Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
16 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Serrano, Antonio;
    Serrano, Antonio
    ORCID
    Harvested from ORCID Public Data File

    Serrano, Antonio in OpenAIRE
    orcid Siles, Jose A.;
    Siles, Jose A.
    ORCID
    Harvested from ORCID Public Data File

    Siles, Jose A. in OpenAIRE
    orcid Chica, Arturo F.;
    Chica, Arturo F.
    ORCID
    Harvested from ORCID Public Data File

    Chica, Arturo F. in OpenAIRE
    orcid Martin, M. Angeles;
    Martin, M. Angeles
    ORCID
    Harvested from ORCID Public Data File

    Martin, M. Angeles in OpenAIRE

    Anaerobic co-digestion is a promising alternative to manage agri-food waste rather than landfilling, composting or incineration. But improvement of methane yield and biodegradability is often required to optimize its economic viability. Biomethanization of agri-food solid waste presents the disadvantage of a slow hydrolytic phase, which might be enhanced by adding a readily digestible substrate such as glycerol. In this study, strawberry extrudate, fish waste and crude glycerol derived from biodiesel manufacturing are mixed at a proportion of 54:5:41, in VS (VS, total volatile solids), respectively. The mesophilic anaerobic co-digestion at lab-scale of the mixture was stable at loads lower than 1.85 g VS/L, reaching a methane yield coefficient of 308 L CH4/kg VS (0 °C, 1 atm) and a biodegradability of 96.7%, in VS. Moreover, the treatment capacity of strawberry and fish waste was increased 16% at adding the crude glycerol. An economic assessment was also carried out in order to evaluate the applicability of the proposed process. Even in a pessimistic scenario, the net balance was found to be positive. The glycerol adding implied a net saving in a range from 25.5 to 42.1 €/t if compared to landfill disposal.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repositorio Instituc...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repositorio Instituc...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid María Ángeles Martín;
    María Ángeles Martín
    ORCID
    Harvested from ORCID Public Data File

    María Ángeles Martín in OpenAIRE
    orcid A.F. Chica;
    A.F. Chica
    ORCID
    Harvested from ORCID Public Data File

    A.F. Chica in OpenAIRE
    orcid José A. Siles;
    José A. Siles
    ORCID
    Harvested from ORCID Public Data File

    José A. Siles in OpenAIRE
    Antonio Martín;

    Recent research has demonstrated that orange peel waste is a potentially valuable resource that can be developed into high value products such as methane. Following a pre-treatment to extract D-limonene, the anaerobic digestion of orange peel waste was evaluated at laboratory and pilot scale under mesophilic and thermophilic conditions. D-limonene removals of 70% were reached with pre-treatment. The results showed the convenience of thermophilic conditions for treating this waste as the methane production rate and biodegradability were higher than at mesophilic temperature. At pilot scale, a thermophilic continuously stirred-tank reactor working in semi-continuous mode was employed. The OLR was found to be in the range of 1.20-3.67 kg COD/m(3) d; the most appropriate range for working under stable conditions at SRT of 25 d. The methane yield coefficient was found to be 0.27-0.29 L(STP)CH(4)/g added COD and the biodegradability 84-90% under these conditions. However, acidification occurred at the highest OLR.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    172
    citations172
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid María Ángeles Martín;
    María Ángeles Martín
    ORCID
    Harvested from ORCID Public Data File

    María Ángeles Martín in OpenAIRE
    orcid A.F. Chica;
    A.F. Chica
    ORCID
    Harvested from ORCID Public Data File

    A.F. Chica in OpenAIRE
    orcid M.C. Gutiérrez;
    M.C. Gutiérrez
    ORCID
    Harvested from ORCID Public Data File

    M.C. Gutiérrez in OpenAIRE
    orcid José A. Siles;
    José A. Siles
    ORCID
    Harvested from ORCID Public Data File

    José A. Siles in OpenAIRE

    Abstract The recovery of squalene from deodorizer distillate derived from the physical refining of olive oil was evaluated by combining pressurized acidic esterification in a closed system with vacuum distillation. Esterification was carried out at 341, 359, 366, 391 and 395 K. The reaction at 395 K was found to be satisfactory as it decreased the acid value by 99.21% and generated a FAME concentration of 67.53% within 1 h. In order to demonstrate that the generation of FAME from deodorizer distillate was mainly due to the transformation of FFA, the reaction extent, which characterizes the reaction and simplifies calculations, was evaluated for FFA removal and the generation of FAME. Subsequent vacuum distillation allowed the separation of one fraction rich in FAME (94%), which can be used as a biofuel and accounted for 85% of the initial mass, and another fraction that was rich in squalene (78%) and may be used for manufacturing pharmaceutical products. The global squalene yield was 117 g kg−1 initial deodorizer distillate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Serna-Jiménez, Johanna;
    Serna-Jiménez, Johanna
    ORCID
    Harvested from ORCID Public Data File

    Serna-Jiménez, Johanna in OpenAIRE
    Siles López, José Ángel; orcid Martín Santos, María Ángeles;
    Martín Santos, María Ángeles
    ORCID
    Harvested from ORCID Public Data File

    Martín Santos, María Ángeles in OpenAIRE
    orcid Chica Pérez, Arturo F.;
    Chica Pérez, Arturo F.
    ORCID
    Harvested from ORCID Public Data File

    Chica Pérez, Arturo F. in OpenAIRE

    AbstractBanana and plantain (Musa spp.) are among the most popular crops especially in tropical and sub‐tropical zones. Musa spp. is a unique, perennial, single‐harvest plant that after fruit harvesting is decapitated and generates large amounts of waste and by‐products: leaves and pseudostem. Fruit processing also generates waste peels and discarded pieces. Recent research has demonstrated that this type of organic substrate represents a potentially valuable resource that can be developed into high‐value products. These developments are critically reviewed in this article, which includes a summary of the composition and biocompounds contained in pseudostem and peel, the use of Musa spp. waste in animal and human feed and the obtention of fiber to make paper, rope, handcrafts and combustion materials. On the other hand, the potential for polysaccharides to be fermented and transformed into ethanol, methane or hydrogen, the obtention of single‐cell protein (microbial protein) and the use of solid residues for composting or as a substrate for mushrooms cultivation have also been evaluated. The applications described represent great opportunities for economic benefits from this agro‐industrial waste. A scheme for the integrated utilization of Musa spp. waste in a biorefinery approach is presented as well.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Helvia - Repositorio...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biofuels Bioproducts and Biorefining
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    hybrid
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Helvia - Repositorio...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biofuels Bioproducts and Biorefining
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid María Ángeles Martín;
    María Ángeles Martín
    ORCID
    Harvested from ORCID Public Data File

    María Ángeles Martín in OpenAIRE
    orcid A.F. Chica;
    A.F. Chica
    ORCID
    Harvested from ORCID Public Data File

    A.F. Chica in OpenAIRE
    M. Berrios; Antonio Martín;

    Abstract In Europe, methyl esters cannot be classified as biodiesel until the EN 14214 Standard specifications are fulfilled. The aim of this paper is to examine the efficiency of removing several impurities in biodiesel from used cooking oils by means of three basic operations under conditions that have been kept as close to commercial operating practice as possible: (a) adsorption (magnesium silicate and bentonite); (b) liquid–liquid extraction (distilled water, tap water, glycerol); and (c) ion exchange (cation resin). The results show that all the purification methods can remove soap, methanol and glycerol effectively, while none had an effect on density, kinematic viscosity, FAME content or glyceride content. However, some of them have shown an influence on FFA and water content. The liquid–liquid extraction with glycerol at 15 wt.% and a 2-step contact proved to be the most suitable.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    92
    citations92
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid A.F. Chica;
    A.F. Chica
    ORCID
    Harvested from ORCID Public Data File

    A.F. Chica in OpenAIRE
    orcid M.C. Gutiérrez;
    M.C. Gutiérrez
    ORCID
    Harvested from ORCID Public Data File

    M.C. Gutiérrez in OpenAIRE
    orcid María Ángeles Martín;
    María Ángeles Martín
    ORCID
    Harvested from ORCID Public Data File

    María Ángeles Martín in OpenAIRE
    Fátima Vargas; +1 Authors

    Although recent research has demonstrated that waste orange peel (WOP) is a potentially valuable resource that can be transformed into high value products, heat generation, biomethanisation and composting might be considered the most feasible alternatives in terms of yield. This study revealed that WOP can be successfully valorised through combustion. However, a previous drying step, which generates hazardous wastewater, is required and harmful NOx are emitted with the flue gases. In contrast, a high yield of renewable methane (280LSTPCH4/kg added COD, chemical oxygen demand) and an organic amendment can be obtained through the thermophilic biomethanisation of WOP following the removal of valuable essential oils from the peel. Co-composting of WOP combined at different proportions (17-83%) with the organic fraction of municipal solid waste (OFMSW) was also demonstrated to be suitable. Moreover, a 37% reduction in odour generation was observed in co-composting of WOP compared to single composting of OFMSW.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    90
    citations90
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Borja, R.;
    Borja, R.
    ORCID
    Harvested from ORCID Public Data File

    Borja, R. in OpenAIRE
    Martin, A.; orcid Banks, C.J.;
    Banks, C.J.
    ORCID
    Harvested from ORCID Public Data File

    Banks, C.J. in OpenAIRE
    Alonso, V.; +1 Authors

    The kinetics of the anaerobic digestion of olive mill wastewater (OMW) was studied in the mesophilic and thermophilic ranges of temperature. Two completely mixed continuous flow bioreactors operating at 35 degrees C and 55 degrees C and with an average biomass concentration of 5.45 g VSS litre(-1) were used. The thermophilic reactor worked satisfactorily between hydraulic retention times (HRT) of 10 to 40 days, removing between 94.6 and 84.4% of the initial chemical oxygen demand (COD). In contrast, the mesophilic reactor showed a marked decrease in substrate utilization and methane production at a HRT of 10 days. TVFA levels and the TVFA/alkalinity ratio were higher and close to the suggested limits for digester failure. The yield coefficient for methane production (1 CH(4) STP g(-1) COD(added)) was 28% higher in the thermophilic process than in the mesophilic one. Macroenergetic parameters, calculated using Guiot's kinetic model, gave yield coefficients for the biomass (Y) of 0.18 (mesophilic) and 0.06 g VSS g(-1) COD (thermophilic) and specific rates of substrate uptake for cell maintenance (m) of 0.12 (mesophilic) and 0.27 g COD g(-1) VSS.day(-1) (thermophilic). The experimental results showed the rate of substrate uptake (R(s); g COD g(-1) VSS.day(-1)), correlated with the concentration of biodegradable substrate (S(b); g COD litre(-1)), through an equation of the Michaelis-Menten type for the two temperatures used.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 1995 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    50
    citations50
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 1995 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • Authors: orcid A.F. Chica;
    A.F. Chica
    ORCID
    Harvested from ORCID Public Data File

    A.F. Chica in OpenAIRE
    orcid Miren Martín;
    Miren Martín
    ORCID
    Harvested from ORCID Public Data File

    Miren Martín in OpenAIRE
    orcid José A. Siles;
    José A. Siles
    ORCID
    Harvested from ORCID Public Data File

    José A. Siles in OpenAIRE
    K. Hamraoui; +1 Authors

    A large quantity of lignocellulosic biomass is generated annually across the world which leads to environmental pollution and requires valorization. This study investigated the effect of hydrothermal pretreatment on the anaerobic digestion and co-digestion of the residual pepper plant and eggplant with a focus on kinetics. Two thermal hydrolysis rates were observed, with the optimal conditions for the hydrothermal pretreatment of lignocellulosic biomass being 120°C for 40 min. Subsequently, single and combined biomethanization was successfully carried out in laboratory-scale completely stirred tank reactors at mesophilic temperature (35°C). A high increase in methane production was observed after the pretreatment of the pepper plant and eggplant. The pretreated and co-digested wastes led to an optimal methane yield of 79 ± 23 mL CH4/g VS. The modified Gompertz model was used to fit the cumulative methane production of the pretreated lignocellulosic substrates. The kinetic model adequately reproduced the experimental results and might be considered a useful tool to simulate the biomethanization behaviour of complex organic substrates.

    addClaim
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Inmaculada González;
    Inmaculada González
    ORCID
    Harvested from ORCID Public Data File

    Inmaculada González in OpenAIRE
    orcid Alice Ekelhof;
    Alice Ekelhof
    ORCID
    Harvested from ORCID Public Data File

    Alice Ekelhof in OpenAIRE
    Natalia Herrero; orcid José Ángel Siles;
    José Ángel Siles
    ORCID
    Harvested from ORCID Public Data File

    José Ángel Siles in OpenAIRE
    +6 Authors

    AbstractThis study evaluates the feasibility of advanced biofilm microalgae cultivation in a twin layer (TL) system for nutrient removal (N and P) as the tertiary treatment in small wastewater treatment plants (WWTPs) located in sensitive areas. Furthermore, the potential valorisation of microalgae biomass as a component of bio-based fertilizers is assessed. Scenedesmus sp. was chosen among 33 microalgae strains for inoculation of TL due to its high growth rate and its nutrient uptake capacity. The tests carried out in the prototype were markedly efficient for total soluble and ammoniacal nitrogen removal (up to 66 and 94%, respectively). In terms of potential valorisation of microalgae, the nutrient content was 5.5% N (over 40% protein), 8.8% P2O5 and 1.5% K2O, high enzymatic activity, very low levels of heavy metals and no detectable pathogen presence. However, in the formulation of solid-state bio-based fertilizers, the microalgae proportions in blends of over 2% of microalgae led to negative effects on ryegrass (Lolium perenne L. ssp.) and barley (Hordeum vulgare ssp.). The obtained results demonstrate that TL represents a promising technology, which allows efficient tertiary treatment of urban wastewater and the production of high-quality bio-based fertilizer.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science & Tech...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Water Science & Technology
    Article . 2020 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    29
    citations29
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science & Tech...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Water Science & Technology
      Article . 2020 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Gutiérrez, M. C.;
    Gutiérrez, M. C.
    ORCID
    Harvested from ORCID Public Data File

    Gutiérrez, M. C. in OpenAIRE
    orcid Martín, M. A.;
    Martín, M. A.
    ORCID
    Harvested from ORCID Public Data File

    Martín, M. A. in OpenAIRE
    orcid Serrano, A.;
    Serrano, A.
    ORCID
    Harvested from ORCID Public Data File

    Serrano, A. in OpenAIRE
    orcid Chica, A. F.;
    Chica, A. F.
    ORCID
    Harvested from ORCID Public Data File

    Chica, A. F. in OpenAIRE

    In this study, the evolution of odour concentration (ouE/m(3)STP) emitted during the pile composting of the organic fraction of municipal solid waste (OFMSW) was monitored by dynamic olfactometry. Physical-chemical variables as well as the respirometric variables were also analysed. The aim of this work was twofold. The first was to determine the relationship between odour and traditional variables to determine if dynamic olfactometry is a feasible and adequate technique for monitoring an aerobic stabilisation process (composting). Second, the composting process odour impact on surrounding areas was simulated by a dispersion model. The results showed that the decrease of odour concentration, total organic carbon and respirometric variables was similar (around 96, 96 y 98% respectively). The highest odour emission (5224 ouE/m(3)) was reached in parallel with the highest microbiological activity (SOUR and OD20 values of 25 mgO2/gVS · h and 70 mgO2/gVS, respectively). The validity of monitoring odour emissions during composting in combination with traditional and respirometric variables was demonstrated by the adequate correlation obtained between the variables. Moreover, the quantification of odour emissions by dynamic olfactometry and the subsequent application of the dispersion model permitted making an initial prediction of the impact of odorous emissions on the population. Finally, the determination of CO2 and CH4 emissions allowed the influence of composting process on carbon reservoirs and global warming to be evaluated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    34
    citations34
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph