- home
- Advanced Search
Filters
Year range
-chevron_right GOSource
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Portugal, FrancePublisher:Elsevier BV Funded by:FCT | Centro de Química Estrutu...FCT| Centro de Química EstruturalT.M. Silva; T.M. Silva; Alberto Adán-Más; Alberto Adán-Más; M. F. Montemor; Liliane Guerlou-Demourgues; Liliane Guerlou-Demourgues;Abstract Electrochemical Impedance Spectroscopy (EIS) is a powerful technique to understand the electrode-electrolyte interaction and to evaluate degradation, resistive behaviour and electrochemical activity of energy storage materials used in batteries, pseudocapacitors and supercapacitors among others. However, it can sometimes be misused or under-interpreted. To effectively acquire EIS results, the voltages imposed to the working electrode at which EIS spectra are obtained, shall be critically selected. This work follows a previous study on the EIS response of Nickel-Cobalt hydroxide, and highlights how the Mott-Schottky model can be used as a complementary tool to explain EIS results obtained at different potentials. The Mott-Schottky model is used to understand further the fundamental processes occurring at the electrode-electrolyte interface of nickel-cobalt hydroxide in alkali media and to explain the changes in conductivity of the material that ultimately determine the electrode electrochemical activity. The applicability of the model to assist in the potential selection for EIS studies on other important charge storage materials such as MnOx and MoOx is discussed too.
Hyper Article en Lig... arrow_drop_down Repositório Científico do Instituto Politécnico de LisboaArticle . 2018Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2018.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 140visibility views 140 download downloads 66 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Repositório Científico do Instituto Politécnico de LisboaArticle . 2018Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2018.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Authors: Liliane Guerlou-Demourgues; Liliane Guerlou-Demourgues; Lydie Bourgeois; Lydie Bourgeois; +6 AuthorsLiliane Guerlou-Demourgues; Liliane Guerlou-Demourgues; Lydie Bourgeois; Lydie Bourgeois; Alberto Adán-Más; Alberto Adán-Más; C. Labrugere-Sarroste; T.M. Silva; T.M. Silva; Maria de Fátima Montemor;Nickel-cobalt oxide is synthesized in combination with electrochemically reduced graphene oxide (Er-GO) by one-step electrodeposition on stainless steel followed by thermal treatment. The presence of reduced graphene oxide leads to enhanced electrochemical response, with a capacity increase from 113 mA h g−1 to 180 mA h g−1, and to increased faradaic efficiency and rate capability. Compared to Ni-Co oxide, the addition of reduced graphene oxide increases capacity retention from 58% to 83% after 5000 cycles. The material fade during cycling is studied by means of electrochemical impedance spectroscopy, electron diffraction spectroscopy and scanning electron microscopy. As a result, different degradation mechanisms are identified as source of the capacity decay, such as microstructural cracking, phase transformation and parasitic reactions.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2019License: CC BY NCFull-Text: https://hal.science/hal-02095664Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2019License: CC BY NCFull-Text: https://hal.science/hal-02095664Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.02.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 177visibility views 177 download downloads 116 Powered bymore_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2019License: CC BY NCFull-Text: https://hal.science/hal-02095664Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2019License: CC BY NCFull-Text: https://hal.science/hal-02095664Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.02.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:American Chemical Society (ACS) Funded by:FCT | Centro de Química Estrutu..., FCT | FOAM4ENERFCT| Centro de Química Estrutural ,FCT| FOAM4ENERAlberto Adan-Mas; Jacob Olchowka; Lydie Bourgeois; Philippe Legros; Patrizia Paradiso; Fátima Montemor; Liliane Guerlou-Demourgues;This work is dedicated to the memory of Patrizia Paradiso. ; International audience ; Nickel–cobalt oxyhydroxide has been delaminated by tetrabutylammonium (TBA+) intercalation in aqueous media. The electrochemical performance of the different materials obtained during delamination has been evaluated, with special emphasis on the effect of the intercalated species and their influence on the behavior of the delaminated material, toward electrochemical energy storage applications. Delamination in TBAOH, reported for the first time for nickel–cobalt oxyhydroxide in aqueous media, is an excellent route to increase the number of electrochemically active sites and to enhance the capacity of nickel–cobalt oxyhydroxide. Results show an increase in capacity from 112 mA·h·g–1 in 1 M LiOH at 1 A·g–1 for the nondelaminated precursor to 165 mA·h·g–1 after exfoliation and restacking. Thus, carefully designed exfoliation is a promising route to enhance the performance of electrode materials for electrochemical energy storage.
Université de Nantes... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2022Full-Text: https://hal.science/hal-03884709Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03884709Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Energy MaterialsArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.2c01905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Université de Nantes... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2022Full-Text: https://hal.science/hal-03884709Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03884709Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Energy MaterialsArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.2c01905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:FCT | 2021.00771.CEECIND/CP1662/CT0007FCT| 2021.00771.CEECIND/CP1662/CT0007Rodrigo Braga; Diana M. Fernandes; Alberto Adán-Más; Teresa M. Silva; M. F. Montemor;The introduction of pillared agents or dopants to the graphene used as the electroactive material in supercapacitor electrodes can be an efficient way to facilitate ion transfer, mitigate re-stacking, and improve electrochemical performance. We evaluated the effect of different precursors containing nitrogen (N) and sulfur (S) atoms to dope graphene flake (GF) lattices. The electrochemical performance of the doped GF was assessed in 1 M KOH and 1 M Na2SO4 electrolytes. N- and S-doped GF flakes were synthesized via mechanochemical synthesis, also known as ball milling. After being ground, the materials were calcined under N2. The physicochemical characterization of the materials evidenced the co-doping of both S and N into the graphene backbone, as corroborated by the results of Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). As shown by the results, the nature of the precursors influences the ratio of S and N in the doped graphene flakes and, consequently, the response of the electroactive electrode material. The co-doping obtained using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole revealed a specific capacitance of 48 F.g−1 at 1.0 A∙g−1 and over 90% capacitance retention after 10,000 cycles at 10.0 A∙g−1 in Na2SO4.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9030168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9030168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Authors: M.M. Almeida; A.A. Más; T.M. Silva; M.F. Montemor;Abstract High power pseudocapacitors are extremely relevant to answer specific needs in the current energy transition arena and to implement an efficient renewable energy society. However, literature shows that are still open gaps concerning improvement of their energy density at high power, conversion efficiency, cost and cycle life. Electrodes based on active transition metal compounds, and in particular metal sulphides, evidence high potential to meet these objectives. This work discusses the dependence on the synthesis route of the charge storage mechanism of manganese sulphide-based materials and relates the pseudocapacitive response of these electrodes with their polycrystalline nature. Results reveal that a manganese oxy-sulphide mixture can achieve a high specific capacitance of 231 F.g−1 at 0.5 A/g in a 0.65 V active window. These values represent a 31.5 % increase compared to pure rambergite, γ-MnS, and 436 % compared to pure hausmannite Mn3O4 prepared under the same conditions. Moreover, the results show that manganese oxy-sulphide electrodes are characterized by good charge retention (73%), and superior long term capacity retention (above 86%) after 5000 cycles, evidencing potential for high power energy storage applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 PortugalPublisher:MDPI AG Funded by:FCT | Centro de Química Estrutu...FCT| Centro de Química EstruturalAlberto Adan-Mas; Pablo Arévalo-Cid; Teresa Moura e Silva; João Crespo; Maria de Fatima Montemor;Hybrid capacitors have been developed to bridge the gap between batteries and ultracapacitors. These devices combine a capacitive electrode and a battery-like material to achieve high energy-density high power-density devices with good cycling stability. In the quest of improved electrochemical responses, several hybrid devices have been proposed. However, they are usually limited to bench-scale prototypes that would likely face severe challenges during a scaling up process. The present case study reports the production of a hybrid prototype consisting of commercial activated carbon and nickel-cobalt hydroxide, obtained by chemical co-precipitation, separated by means of polyolefin-based paper. Developed to power a 12 W LED light, these materials were assembled and characterized in a coin-cell configuration and stacked to increase device voltage. All the processes have been adapted and constrained to scalable conditions to ensure reliable production of a pre-commercial device. Important challenges and limitations of this process, from geometrical constraints to increased resistance, are reported alongside their impact and optimization on the final performance, stability, and metrics of the assembled prototype.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5040065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 225visibility views 225 download downloads 208 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5040065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Alberto Adan-Mas; Lorena Alcaraz; Pablo Arévalo-Cid; Félix. A. López-Gómez; Fátima Montemor;The electrochemical energy storage performance of activated carbons (ACs) obtained from coffee-derived biowastes was assessed. ACs were obtained from spent coffee ground second waste, after polyphenol extraction, by means of a hydrothermal process followed by physical or chemical activation. The resulting materials exhibited microporous structures with a total specific area between 585 and 2330 m2·g-1. Scanning electron microscopy (SEM) revealed a highly porous microstructure in the case of the chemically activated carbons, while physical activation led to a cracked micro-sized morphology. The electrochemical properties of the materials for supercapacitor applications were investigated in 1 M Na2SO4. After chemical activation, the coffee-derived material displayed a capacitance of 84 F·g-1 at 1 A·g-1 in a 1.9 V voltage window, with 70% capacitance retention at 10 A·g-1 and 85% retention after 5000 cycles of continuous charge-discharge. This work demonstrates how coffee secondary biowaste can be conveniently activated to perform as electrochemical energy storage material, contributing to its revalorization and reinsertion in a circular economy.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2020.11.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 37visibility views 37 download downloads 32 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2020.11.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Portugal, FrancePublisher:The Electrochemical Society Funded by:FCT | CQE, FCT | Centro de Química Estrutu...FCT| CQE ,FCT| Centro de Química EstruturalAuthors: Alberto Adán-Más; Maryna G. Taryba; Teresa M. Silva; Liliane Guerlou-Demourgues; +1 AuthorsAlberto Adán-Más; Maryna G. Taryba; Teresa M. Silva; Liliane Guerlou-Demourgues; M. F. Montemor;This work reports, for the first time, the use of ion-selective localized electrochemical techniques to elucidate the charge-discharge mechanism of nickel-cobalt hydroxide electrodes for electrochemical energy storage. The charge-discharge mechanism of electrodeposited nickel-cobalt hydroxide electrodes was studied in Na2SO4 0.05 M by localized in situ measurements of pH, pNa and dissolved O2 during cyclic voltammetry. Local pH and pNa distributions were recorded using micro-potentiometric sensors with liquid membrane, while dissolved O2 was monitored using a fiber-optic microsensor. These original results highlight how localized potentiometry can provide new insights to better understand the charge mechanism of metal (hydr)oxide electrodes by directly measuring the concentrations/activities of relevant species at the electrode-electrolyte interface during charge-discharge.
Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2020Full-Text: https://hal.science/hal-02639285Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2020Full-Text: https://hal.science/hal-02639285Data sources: Bielefeld Academic Search Engine (BASE)Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRepositório Científico do Instituto Politécnico de LisboaArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab8924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 162visibility views 162 download downloads 161 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2020Full-Text: https://hal.science/hal-02639285Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2020Full-Text: https://hal.science/hal-02639285Data sources: Bielefeld Academic Search Engine (BASE)Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRepositório Científico do Instituto Politécnico de LisboaArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab8924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Portugal, FrancePublisher:Elsevier BV Funded by:FCT | Centro de Química Estrutu...FCT| Centro de Química EstruturalT.M. Silva; T.M. Silva; Alberto Adán-Más; Alberto Adán-Más; M. F. Montemor; Liliane Guerlou-Demourgues; Liliane Guerlou-Demourgues;Abstract Electrochemical Impedance Spectroscopy (EIS) is a powerful technique to understand the electrode-electrolyte interaction and to evaluate degradation, resistive behaviour and electrochemical activity of energy storage materials used in batteries, pseudocapacitors and supercapacitors among others. However, it can sometimes be misused or under-interpreted. To effectively acquire EIS results, the voltages imposed to the working electrode at which EIS spectra are obtained, shall be critically selected. This work follows a previous study on the EIS response of Nickel-Cobalt hydroxide, and highlights how the Mott-Schottky model can be used as a complementary tool to explain EIS results obtained at different potentials. The Mott-Schottky model is used to understand further the fundamental processes occurring at the electrode-electrolyte interface of nickel-cobalt hydroxide in alkali media and to explain the changes in conductivity of the material that ultimately determine the electrode electrochemical activity. The applicability of the model to assist in the potential selection for EIS studies on other important charge storage materials such as MnOx and MoOx is discussed too.
Hyper Article en Lig... arrow_drop_down Repositório Científico do Instituto Politécnico de LisboaArticle . 2018Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2018.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 140visibility views 140 download downloads 66 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Repositório Científico do Instituto Politécnico de LisboaArticle . 2018Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2018.08.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Authors: Liliane Guerlou-Demourgues; Liliane Guerlou-Demourgues; Lydie Bourgeois; Lydie Bourgeois; +6 AuthorsLiliane Guerlou-Demourgues; Liliane Guerlou-Demourgues; Lydie Bourgeois; Lydie Bourgeois; Alberto Adán-Más; Alberto Adán-Más; C. Labrugere-Sarroste; T.M. Silva; T.M. Silva; Maria de Fátima Montemor;Nickel-cobalt oxide is synthesized in combination with electrochemically reduced graphene oxide (Er-GO) by one-step electrodeposition on stainless steel followed by thermal treatment. The presence of reduced graphene oxide leads to enhanced electrochemical response, with a capacity increase from 113 mA h g−1 to 180 mA h g−1, and to increased faradaic efficiency and rate capability. Compared to Ni-Co oxide, the addition of reduced graphene oxide increases capacity retention from 58% to 83% after 5000 cycles. The material fade during cycling is studied by means of electrochemical impedance spectroscopy, electron diffraction spectroscopy and scanning electron microscopy. As a result, different degradation mechanisms are identified as source of the capacity decay, such as microstructural cracking, phase transformation and parasitic reactions.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2019License: CC BY NCFull-Text: https://hal.science/hal-02095664Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2019License: CC BY NCFull-Text: https://hal.science/hal-02095664Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.02.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 177visibility views 177 download downloads 116 Powered bymore_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2019License: CC BY NCFull-Text: https://hal.science/hal-02095664Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2019License: CC BY NCFull-Text: https://hal.science/hal-02095664Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.02.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:American Chemical Society (ACS) Funded by:FCT | Centro de Química Estrutu..., FCT | FOAM4ENERFCT| Centro de Química Estrutural ,FCT| FOAM4ENERAlberto Adan-Mas; Jacob Olchowka; Lydie Bourgeois; Philippe Legros; Patrizia Paradiso; Fátima Montemor; Liliane Guerlou-Demourgues;This work is dedicated to the memory of Patrizia Paradiso. ; International audience ; Nickel–cobalt oxyhydroxide has been delaminated by tetrabutylammonium (TBA+) intercalation in aqueous media. The electrochemical performance of the different materials obtained during delamination has been evaluated, with special emphasis on the effect of the intercalated species and their influence on the behavior of the delaminated material, toward electrochemical energy storage applications. Delamination in TBAOH, reported for the first time for nickel–cobalt oxyhydroxide in aqueous media, is an excellent route to increase the number of electrochemically active sites and to enhance the capacity of nickel–cobalt oxyhydroxide. Results show an increase in capacity from 112 mA·h·g–1 in 1 M LiOH at 1 A·g–1 for the nondelaminated precursor to 165 mA·h·g–1 after exfoliation and restacking. Thus, carefully designed exfoliation is a promising route to enhance the performance of electrode materials for electrochemical energy storage.
Université de Nantes... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2022Full-Text: https://hal.science/hal-03884709Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03884709Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Energy MaterialsArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.2c01905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Université de Nantes... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2022Full-Text: https://hal.science/hal-03884709Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03884709Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Energy MaterialsArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.2c01905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:FCT | 2021.00771.CEECIND/CP1662/CT0007FCT| 2021.00771.CEECIND/CP1662/CT0007Rodrigo Braga; Diana M. Fernandes; Alberto Adán-Más; Teresa M. Silva; M. F. Montemor;The introduction of pillared agents or dopants to the graphene used as the electroactive material in supercapacitor electrodes can be an efficient way to facilitate ion transfer, mitigate re-stacking, and improve electrochemical performance. We evaluated the effect of different precursors containing nitrogen (N) and sulfur (S) atoms to dope graphene flake (GF) lattices. The electrochemical performance of the doped GF was assessed in 1 M KOH and 1 M Na2SO4 electrolytes. N- and S-doped GF flakes were synthesized via mechanochemical synthesis, also known as ball milling. After being ground, the materials were calcined under N2. The physicochemical characterization of the materials evidenced the co-doping of both S and N into the graphene backbone, as corroborated by the results of Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). As shown by the results, the nature of the precursors influences the ratio of S and N in the doped graphene flakes and, consequently, the response of the electroactive electrode material. The co-doping obtained using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole revealed a specific capacitance of 48 F.g−1 at 1.0 A∙g−1 and over 90% capacitance retention after 10,000 cycles at 10.0 A∙g−1 in Na2SO4.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9030168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9030168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Authors: M.M. Almeida; A.A. Más; T.M. Silva; M.F. Montemor;Abstract High power pseudocapacitors are extremely relevant to answer specific needs in the current energy transition arena and to implement an efficient renewable energy society. However, literature shows that are still open gaps concerning improvement of their energy density at high power, conversion efficiency, cost and cycle life. Electrodes based on active transition metal compounds, and in particular metal sulphides, evidence high potential to meet these objectives. This work discusses the dependence on the synthesis route of the charge storage mechanism of manganese sulphide-based materials and relates the pseudocapacitive response of these electrodes with their polycrystalline nature. Results reveal that a manganese oxy-sulphide mixture can achieve a high specific capacitance of 231 F.g−1 at 0.5 A/g in a 0.65 V active window. These values represent a 31.5 % increase compared to pure rambergite, γ-MnS, and 436 % compared to pure hausmannite Mn3O4 prepared under the same conditions. Moreover, the results show that manganese oxy-sulphide electrodes are characterized by good charge retention (73%), and superior long term capacity retention (above 86%) after 5000 cycles, evidencing potential for high power energy storage applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 PortugalPublisher:MDPI AG Funded by:FCT | Centro de Química Estrutu...FCT| Centro de Química EstruturalAlberto Adan-Mas; Pablo Arévalo-Cid; Teresa Moura e Silva; João Crespo; Maria de Fatima Montemor;Hybrid capacitors have been developed to bridge the gap between batteries and ultracapacitors. These devices combine a capacitive electrode and a battery-like material to achieve high energy-density high power-density devices with good cycling stability. In the quest of improved electrochemical responses, several hybrid devices have been proposed. However, they are usually limited to bench-scale prototypes that would likely face severe challenges during a scaling up process. The present case study reports the production of a hybrid prototype consisting of commercial activated carbon and nickel-cobalt hydroxide, obtained by chemical co-precipitation, separated by means of polyolefin-based paper. Developed to power a 12 W LED light, these materials were assembled and characterized in a coin-cell configuration and stacked to increase device voltage. All the processes have been adapted and constrained to scalable conditions to ensure reliable production of a pre-commercial device. Important challenges and limitations of this process, from geometrical constraints to increased resistance, are reported alongside their impact and optimization on the final performance, stability, and metrics of the assembled prototype.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5040065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 225visibility views 225 download downloads 208 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5040065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Alberto Adan-Mas; Lorena Alcaraz; Pablo Arévalo-Cid; Félix. A. López-Gómez; Fátima Montemor;The electrochemical energy storage performance of activated carbons (ACs) obtained from coffee-derived biowastes was assessed. ACs were obtained from spent coffee ground second waste, after polyphenol extraction, by means of a hydrothermal process followed by physical or chemical activation. The resulting materials exhibited microporous structures with a total specific area between 585 and 2330 m2·g-1. Scanning electron microscopy (SEM) revealed a highly porous microstructure in the case of the chemically activated carbons, while physical activation led to a cracked micro-sized morphology. The electrochemical properties of the materials for supercapacitor applications were investigated in 1 M Na2SO4. After chemical activation, the coffee-derived material displayed a capacitance of 84 F·g-1 at 1 A·g-1 in a 1.9 V voltage window, with 70% capacitance retention at 10 A·g-1 and 85% retention after 5000 cycles of continuous charge-discharge. This work demonstrates how coffee secondary biowaste can be conveniently activated to perform as electrochemical energy storage material, contributing to its revalorization and reinsertion in a circular economy.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2020.11.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 37visibility views 37 download downloads 32 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2020.11.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Portugal, FrancePublisher:The Electrochemical Society Funded by:FCT | CQE, FCT | Centro de Química Estrutu...FCT| CQE ,FCT| Centro de Química EstruturalAuthors: Alberto Adán-Más; Maryna G. Taryba; Teresa M. Silva; Liliane Guerlou-Demourgues; +1 AuthorsAlberto Adán-Más; Maryna G. Taryba; Teresa M. Silva; Liliane Guerlou-Demourgues; M. F. Montemor;This work reports, for the first time, the use of ion-selective localized electrochemical techniques to elucidate the charge-discharge mechanism of nickel-cobalt hydroxide electrodes for electrochemical energy storage. The charge-discharge mechanism of electrodeposited nickel-cobalt hydroxide electrodes was studied in Na2SO4 0.05 M by localized in situ measurements of pH, pNa and dissolved O2 during cyclic voltammetry. Local pH and pNa distributions were recorded using micro-potentiometric sensors with liquid membrane, while dissolved O2 was monitored using a fiber-optic microsensor. These original results highlight how localized potentiometry can provide new insights to better understand the charge mechanism of metal (hydr)oxide electrodes by directly measuring the concentrations/activities of relevant species at the electrode-electrolyte interface during charge-discharge.
Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2020Full-Text: https://hal.science/hal-02639285Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2020Full-Text: https://hal.science/hal-02639285Data sources: Bielefeld Academic Search Engine (BASE)Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRepositório Científico do Instituto Politécnico de LisboaArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab8924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 162visibility views 162 download downloads 161 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Université Grenoble Alpes: HALArticle . 2020Full-Text: https://hal.science/hal-02639285Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2020Full-Text: https://hal.science/hal-02639285Data sources: Bielefeld Academic Search Engine (BASE)Journal of The Electrochemical SocietyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRepositório Científico do Instituto Politécnico de LisboaArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ab8924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu