- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object , Report , Other literature type 2003 United StatesPublisher:AIP LeBlanc, B. P.; Bell, R. E.; Bernabei, S. I.; Indireshkumar, K.; Kaye, S. M.; Maingi, R.; Mau, T. K.; Swain, D. W.; Taylor, G.; Ryan, P. M.; Wilgen, J. B; Wilson, J. R.;doi: 10.1063/1.1638027 , 10.2172/812904
The launch of High‐Harmonic Fast Waves (HHFW) routinely provides auxiliary power to NSTX plasmas, where it is used to heat electrons and pursue drive current. H‐mode transitions have been observed in deuterium discharges, where only HHFW and ohmic heating, and no neutral beam injection (NBI), were applied to the plasma. The usual H‐mode signatures are observed. A drop of the Dα light marks the start of a stored energy increase, which can double the energy content. These H‐mode plasmas also have the expected kinetic profile signatures with steep edge density and electron temperature pedestal. Similar to its NBI driven counterpart — also observed on NSTX — the HHFW H mode has density profiles that feature “ears” in the peripheral region. These plasmas are likely candidates for long pulse operation because of the combination of bootstrap current, associated with H‐mode kinetic profiles, and active current drive, which can be generated with HHFW power.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.1638027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.1638027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Andrei Khodak; R. Maingi;Flowing liquid lithium can, in principle, create a renewable surface interacting with the plasma, providing protection for the underlying solid substrate. Recent experiments [1] showed that liquid lithium supplied through a porous medium can limit the plasma facing surface temperature, even at high heat flux values in excess of 10 MW/m2. The use of new 3D printing techniques allows creation of plasma facing components that supply liquid lithium through capillary channels. Numerical analysis can be used to develop and optimize porous plasma facing component using virtual prototyping. The present contribution introduces a numerical model of liquid metal flow in a porous structure, interacting with the plasma. The model uses computational fluid dynamics (CFD) to model a flow through a complex 3D geometry including magneto-hydrodynamics (MHD) effects. The CFD set-up covers the liquid metal, plasma and solid structures, simultaneously, connected by realistic interfaces. Small scale interface structures are modeled separately to obtain a self-consistent interface functions. Customized version of the general-purpose CFD is used to handle complex 3D geometries, and efficient pre- and post-processing. MHD is introduced using the magnetic vector potential approach, allowing precise fluid–solid interface treatment. Special stabilization procedures were derived and applied to improve convergence of the momentum balance equations with source terms due to Lorentz force and surface tension. Conjugate heat transfer analysis was performed in the plasma, liquid metal and solid components. The customized code was validated using analytical results for high Hartmann number flow. Results of the validation and numerical analysis of liquid lithium plasma facing components using porous walls will be presented.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV R. Maingi; A. Fil; Paul Parks; Nathaniel Ferraro; Egemen Kolemen; Stephen Jardin; Robert Lunsford; Alessandro Bortolon;In this paper we present initial simulations of pedestal control by Lithium Granule Injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code [1], allowing the simulation of realistic Lithium granule injections. 2D simulations in NSTX L-mode and H-mode plasmas are done and the effect of granule size, injection angle and velocity on the pedestal gradient increase are studied. For H-mode cases, the amplitude of the local pressure perturbation caused by the granules is highly dependent on the solid granule size. In our simulations, reducing the granule injection velocity allows one to inject more particles at the pedestal top.
CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV T.W. Petrie; Houyang Guo; Houyang Guo; Jiuyuan Li; J.P. Qian; Xianzu Gong; B. N. Wan; Siye Ding; G. J. Kramer; W. Feng; Y.J. Hu; Daniel Thomas; Huiqian Wang; R. Maingi; Gang Xu; G.L. Jackson; M. A. Makowski; G.Z. Deng; B. Zhang; A.W. Leonard; L. Wang; C.K. Pan; J.B. Liu; A.M. Garofalo;Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broader SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. The joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas. Keywords: SOL width, Radio-frequency heating, Neutral beam heating, Low collisionality
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV East Team; Mingguang Huang; B. N. Wan; Guizhong Zuo; Kevin Tritz; Qingxi Yang; Wenbo Xu; Wenbo Xu; Xianzu Gong; Rajesh Maingi; Daniel Andruczyk; X.C. Meng; X.C. Meng; David N. Ruzic; Jiuyuan Li; Jiansheng Hu; Z. Sun; Ming-Jiu Ni;Liquid lithium (Li) can partly ameliorate lifetime and power-exhaust issues of plasma facing components (PFCs) by enabling a self-healing, self-replenishing surface with a reduced susceptibility to neutron damage in future fusion devices. To assess operational stability and heat-exhaust capability under tokamak exposure, two generations of continuously flowing liquid Li (FLiLi) limiters on the concept of a thin flowing Li film have been successfully designed and tested in high performance discharges in EAST. The design uses a circulating Li layer with a thickness of <0.1 mm and a flow rate ∼2 cm3s−1. In addition, the limiter employs a novel electro-magnetic pump to drive liquid Li flow from a collector at the bottom of the limiter into a distributor at its top. Free surface gravitational flow closes the loop for a continuously flowing liquid Li film on the wetted PFC. Here we summarize key FLiLi limiter development and experimental results in H-mode plasmas. Keywords: Limiter, Lithium, Plasma facing component, EAST
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Raffi Nazikian; R. Maingi; Randy Michael Churchill; Robert Hager; Choong-Seock Chang; Anthony Leonard; John Canik; D.P. Stotler;Simulations using the fully kinetic code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Fluid simulations are normally used to simulate the SOL, due to its high collisionality. However, depending on plasma conditions, a number of discrepancies have been observed between experiment and leading SOL fluid codes (e.g. SOLPS), including underestimating outer target temperatures, radial electric field in the SOL, parallel ion SOL flows at the low field side, and impurity radiation. Many of these discrepancies may be linked to the fluid treatment, and might be resolved by including kinetic effects in SOL simulations.The XGCa simulation of the DIII-D tokamak in a nominally sheath-limited regime show many noteworthy features in the SOL. The density and ion temperature are higher at the low-field side, indicative of ion orbit loss. The SOL ion Mach flows are at experimentally relevant levels (Mi ∼ 0.5), with similar shapes and poloidal variation as observed in various tokamaks. Surprisingly, the ion Mach flows close to the sheath edge remain subsonic, in contrast to the typical fluid Bohm criterion requiring ion flows to be above sonic at the sheath edge. Related to this are the presence of elevated sheath potentials, eΔΦ/Te∼3−4, over most of the SOL, with regions in the near-SOL close to the separatrix having eΔΦ/Te > 4. These two results at the sheath edge are a consequence of non-Maxwellian features in the ions and electrons there.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV W. Xu; J.S. Hu; Lingxuan Zhang; Xianzu Gong; Yaowei Yu; Feng Ding; John Canik; Songtao Mao; L. Wang; X. C. Meng; R. Maingi; Alessandro Bortolon; C. R. Wu; D.K. Mansfield; Z. Sun; Z. Sun; Robert Lunsford; Guizhong Zuo; East Team; Mingguang Huang;Real-time lithium powder injection has been applied to long-pulse (>30 s) H-mode plasmas in EAST. This replenishes the active lithium surface that is routinely consumed by plasma-wall interactions. The real-time injection of Li powder into long H-mode discharges effectively suppresses impurity influx and controls recycling on EAST, with an ITER-like tungsten upper divertor. With lithium powder injection, the concentrations W, Mo, and C were reduced by 50% compared to ELMy H-mode discharges. During lithium injection, two effects play a role in the suppression of impurities influx: a reduced divertor temperature and heat flux and hence reduced erosion, and impurity trapping via deposition of a Li film onto plasma-facing surfaces. The ‘fresh’ injected lithium replenishes the film deposited during daily morning evaporation, restoring the wall's pumping capability. Thus, a measurable reduction in the global recycling coefficient was observed. Keyword: Long pulse plasma, Lithium, Impurity, Recycling
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV F. Effenberg; K. Schmid; F. Nespoli; A. Bortolon; Y. Feng; B.A. Grierson; J.D. Lore; R. Maingi; D.L. Rudakov;An integrated modeling framework for investigating the application of solid boron powder injection for real-time surface conditioning of plasma-facing components in tokamak environments is presented. Utilizing the DIII-D impurity powder dropper setup, this study simulates B powder injection scenarios ranging from mg/s to tens of mg/s, corresponding to B flux rates of $10^{20}-10^{21}$ B/s in standard L-mode conditions. The comprehensive modeling approach combines EMC3-EIRENE for simulating the D plasma background and DIS for the ablation and transport of the B powder particles. The results show substantial transport of B to the inboard lower divertor, predominantly influenced by the main ion plasma flow. The dependency on powder particle size (5-250 $μ$m) was found to be insignificant for the scenario considered. The effects of erosion and redeposition were considered to reconcile the discrepancies with experimental observations, which saw substantial deposition on the outer divertor PFCs. For this purpose, the WallDYN3D code was updated to include B sources within the plasma domain and integrated into the modeling framework. The mixed-material migration modeling shows evolving B deposition patterns, suggesting the formation of mixed B-C layers or predominantly B coverage depending on the powder mass flow rate. While the modeling outcomes at lower B injection rates tend to align with experimental observations, the prediction of near-pure B layers at higher rates has yet to be experimentally verified in the C environment of the DIII-D tokamak. The extensive reach of B layers found in the modeling suggests the need for modeling that encompasses the entire wall geometry for more accurate experimental correlations. This integrated approach sets a precedent for analyzing and applying real-time in-situ boron coating techniques in advanced tokamak scenarios, potentially extendable to ITER.
Nuclear Materials an... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2024.101832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2024.101832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Rajesh Maingi; T. Kozub; Richard Majeski; Egemen Kolemen; M. G. Hvasta; A. Brooks;The design of the Flowing LIquid Torus (FLIT) at Princeton Plasma Physics Laboratory (PPPL) is presented. FLIT will focus on the development of a liquid metal (LM) diagnostics and divertor system (without a plasma source) suitable for implementation in present-day fusion systems, such as NSTX-U. FLIT is intended to provide proof-of-concept for fast-flowing LM divertor designs for heat fluxes > 10 MW/m2. The toroidal test article (ID ≈ 0.56 m, OD ≈ 1.9 m, h ≈ 0.61 m) consists of 12 rectangular coils that can generate a centerline magnetic field of 1 T magnetic for greater than 10 s. Initially, 30 gallons Galinstan (Ga-In-Sn eutectic) will be recirculated within the test article using six jxB pumps to achieve flow velocities of up to 10 m/s across the fully annular radial test section. FLIT is designed to be a flexible machine that will allow experimental testing of various LM injection techniques, the study of flow instabilities, and electromagnetic control concepts to prove the feasibility of the LM divertors within fusion reactors.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: R. Maingi; Joachim Roth; C.H. Skinner;Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Report , Other literature type 2003 United StatesPublisher:AIP LeBlanc, B. P.; Bell, R. E.; Bernabei, S. I.; Indireshkumar, K.; Kaye, S. M.; Maingi, R.; Mau, T. K.; Swain, D. W.; Taylor, G.; Ryan, P. M.; Wilgen, J. B; Wilson, J. R.;doi: 10.1063/1.1638027 , 10.2172/812904
The launch of High‐Harmonic Fast Waves (HHFW) routinely provides auxiliary power to NSTX plasmas, where it is used to heat electrons and pursue drive current. H‐mode transitions have been observed in deuterium discharges, where only HHFW and ohmic heating, and no neutral beam injection (NBI), were applied to the plasma. The usual H‐mode signatures are observed. A drop of the Dα light marks the start of a stored energy increase, which can double the energy content. These H‐mode plasmas also have the expected kinetic profile signatures with steep edge density and electron temperature pedestal. Similar to its NBI driven counterpart — also observed on NSTX — the HHFW H mode has density profiles that feature “ears” in the peripheral region. These plasmas are likely candidates for long pulse operation because of the combination of bootstrap current, associated with H‐mode kinetic profiles, and active current drive, which can be generated with HHFW power.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.1638027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.1638027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Andrei Khodak; R. Maingi;Flowing liquid lithium can, in principle, create a renewable surface interacting with the plasma, providing protection for the underlying solid substrate. Recent experiments [1] showed that liquid lithium supplied through a porous medium can limit the plasma facing surface temperature, even at high heat flux values in excess of 10 MW/m2. The use of new 3D printing techniques allows creation of plasma facing components that supply liquid lithium through capillary channels. Numerical analysis can be used to develop and optimize porous plasma facing component using virtual prototyping. The present contribution introduces a numerical model of liquid metal flow in a porous structure, interacting with the plasma. The model uses computational fluid dynamics (CFD) to model a flow through a complex 3D geometry including magneto-hydrodynamics (MHD) effects. The CFD set-up covers the liquid metal, plasma and solid structures, simultaneously, connected by realistic interfaces. Small scale interface structures are modeled separately to obtain a self-consistent interface functions. Customized version of the general-purpose CFD is used to handle complex 3D geometries, and efficient pre- and post-processing. MHD is introduced using the magnetic vector potential approach, allowing precise fluid–solid interface treatment. Special stabilization procedures were derived and applied to improve convergence of the momentum balance equations with source terms due to Lorentz force and surface tension. Conjugate heat transfer analysis was performed in the plasma, liquid metal and solid components. The customized code was validated using analytical results for high Hartmann number flow. Results of the validation and numerical analysis of liquid lithium plasma facing components using porous walls will be presented.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV R. Maingi; A. Fil; Paul Parks; Nathaniel Ferraro; Egemen Kolemen; Stephen Jardin; Robert Lunsford; Alessandro Bortolon;In this paper we present initial simulations of pedestal control by Lithium Granule Injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code [1], allowing the simulation of realistic Lithium granule injections. 2D simulations in NSTX L-mode and H-mode plasmas are done and the effect of granule size, injection angle and velocity on the pedestal gradient increase are studied. For H-mode cases, the amplitude of the local pressure perturbation caused by the granules is highly dependent on the solid granule size. In our simulations, reducing the granule injection velocity allows one to inject more particles at the pedestal top.
CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.02.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV T.W. Petrie; Houyang Guo; Houyang Guo; Jiuyuan Li; J.P. Qian; Xianzu Gong; B. N. Wan; Siye Ding; G. J. Kramer; W. Feng; Y.J. Hu; Daniel Thomas; Huiqian Wang; R. Maingi; Gang Xu; G.L. Jackson; M. A. Makowski; G.Z. Deng; B. Zhang; A.W. Leonard; L. Wang; C.K. Pan; J.B. Liu; A.M. Garofalo;Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broader SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. The joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas. Keywords: SOL width, Radio-frequency heating, Neutral beam heating, Low collisionality
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV East Team; Mingguang Huang; B. N. Wan; Guizhong Zuo; Kevin Tritz; Qingxi Yang; Wenbo Xu; Wenbo Xu; Xianzu Gong; Rajesh Maingi; Daniel Andruczyk; X.C. Meng; X.C. Meng; David N. Ruzic; Jiuyuan Li; Jiansheng Hu; Z. Sun; Ming-Jiu Ni;Liquid lithium (Li) can partly ameliorate lifetime and power-exhaust issues of plasma facing components (PFCs) by enabling a self-healing, self-replenishing surface with a reduced susceptibility to neutron damage in future fusion devices. To assess operational stability and heat-exhaust capability under tokamak exposure, two generations of continuously flowing liquid Li (FLiLi) limiters on the concept of a thin flowing Li film have been successfully designed and tested in high performance discharges in EAST. The design uses a circulating Li layer with a thickness of <0.1 mm and a flow rate ∼2 cm3s−1. In addition, the limiter employs a novel electro-magnetic pump to drive liquid Li flow from a collector at the bottom of the limiter into a distributor at its top. Free surface gravitational flow closes the loop for a continuously flowing liquid Li film on the wetted PFC. Here we summarize key FLiLi limiter development and experimental results in H-mode plasmas. Keywords: Limiter, Lithium, Plasma facing component, EAST
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Raffi Nazikian; R. Maingi; Randy Michael Churchill; Robert Hager; Choong-Seock Chang; Anthony Leonard; John Canik; D.P. Stotler;Simulations using the fully kinetic code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Fluid simulations are normally used to simulate the SOL, due to its high collisionality. However, depending on plasma conditions, a number of discrepancies have been observed between experiment and leading SOL fluid codes (e.g. SOLPS), including underestimating outer target temperatures, radial electric field in the SOL, parallel ion SOL flows at the low field side, and impurity radiation. Many of these discrepancies may be linked to the fluid treatment, and might be resolved by including kinetic effects in SOL simulations.The XGCa simulation of the DIII-D tokamak in a nominally sheath-limited regime show many noteworthy features in the SOL. The density and ion temperature are higher at the low-field side, indicative of ion orbit loss. The SOL ion Mach flows are at experimentally relevant levels (Mi ∼ 0.5), with similar shapes and poloidal variation as observed in various tokamaks. Surprisingly, the ion Mach flows close to the sheath edge remain subsonic, in contrast to the typical fluid Bohm criterion requiring ion flows to be above sonic at the sheath edge. Related to this are the presence of elevated sheath potentials, eΔΦ/Te∼3−4, over most of the SOL, with regions in the near-SOL close to the separatrix having eΔΦ/Te > 4. These two results at the sheath edge are a consequence of non-Maxwellian features in the ions and electrons there.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV W. Xu; J.S. Hu; Lingxuan Zhang; Xianzu Gong; Yaowei Yu; Feng Ding; John Canik; Songtao Mao; L. Wang; X. C. Meng; R. Maingi; Alessandro Bortolon; C. R. Wu; D.K. Mansfield; Z. Sun; Z. Sun; Robert Lunsford; Guizhong Zuo; East Team; Mingguang Huang;Real-time lithium powder injection has been applied to long-pulse (>30 s) H-mode plasmas in EAST. This replenishes the active lithium surface that is routinely consumed by plasma-wall interactions. The real-time injection of Li powder into long H-mode discharges effectively suppresses impurity influx and controls recycling on EAST, with an ITER-like tungsten upper divertor. With lithium powder injection, the concentrations W, Mo, and C were reduced by 50% compared to ELMy H-mode discharges. During lithium injection, two effects play a role in the suppression of impurities influx: a reduced divertor temperature and heat flux and hence reduced erosion, and impurity trapping via deposition of a Li film onto plasma-facing surfaces. The ‘fresh’ injected lithium replenishes the film deposited during daily morning evaporation, restoring the wall's pumping capability. Thus, a measurable reduction in the global recycling coefficient was observed. Keyword: Long pulse plasma, Lithium, Impurity, Recycling
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV F. Effenberg; K. Schmid; F. Nespoli; A. Bortolon; Y. Feng; B.A. Grierson; J.D. Lore; R. Maingi; D.L. Rudakov;An integrated modeling framework for investigating the application of solid boron powder injection for real-time surface conditioning of plasma-facing components in tokamak environments is presented. Utilizing the DIII-D impurity powder dropper setup, this study simulates B powder injection scenarios ranging from mg/s to tens of mg/s, corresponding to B flux rates of $10^{20}-10^{21}$ B/s in standard L-mode conditions. The comprehensive modeling approach combines EMC3-EIRENE for simulating the D plasma background and DIS for the ablation and transport of the B powder particles. The results show substantial transport of B to the inboard lower divertor, predominantly influenced by the main ion plasma flow. The dependency on powder particle size (5-250 $μ$m) was found to be insignificant for the scenario considered. The effects of erosion and redeposition were considered to reconcile the discrepancies with experimental observations, which saw substantial deposition on the outer divertor PFCs. For this purpose, the WallDYN3D code was updated to include B sources within the plasma domain and integrated into the modeling framework. The mixed-material migration modeling shows evolving B deposition patterns, suggesting the formation of mixed B-C layers or predominantly B coverage depending on the powder mass flow rate. While the modeling outcomes at lower B injection rates tend to align with experimental observations, the prediction of near-pure B layers at higher rates has yet to be experimentally verified in the C environment of the DIII-D tokamak. The extensive reach of B layers found in the modeling suggests the need for modeling that encompasses the entire wall geometry for more accurate experimental correlations. This integrated approach sets a precedent for analyzing and applying real-time in-situ boron coating techniques in advanced tokamak scenarios, potentially extendable to ITER.
Nuclear Materials an... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2024.101832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2024.101832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Rajesh Maingi; T. Kozub; Richard Majeski; Egemen Kolemen; M. G. Hvasta; A. Brooks;The design of the Flowing LIquid Torus (FLIT) at Princeton Plasma Physics Laboratory (PPPL) is presented. FLIT will focus on the development of a liquid metal (LM) diagnostics and divertor system (without a plasma source) suitable for implementation in present-day fusion systems, such as NSTX-U. FLIT is intended to provide proof-of-concept for fast-flowing LM divertor designs for heat fluxes > 10 MW/m2. The toroidal test article (ID ≈ 0.56 m, OD ≈ 1.9 m, h ≈ 0.61 m) consists of 12 rectangular coils that can generate a centerline magnetic field of 1 T magnetic for greater than 10 s. Initially, 30 gallons Galinstan (Ga-In-Sn eutectic) will be recirculated within the test article using six jxB pumps to achieve flow velocities of up to 10 m/s across the fully annular radial test section. FLIT is designed to be a flexible machine that will allow experimental testing of various LM injection techniques, the study of flow instabilities, and electromagnetic control concepts to prove the feasibility of the LM divertors within fusion reactors.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: R. Maingi; Joachim Roth; C.H. Skinner;Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu