- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2021 GermanyPublisher:American Chemical Society (ACS) Funded by:[no funder available]Vittorio De Lauri; Lukas Krumbein; Simon Hein; Benedikt Prifling; Volker Schmidt; Timo Danner; Arnulf Latz;Lithium-ion batteries are the dominating electrochemical energy storage technology for battery electric vehicles. However, additional optimization is needed to meet the requirements of the automotive industry regarding energy density, cost, safety, and fast charging performance. In conventional electrode designs, there is a trade-off between energy density and rate capability. Recently, three-dimensional (3D) structuring techniques, such as laser perforation, were proposed to optimize both properties at the same time and remarkable improvements in fast-charging performance have been demonstrated. In this work, we investigate the effect of structuring techniques on the thermal properties and electrochemical performance of the battery using microstructure-resolved simulations. Particular attention will be paid to the heat evolution and lithium plating during fast charging of the batteries. According to our results, 3D structuring is able to reduce the overall cell resistance by improving the electrolyte transport. This has a positive impact on the fast charging capability of the cell and, moreover, reduces the danger of lithium plating.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Energy MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.1c02621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Energy MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.1c02621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Elsevier BV Funded by:[no funder available]Timo Danner; Joerg Kaiser; Horst Hahn; Simon Hein; Arnulf Latz; Arnulf Latz; Madhav Singh;Abstract Li-ion batteries are commonly used in portable electronic devices due to their outstanding energy and power density. A remaining issue which hinders the breakthrough e.g. in the automotive sector is the high production cost. For low power applications, such as stationary storage, batteries with electrodes thicker than 300 μm were suggested. High energy densities can be attained with only a few electrode layers which reduces production time and cost. However, mass and charge transport limitations can be severe at already small C-rates due to long transport pathways. In this article we use a detailed 3D micro-structure resolved model to investigate limiting factors for battery performance. The model is parametrized with data from the literature and dedicated experiments and shows good qualitative agreement with experimental discharge curves of thick NMC-graphite Li-ion batteries. The model is used to assess the effect of inhomogeneities in carbon black distribution and gives answers to the possible occurrence of lithium plating during battery charge. Based on our simulations we can predict optimal operation strategies and improved design concepts for future Li-ion batteries employing thick electrodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2016.09.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 209 citations 209 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2016.09.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 11 Aug 2023 GermanyPublisher:Wiley Funded by:[no funder available]Benedikt Prifling; Matthias Neumann; Simon Hein; Timo Danner; Emanuel Heider; Alice Hoffmann; Philipp Rieder; André Hilger; Markus Osenberg; Ingo Manke; Margret Wohlfahrt-Mehrens; Arnulf Latz; Volker Schmidt;It is well known that the spatial distribution of the carbon‐binder domain (CBD) offers a large potential to further optimize lithium‐ion batteries. However, it is challenging to reconstruct the CBD from tomographic image data obtained by synchrotron tomography. Herein, several approaches are considered to segment 3D image data of two different cathodes into three phases, namely, active material, CBD, and pores. More precisely, it is focused on global thresholding, a local closing approach based on energy‐dispersive X‐ray spectroscopy data, ak‐means clustering method, and a procedure based on a neural network that has been trained by correlative microscopy, i.e., based on data gained by synchrotron tomography and focused ion beam scanning electron microscopy data representing the same electrode. The impact of the considered segmentation approaches on morphological characteristics as well as on the resulting performance by spatially resolved transport simulations is quantified. Furthermore, experimentally determined electrochemical properties are used to identify an appropriate range for the effective transport parameter of the CBD. The developed methodology is applied to two differently manufactured cathodes, namely, an ultrathick unstructured cathode and a two‐layer cathode with varying CBD content in both layers. This comparison elucidates the impact of a specific structuring concept on the 3D microstructure of cathodes.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202370052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202370052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:MDPI AG Funded by:[no funder available]Tobias Knorr; Simon Hein; Benedikt Prifling; Matthias Neumann; Timo Danner; Volker Schmidt; Arnulf Latz;Most cathode materials for Li-ion batteries exhibit a low electronic conductivity. Therefore, a considerable amount of conductive additives is added during electrode production. A mixed phase of carbon and binder provides a 3D network for electron transport and at the same time improves the mechanical stability of the electrodes. However, this so-called carbon binder domain (CBD) hinders the transport of lithium ions through the electrolyte and reduces the specific energy of the cells. Therefore, the CBD content is an important design parameter for optimal battery performance. In the present study, stochastic 3D microstructure modeling, microstructure characterization, conductivity simulations as well as microstructure-resolved electrochemical simulations are performed to identify the influence of the CBD content and its spatial distribution on electrode performance. The electrochemical simulations on virtual, but realistic, electrode microstructures with different active material content and particle size distributions provide insights to limiting transport mechanisms and optimal electrode configurations. Furthermore, we use the results of both the microstructure characterization and electrochemical simulations to deduce extensions of homogenized cell models providing improved predictions of cell performance at low CBD contents relevant for high energy density batteries.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Lukas Gold; Maria Angeles Cabañero; Josef Kallo; Jana Müller; Jochen Zausch; Nicola Boaretto; Nicola Boaretto; Arnulf Latz; Arnulf Latz; Simon Hein; Johannes Altmann;Abstract Fast charging is one of the main challenges in Lithium-ion battery applications. Especially at low temperatures and high C-rates, capacity loss due to lithium plating is identified as the main aging effect. Electrochemical models are able to predict the lithium plating onset conditions, as they provide information about the local potentials and lithium concentrations within the individual electrodes. Due to the narrow potential window of graphite, a precise determination of the sensitive parameters is needed for an accurate prediction of the plating onset. Experimental parameterization is needed as each cell has a specific geometry and the transport parameters are material and geometry-dependent. Literature values are scattered and often do not provide information on the electrode geometry. In this study, a non-isothermal electrochemical 3D model was experimentally parameterized and used to investigate the lithium plating onset at low temperatures. The whole set of geometrical, transport and kinetic model parameters were determined at different temperatures and states of charge and the results were validated against the individual potentials of a multi-layer pouch cell. Good predictions of lithium plating onset were obtained. The study shows that the model can be used to develop fast-charging strategies for commercial lithium-ion batteries at low temperatures.
Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Georg A. Futter; Pawel Gazdzicki; K. Andreas Friedrich; Arnulf Latz; Thomas Jahnke;Abstract A transient 2D physical continuum-level model for analyzing polymer electrolyte membrane fuel cell (PEMFC) performance is developed and implemented into the new numerical framework NEOPARD-X. The model incorporates non-isothermal, compositional multiphase flow in both electrodes coupled to transport of water, protons and dissolved gaseous species in the polymer electrolyte membrane (PEM). Ionic and electrical charge transport is considered and a detailed model for the oxygen reduction reaction (ORR) combined with models for platinum oxide formation and oxygen transport in the ionomer thin-films of the catalyst layers (CLs) is applied. The model is validated by performance curves and impedance spectroscopic experiments, performed under various operating conditions, with a single set of parameters and used to study water management in co- and counter-flow operation. Based on electrochemical impedance spectra (EIS) simulations, the physical processes which govern the PEMFC performance are analyzed in detail. It is concluded that the contribution of diffusion through the porous electrodes to the overall cell impedance is minor, but concentration gradients along the channel have a strong impact. Inductive phenomena at low frequencies are identified from physics-based modeling. Induction is caused by humidity dependent ionomer properties and platinum oxide formation on the catalyst surface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.04.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.04.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024Publisher:Wiley Funded by:EC | Si-DRIVE, EC | OPINCHARGEEC| Si-DRIVE ,EC| OPINCHARGEAuthors: Franziska Kilchert; Max Schammer; Arnulf Latz; Birger Horstmann;Silicon (Si) anodes attract a lot of research attention for their potential to enable high‐energy density lithium‐ion batteries (LIBs). Many studies focus on nanostructured Si anodes to counteract deterioration. Herein, LIBs are modeled with Si nanowire anodes in combination with an ionic liquid (IL) electrolyte. On the anode side, elastic deformations to reflect the large volumetric changes of Si are allowed. With physics‐based continuum modeling, insight into usually hardly accessible quantities like the stress distribution in the active material can be provided. For the IL electrolyte, the thermodynamically consistent transport theory includes convection as relevant transport mechanism. The volume‐averaged 1d+1d framework is presented and parameter studies are performed to investigate the influence of the Si anode morphology on the cell performance. The findings highlight the importance of incorporating the volumetric expansion of Si in physics‐based simulations. Even for nanostructured anodes — which are said to be beneficial concerning the stresses — the expansion influences the achievable capacity of the cell. Accounting for enough pore space is important for efficient active material usage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202400206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202400206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Authors: Latz, A.; Zausch, J.;Abstract We present an exclusively thermodynamics based derivation of a Butler–Volmer expression for the intercalation exchange current in Li ion insertion batteries. In this first paper we restrict our investigations to the actual intercalation step without taking into account the desolvation of the Li ions in the electrolyte. The derivation is based on a generalized form of the law of mass action for non ideal systems (electrolyte and active particles). To obtain the Butler–Volmer expression in terms of overpotentials, it is necessary to approximate the activity coefficient of an assumed transition state as function of the activity coefficients of electrolyte and active particles. Specific considerations of surface states are not necessary, since intercalation is considered as a transition between two different chemical environments without surface reactions. Differences to other forms of the Butler–Volmer used in the literature [1] , [2] are discussed. It is especially shown, that our derivation leads to an amplitude of the exchange current which is free of singular terms which may lead to quantitative and qualitative problems in the simulation of overpotentials. This is demonstrated for the overpotential between electrolyte and active particles for a half cell configuration.
Electrochimica Acta arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2013.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electrochimica Acta arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2013.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 GermanyPublisher:American Chemical Society (ACS) Funded by:[no funder available]Authors: Timo Danner; Arnulf Latz; Arnulf Latz; Simon Hein;The deposition of a metallic lithium phase on the surface of graphite anodes in lithium ion batteries is a major degradation process and causes inherent safety risks. Despite its importance for battery applications the detection of this so-called lithium plating process during battery charge is very challenging. Therefore, a mechanistic understanding of the Li plating mechanism and the identification of characteristic features in the charge curve of the battery are extremely important. We present an electrochemical model, which enables the description of the deposition and dissolution of a metallic lithium phase in three-dimensional microstructure resolved simulations of lithium ion batteries. The features of this model are demonstrated by simulating the overcharge of a graphite electrode in a half-cell configuration. Simulation results show the typical features of the “stripping-plateau”, which is often observed during discharge after Li plating occurrs. Moreover, a similar feature is observed at the onset of Li plating, which can serve as an indicator for lithium plating in lithium ion batteries during charging, for example, of electric vehicles. Finally, we investigate the impact of an inhomogeneous solid-electrolyte-interphase on the distribution of plated lithium, which highlights the effect of local structural heterogeneities on degradation phenomena.
ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.0c01155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.0c01155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 14 Apr 2023 United Kingdom, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | E-MAGICEC| E-MAGICBlázquez, J. Alberto; Maça, Rudi R.; Leonet, Olatz; Azaceta, Eneko; Mukherjee, Ayan; Zhao-Karger, Zhirong; Li, Zhenyou; Kovalevsky, Aleksey; Fernández-Barquín, Ana; Mainar, Aroa R.; Jankowski, Piotr; Rademacher, Laurin; Dey, Sunita; Dutton, Siân E.; Grey, Clare P.; Drews, J.; Drews, Janina; Häcker, Joachim; Danner, Timo; Latz, Arnulf; Sotta, Dane; Palacin, M. R.; Palacin, M. Rosa; Martin, Jean-Frédéric; Lastra, Juan Maria García; Fichtner, Maximilian; Kundu, Sumana; Kraytsberg, Alexander; Ein-Eli, Yair; Noked, Malachi; Aurbach, Doron;Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 9 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2021 GermanyPublisher:American Chemical Society (ACS) Funded by:[no funder available]Vittorio De Lauri; Lukas Krumbein; Simon Hein; Benedikt Prifling; Volker Schmidt; Timo Danner; Arnulf Latz;Lithium-ion batteries are the dominating electrochemical energy storage technology for battery electric vehicles. However, additional optimization is needed to meet the requirements of the automotive industry regarding energy density, cost, safety, and fast charging performance. In conventional electrode designs, there is a trade-off between energy density and rate capability. Recently, three-dimensional (3D) structuring techniques, such as laser perforation, were proposed to optimize both properties at the same time and remarkable improvements in fast-charging performance have been demonstrated. In this work, we investigate the effect of structuring techniques on the thermal properties and electrochemical performance of the battery using microstructure-resolved simulations. Particular attention will be paid to the heat evolution and lithium plating during fast charging of the batteries. According to our results, 3D structuring is able to reduce the overall cell resistance by improving the electrolyte transport. This has a positive impact on the fast charging capability of the cell and, moreover, reduces the danger of lithium plating.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Energy MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.1c02621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Energy MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.1c02621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Elsevier BV Funded by:[no funder available]Timo Danner; Joerg Kaiser; Horst Hahn; Simon Hein; Arnulf Latz; Arnulf Latz; Madhav Singh;Abstract Li-ion batteries are commonly used in portable electronic devices due to their outstanding energy and power density. A remaining issue which hinders the breakthrough e.g. in the automotive sector is the high production cost. For low power applications, such as stationary storage, batteries with electrodes thicker than 300 μm were suggested. High energy densities can be attained with only a few electrode layers which reduces production time and cost. However, mass and charge transport limitations can be severe at already small C-rates due to long transport pathways. In this article we use a detailed 3D micro-structure resolved model to investigate limiting factors for battery performance. The model is parametrized with data from the literature and dedicated experiments and shows good qualitative agreement with experimental discharge curves of thick NMC-graphite Li-ion batteries. The model is used to assess the effect of inhomogeneities in carbon black distribution and gives answers to the possible occurrence of lithium plating during battery charge. Based on our simulations we can predict optimal operation strategies and improved design concepts for future Li-ion batteries employing thick electrodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2016.09.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 209 citations 209 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2016.09.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 11 Aug 2023 GermanyPublisher:Wiley Funded by:[no funder available]Benedikt Prifling; Matthias Neumann; Simon Hein; Timo Danner; Emanuel Heider; Alice Hoffmann; Philipp Rieder; André Hilger; Markus Osenberg; Ingo Manke; Margret Wohlfahrt-Mehrens; Arnulf Latz; Volker Schmidt;It is well known that the spatial distribution of the carbon‐binder domain (CBD) offers a large potential to further optimize lithium‐ion batteries. However, it is challenging to reconstruct the CBD from tomographic image data obtained by synchrotron tomography. Herein, several approaches are considered to segment 3D image data of two different cathodes into three phases, namely, active material, CBD, and pores. More precisely, it is focused on global thresholding, a local closing approach based on energy‐dispersive X‐ray spectroscopy data, ak‐means clustering method, and a procedure based on a neural network that has been trained by correlative microscopy, i.e., based on data gained by synchrotron tomography and focused ion beam scanning electron microscopy data representing the same electrode. The impact of the considered segmentation approaches on morphological characteristics as well as on the resulting performance by spatially resolved transport simulations is quantified. Furthermore, experimentally determined electrochemical properties are used to identify an appropriate range for the effective transport parameter of the CBD. The developed methodology is applied to two differently manufactured cathodes, namely, an ultrathick unstructured cathode and a two‐layer cathode with varying CBD content in both layers. This comparison elucidates the impact of a specific structuring concept on the 3D microstructure of cathodes.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202370052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy TechnologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202370052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:MDPI AG Funded by:[no funder available]Tobias Knorr; Simon Hein; Benedikt Prifling; Matthias Neumann; Timo Danner; Volker Schmidt; Arnulf Latz;Most cathode materials for Li-ion batteries exhibit a low electronic conductivity. Therefore, a considerable amount of conductive additives is added during electrode production. A mixed phase of carbon and binder provides a 3D network for electron transport and at the same time improves the mechanical stability of the electrodes. However, this so-called carbon binder domain (CBD) hinders the transport of lithium ions through the electrolyte and reduces the specific energy of the cells. Therefore, the CBD content is an important design parameter for optimal battery performance. In the present study, stochastic 3D microstructure modeling, microstructure characterization, conductivity simulations as well as microstructure-resolved electrochemical simulations are performed to identify the influence of the CBD content and its spatial distribution on electrode performance. The electrochemical simulations on virtual, but realistic, electrode microstructures with different active material content and particle size distributions provide insights to limiting transport mechanisms and optimal electrode configurations. Furthermore, we use the results of both the microstructure characterization and electrochemical simulations to deduce extensions of homogenized cell models providing improved predictions of cell performance at low CBD contents relevant for high energy density batteries.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Lukas Gold; Maria Angeles Cabañero; Josef Kallo; Jana Müller; Jochen Zausch; Nicola Boaretto; Nicola Boaretto; Arnulf Latz; Arnulf Latz; Simon Hein; Johannes Altmann;Abstract Fast charging is one of the main challenges in Lithium-ion battery applications. Especially at low temperatures and high C-rates, capacity loss due to lithium plating is identified as the main aging effect. Electrochemical models are able to predict the lithium plating onset conditions, as they provide information about the local potentials and lithium concentrations within the individual electrodes. Due to the narrow potential window of graphite, a precise determination of the sensitive parameters is needed for an accurate prediction of the plating onset. Experimental parameterization is needed as each cell has a specific geometry and the transport parameters are material and geometry-dependent. Literature values are scattered and often do not provide information on the electrode geometry. In this study, a non-isothermal electrochemical 3D model was experimentally parameterized and used to investigate the lithium plating onset at low temperatures. The whole set of geometrical, transport and kinetic model parameters were determined at different temperatures and states of charge and the results were validated against the individual potentials of a multi-layer pouch cell. Good predictions of lithium plating onset were obtained. The study shows that the model can be used to develop fast-charging strategies for commercial lithium-ion batteries at low temperatures.
Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Georg A. Futter; Pawel Gazdzicki; K. Andreas Friedrich; Arnulf Latz; Thomas Jahnke;Abstract A transient 2D physical continuum-level model for analyzing polymer electrolyte membrane fuel cell (PEMFC) performance is developed and implemented into the new numerical framework NEOPARD-X. The model incorporates non-isothermal, compositional multiphase flow in both electrodes coupled to transport of water, protons and dissolved gaseous species in the polymer electrolyte membrane (PEM). Ionic and electrical charge transport is considered and a detailed model for the oxygen reduction reaction (ORR) combined with models for platinum oxide formation and oxygen transport in the ionomer thin-films of the catalyst layers (CLs) is applied. The model is validated by performance curves and impedance spectroscopic experiments, performed under various operating conditions, with a single set of parameters and used to study water management in co- and counter-flow operation. Based on electrochemical impedance spectra (EIS) simulations, the physical processes which govern the PEMFC performance are analyzed in detail. It is concluded that the contribution of diffusion through the porous electrodes to the overall cell impedance is minor, but concentration gradients along the channel have a strong impact. Inductive phenomena at low frequencies are identified from physics-based modeling. Induction is caused by humidity dependent ionomer properties and platinum oxide formation on the catalyst surface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.04.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.04.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024Publisher:Wiley Funded by:EC | Si-DRIVE, EC | OPINCHARGEEC| Si-DRIVE ,EC| OPINCHARGEAuthors: Franziska Kilchert; Max Schammer; Arnulf Latz; Birger Horstmann;Silicon (Si) anodes attract a lot of research attention for their potential to enable high‐energy density lithium‐ion batteries (LIBs). Many studies focus on nanostructured Si anodes to counteract deterioration. Herein, LIBs are modeled with Si nanowire anodes in combination with an ionic liquid (IL) electrolyte. On the anode side, elastic deformations to reflect the large volumetric changes of Si are allowed. With physics‐based continuum modeling, insight into usually hardly accessible quantities like the stress distribution in the active material can be provided. For the IL electrolyte, the thermodynamically consistent transport theory includes convection as relevant transport mechanism. The volume‐averaged 1d+1d framework is presented and parameter studies are performed to investigate the influence of the Si anode morphology on the cell performance. The findings highlight the importance of incorporating the volumetric expansion of Si in physics‐based simulations. Even for nanostructured anodes — which are said to be beneficial concerning the stresses — the expansion influences the achievable capacity of the cell. Accounting for enough pore space is important for efficient active material usage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202400206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202400206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Authors: Latz, A.; Zausch, J.;Abstract We present an exclusively thermodynamics based derivation of a Butler–Volmer expression for the intercalation exchange current in Li ion insertion batteries. In this first paper we restrict our investigations to the actual intercalation step without taking into account the desolvation of the Li ions in the electrolyte. The derivation is based on a generalized form of the law of mass action for non ideal systems (electrolyte and active particles). To obtain the Butler–Volmer expression in terms of overpotentials, it is necessary to approximate the activity coefficient of an assumed transition state as function of the activity coefficients of electrolyte and active particles. Specific considerations of surface states are not necessary, since intercalation is considered as a transition between two different chemical environments without surface reactions. Differences to other forms of the Butler–Volmer used in the literature [1] , [2] are discussed. It is especially shown, that our derivation leads to an amplitude of the exchange current which is free of singular terms which may lead to quantitative and qualitative problems in the simulation of overpotentials. This is demonstrated for the overpotential between electrolyte and active particles for a half cell configuration.
Electrochimica Acta arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2013.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electrochimica Acta arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2013.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 GermanyPublisher:American Chemical Society (ACS) Funded by:[no funder available]Authors: Timo Danner; Arnulf Latz; Arnulf Latz; Simon Hein;The deposition of a metallic lithium phase on the surface of graphite anodes in lithium ion batteries is a major degradation process and causes inherent safety risks. Despite its importance for battery applications the detection of this so-called lithium plating process during battery charge is very challenging. Therefore, a mechanistic understanding of the Li plating mechanism and the identification of characteristic features in the charge curve of the battery are extremely important. We present an electrochemical model, which enables the description of the deposition and dissolution of a metallic lithium phase in three-dimensional microstructure resolved simulations of lithium ion batteries. The features of this model are demonstrated by simulating the overcharge of a graphite electrode in a half-cell configuration. Simulation results show the typical features of the “stripping-plateau”, which is often observed during discharge after Li plating occurrs. Moreover, a similar feature is observed at the onset of Li plating, which can serve as an indicator for lithium plating in lithium ion batteries during charging, for example, of electric vehicles. Finally, we investigate the impact of an inhomogeneous solid-electrolyte-interphase on the distribution of plated lithium, which highlights the effect of local structural heterogeneities on degradation phenomena.
ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.0c01155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.0c01155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 14 Apr 2023 United Kingdom, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | E-MAGICEC| E-MAGICBlázquez, J. Alberto; Maça, Rudi R.; Leonet, Olatz; Azaceta, Eneko; Mukherjee, Ayan; Zhao-Karger, Zhirong; Li, Zhenyou; Kovalevsky, Aleksey; Fernández-Barquín, Ana; Mainar, Aroa R.; Jankowski, Piotr; Rademacher, Laurin; Dey, Sunita; Dutton, Siân E.; Grey, Clare P.; Drews, J.; Drews, Janina; Häcker, Joachim; Danner, Timo; Latz, Arnulf; Sotta, Dane; Palacin, M. R.; Palacin, M. Rosa; Martin, Jean-Frédéric; Lastra, Juan Maria García; Fichtner, Maximilian; Kundu, Sumana; Kraytsberg, Alexander; Ein-Eli, Yair; Noked, Malachi; Aurbach, Doron;Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 9 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu