed catalyst exhibits encouraging ORR activity with half‐wave potentials (E1/2) of 0.831 and 0.905 V in acidic and alkaline media, respectively. Moreover, the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst. The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metal–air battery device. Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of single‐atom site catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu