- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 France, Germany, United Kingdom, France, SwitzerlandPublisher:Copernicus GmbH Funded by:EC | GREENCYCLESII, EC | EMBRACE, EC | GEOCARBON +3 projectsEC| GREENCYCLESII ,EC| EMBRACE ,EC| GEOCARBON ,NSF| Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle ,EC| CARBOCHANGE ,EC| LUC4CPeter Levy; Steve D Jones; Richard J. Ellis; Anders Ahlström; C. Le Quéré; Philippe Ciais; Nicolas Gruber; Pierre Friedlingstein; Laurent Bopp; Heather Graven; Gordon B. Bonan; Stephen Sitch; Mark R. Lomas; Josep G. Canadell; Chris Huntingford; Christoph Heinze; Christoph Heinze; Benjamin Smith; Ranga B. Myneni; Ning Zeng; S. L. Piao; Sönke Zaehle; Scott C. Doney; Almut Arneth; Samuel Levis; Nicolas Viovy; Manuel Gloor; Zaichun Zhu; Philippe Peylin; Guillermo N. Murray-Tortarolo; Benjamin Poulter; Frédéric Chevallier;Abstract. The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 631 citations 631 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 2visibility views 2 download downloads 297 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Embargo end date: 01 Jan 2018 United Kingdom, Germany, Germany, Australia, Australia, Germany, Netherlands, SpainPublisher:Copernicus GmbH Funded by:EC | QUINCY, EC | LUC4C, EC | IMBALANCE-P +9 projectsEC| QUINCY ,EC| LUC4C ,EC| IMBALANCE-P ,EC| CRESCENDO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| RINGO ,EC| FIBER ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| HELIXBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 990 citations 990 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 24visibility views 24 download downloads 76 Powered bymore_vert OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, AustraliaPublisher:Springer Science and Business Media LLC Zhen Yu; Philippe Ciais; Shilong Piao; Richard A. Houghton; Chaoqun Lü; Hanqin Tian; Evgenios Agathokleous; Giri Kattel; Stephen Sitch; Daniel Goll; Xu Yue; Anthony P. Walker; Pierre Friedlingstein; Atul K. Jain; Shirong Liu; Guoyi Zhou;AbstractCarbon budget accounting relies heavily on Food and Agriculture Organization land-use data reported by governments. Here we develop a new land-use and cover-change database for China, finding that differing historical survey methods biased China’s reported data causing large errors in Food and Agriculture Organization databases. Land ecosystem model simulations driven with the new data reveal a strong carbon sink of 8.9 ± 0.8 Pg carbon from 1980 to 2019 in China, which was not captured in Food and Agriculture Organization data-based estimations due to biased land-use and cover-change signals. The land-use and cover-change in China, characterized by a rapid forest expansion from 1980 to 2019, contributed to nearly 44% of the national terrestrial carbon sink. In contrast, climate changes (22.3%), increasing nitrogen deposition (12.9%), and rising carbon dioxide (8.1%) are less important contributors. This indicates that previous studies have greatly underestimated the impact of land-use and cover-change on the terrestrial carbon balance of China. This study underlines the importance of reliable land-use and cover-change databases in global carbon budget accounting.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320284Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32961-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 129 citations 129 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320284Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32961-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 02 Sep 2024 United Kingdom, Netherlands, Switzerland, FrancePublisher:Wiley Funded by:EC | QUINCY, EC | IMBALANCE-PEC| QUINCY ,EC| IMBALANCE-PMingkai Jiang; Anthony P. Walker; Christian Körner; César Terrer; Kelly A. Heilman; Kristine Grace Cabugao; Benton N. Taylor; Elliott Campbell; Susan E. Trumbore; Margaret S. Torn; Jürgen Knauer; Josep Peñuelas; Julia Pongratz; Julia Pongratz; David S. Ellsworth; William K. Smith; Sean M. McMahon; Manon Sabot; Natasha MacBean; David J. P. Moore; Graham D. Farquhar; Roel J. W. Brienen; Phillip J. van Mantgem; A. Shafer Powell; Sönke Zaehle; Victor O. Leshyk; Martin G. De Kauwe; Terhi Riutta; Heather Graven; Steve L. Voelker; Fortunat Joos; Kathleen K. Treseder; Philippe Ciais; Simone Fatichi; Simone Fatichi; Benjamin N. Sulman; Lianhong Gu; Bruce A. Hungate; Martin Heimann; Juergen Schleucher; Matthew E. Craig; Pieter A. Zuidema; Stephen Sitch; Joshua B. Fisher; Colleen M. Iversen; Belinda E. Medlyn; Ralph F. Keeling; Mary E. Whelan; Ana Bastos; Yadvinder Malhi; David Frank; Katerina Georgiou; Maxime Cailleret; Maxime Cailleret; Tim R. McVicar; Tim R. McVicar; Sebastian Leuzinger; Soumaya Belmecheri; Yao Liu; Josep G. Canadell; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Trevor F. Keenan; Trevor F. Keenan; Richard J. Norby; Anna T. Trugman; Giovanna Battipaglia; Vanessa Haverd;doi: 10.1111/nph.16866 , 10.48350/153006
pmid: 32789857
SummaryAtmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 366 citations 366 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 90visibility views 90 download downloads 614 Powered bymore_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Copernicus GmbH Shilong Piao; Akihiko Ito; S. Li; Yao Huang; Philippe Ciais; X. Wang; Shushi Peng; R. J. Andres; Jingyun Fang; Sujong Jeong; Jiafu Mao; Anwar Mohammat; Hiroyuki Muraoka; Huijuan Nan; Changhui Peng; Philippe Peylin; Xiaoying Shi; Stephen Sitch; Shengli Tao; Hanqin Tian; Mingjie Xu; Guanghui Yu; Ning Zeng; Biao Zhu;Abstract. This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North- and South-Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990–2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's natural carbon sink from these three approaches are comparable: −0.264 ± 0.033 Pg C yr−1 from inventory-remote sensing model-data fusion approach, −0.393 ± 0.141 Pg C yr−1 (not considering biofuel emissions) or −0.204 ± 0.141 Pg C yr−1 (considering biofuel emissions) for carbon cycle models, and −0.270 ± 0.507 Pg C yr−1 for atmospheric inverse models. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO2 together resulted in a carbon sink of −0.289 ± 0.135 Pg C yr−1, while land use change and nitrogen deposition had a contribution of −0.013 ± 0.029 Pg C yr−1 and −0.107 ± 0.025 Pg C yr−1, respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13–26% of East Asia's CO2 emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial ecosystems over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO2 changes, which cannot be considered as independent for their effects on carbon storage.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:American Geophysical Union (AGU) Funded by:ANR | CLAND, UKRI | NCEO LTS-SANR| CLAND ,UKRI| NCEO LTS-SXuhui Wang; Yahui Gao; Sujong Jeong; Akihiko Ito; Ana Bastos; Benjamin Poulter; Yilong Wang; Philippe Ciais; Hanqin Tian; Wenping Yuan; Naveen Chandra; Frédéric Chevallier; Lei Fan; Songbai Hong; Ronny Lauerwald; Wei Li; Zhengyang Lin; Naiqing Pan; Prabir K. Patra; Shushi Peng; Lishan Ran; Yuxing Sang; Stephen Sitch; T. Mäki; Rona L. Thompson; Chenzhi Wang; Kai Wang; Tao Wang; Yi Xi; Li Xu; Yanzi Yan; Jeongmin Yun; Yao Zhang; Yuzhong Zhang; Zhen Zhang; Bo Zheng; Feng Zhou; Shu Tao; Josep G. Canadell; Shilong Piao;AbstractEast Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid‐century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long‐lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1(the top‐down approach) and −36.1 ± 207.1 Tg CO2eq yr−1(the bottom‐up approach) during 2000–2019. This net GHG sink includes a large land CO2sink (−1229.3 ± 430.9 Tg CO2 yr−1based on the top‐down approach and −1353.8 ± 158.5 Tg CO2 yr−1based on the bottom‐up approach) being offset by biogenic CH4and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top‐down and bottom‐up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.
Global Biogeochemica... arrow_drop_down Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Biogeochemica... arrow_drop_down Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, United KingdomPublisher:Proceedings of the National Academy of Sciences Malhi, Yadvinder; Aragao, L. E. O. C.; Galbraith, David; Huntingford, Chris; Fisher, Rosie A; Zelazowski, Przemyslaw; Sitch, Stephen A; McSweeney, Carol; Meir, Patrick;We examine the evidence for the possibility that 21st-century climate change may cause a large-scale “dieback” or degradation of Amazonian rainforest. We employ a new framework for evaluating the rainfall regime of tropical forests and from this deduce precipitation-based boundaries for current forest viability. We then examine climate simulations by 19 global climate models (GCMs) in this context and find that most tend to underestimate current rainfall. GCMs also vary greatly in their projections of future climate change in Amazonia. We attempt to take into account the differences between GCM-simulated and observed rainfall regimes in the 20th century. Our analysis suggests that dry-season water stress is likely to increase in E. Amazonia over the 21st century, but the region tends toward a climate more appropriate to seasonal forest than to savanna. These seasonal forests may be resilient to seasonal drought but are likely to face intensified water stress caused by higher temperatures and to be vulnerable to fires, which are at present naturally rare in much of Amazonia. The spread of fire ignition associated with advancing deforestation, logging, and fragmentation may act as nucleation points that trigger the transition of these seasonal forests into fire-dominated, low biomass forests. Conversely, deliberate limitation of deforestation and fire may be an effective intervention to maintain Amazonian forest resilience in the face of imposed 21st-century climate change. Such intervention may be enough to navigate E. Amazonia away from a possible “tipping point,” beyond which extensive rainforest would become unsustainable.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/80328Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0804619106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 723 citations 723 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/80328Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0804619106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, New ZealandPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., NSF | LTER: Biodiversity, Multi..., ARC | ARC Centres of Excellence... +3 projectsARC| Discovery Projects - Grant ID: DP130101252 ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,ARC| ARC Centres of Excellences - Grant ID: CE140100008 ,ARC| Future Fellowships - Grant ID: FT110100457 ,UKRI| SAMBBA (South American Biomass Burning Analysis) ,ARC| Climate dependence of plant respiration in a warmer, drier worldMary A. Heskel; Andy Wiltshire; Owen K. Atkin; Keith J. Bloomfield; Peter B. Reich; Ethan E. Butler; Stephen Sitch; Anna B. Harper; Kevin L. Griffin; Odhran S. O'Sullivan; Mark G. Tjoelker; Yadvinder Malhi; Lina M. Mercado; Alberto Martínez-de la Torre; Chris Huntingford; Ming Chen; Matthew H. Turnbull; Patrick Meir; Patrick Meir; Kirk R. Wythers;AbstractLand-atmosphere exchanges influence atmospheric CO2. Emphasis has been on describing photosynthetic CO2 uptake, but less on respiration losses. New global datasets describe upper canopy dark respiration (Rd) and temperature dependencies. This allows characterisation of baseline Rd, instantaneous temperature responses and longer-term thermal acclimation effects. Here we show the global implications of these parameterisations with a global gridded land model. This model aggregates Rd to whole-plant respiration Rp, driven with meteorological forcings spanning uncertainty across climate change models. For pre-industrial estimates, new baseline Rd increases Rp and especially in the tropics. Compared to new baseline, revised instantaneous response decreases Rp for mid-latitudes, while acclimation lowers this for the tropics with increases elsewhere. Under global warming, new Rd estimates amplify modelled respiration increases, although partially lowered by acclimation. Future measurements will refine how Rd aggregates to whole-plant respiration. Our analysis suggests Rp could be around 30% higher than existing estimates.
University of Canter... arrow_drop_down University of Canterbury, Christchurch: UC Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10092/15406Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2017License: CC BYFull-Text: https://doi.org/10.1038/s41467-017-01774-zData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Canterbury, Christchurch: UC Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10092/16240Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-017-01774-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 10 Powered bymore_vert University of Canter... arrow_drop_down University of Canterbury, Christchurch: UC Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10092/15406Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2017License: CC BYFull-Text: https://doi.org/10.1038/s41467-017-01774-zData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Canterbury, Christchurch: UC Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10092/16240Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-017-01774-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | RINGO, SNSF | ICOS-CH Phase 3, EC | PARIS +2 projectsEC| RINGO ,SNSF| ICOS-CH Phase 3 ,EC| PARIS ,NWO| The Ruisdael Observatory for atmospheric science ,SNSF| ICOS-CH: Integrated Carbon Observation System in SwitzerlandAuke M. van der Woude; Wouter Peters; Emilie Joetzjer; Sébastien Lafont; Gerbrand Koren; Philippe Ciais; Michel Ramonet; Yidi Xu; Ana Bastos; Santiago Botía; Stephen Sitch; Remco de Kok; Tobias Kneuer; Dagmar Kubistin; Adrien Jacotot; Benjamin Loubet; Pedro-Henrique Herig-Coimbra; Denis Loustau; Ingrid T. Luijkx;AbstractThe year 2022 saw record breaking temperatures in Europe during both summer and fall. Similar to the recent 2018 drought, close to 30% (3.0 million km2) of the European continent was under severe summer drought. In 2022, the drought was located in central and southeastern Europe, contrasting the Northern-centered 2018 drought. We show, using multiple sets of observations, a reduction of net biospheric carbon uptake in summer (56-62 TgC) over the drought area. Specific sites in France even showed a widespread summertime carbon release by forests, additional to wildfires. Partial compensation (32%) for the decreased carbon uptake due to drought was offered by a warm autumn with prolonged biospheric carbon uptake. The severity of this second drought event in 5 years suggests drought-induced reduced carbon uptake to no longer be exceptional, and important to factor into Europe’s developing plans for net-zero greenhouse gas emissions that rely on carbon uptake by forests.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.inrae.fr/hal-04233219Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsArchive de l'Observatoire de Paris (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41851-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.inrae.fr/hal-04233219Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsArchive de l'Observatoire de Paris (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41851-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:American Association for the Advancement of Science (AAAS) Daniel J. Hayes; Oliver L. Phillips; Pekka E. Kauppi; Philippe Ciais; Richard A. Houghton; Jingyun Fang; Jingyun Fang; Anatoly Shvidenko; Stephen W. Pacala; Shilong Piao; A. David McGuire; Simon L. Lewis; Yude Pan; Robert B. Jackson; Werner A. Kurz; Josep G. Canadell; Aapo Rautiainen; Stephen Sitch; Richard Birdsey;pmid: 21764754
Net average global annual uptake of atmospheric carbon dioxide by forests was 1.1 petagrams of carbon, roughly one-sixth of fossil fuel emissions.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Full-Text: https://cea.hal.science/cea-00819253Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Full-Text: https://cea.hal.science/cea-00819253Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1201609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6K citations 5,748 popularity Top 0.01% influence Top 0.01% impulse Top 0.01% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Full-Text: https://cea.hal.science/cea-00819253Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Full-Text: https://cea.hal.science/cea-00819253Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1201609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 France, Germany, United Kingdom, France, SwitzerlandPublisher:Copernicus GmbH Funded by:EC | GREENCYCLESII, EC | EMBRACE, EC | GEOCARBON +3 projectsEC| GREENCYCLESII ,EC| EMBRACE ,EC| GEOCARBON ,NSF| Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle ,EC| CARBOCHANGE ,EC| LUC4CPeter Levy; Steve D Jones; Richard J. Ellis; Anders Ahlström; C. Le Quéré; Philippe Ciais; Nicolas Gruber; Pierre Friedlingstein; Laurent Bopp; Heather Graven; Gordon B. Bonan; Stephen Sitch; Mark R. Lomas; Josep G. Canadell; Chris Huntingford; Christoph Heinze; Christoph Heinze; Benjamin Smith; Ranga B. Myneni; Ning Zeng; S. L. Piao; Sönke Zaehle; Scott C. Doney; Almut Arneth; Samuel Levis; Nicolas Viovy; Manuel Gloor; Zaichun Zhu; Philippe Peylin; Guillermo N. Murray-Tortarolo; Benjamin Poulter; Frédéric Chevallier;Abstract. The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 631 citations 631 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 2visibility views 2 download downloads 297 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Embargo end date: 01 Jan 2018 United Kingdom, Germany, Germany, Australia, Australia, Germany, Netherlands, SpainPublisher:Copernicus GmbH Funded by:EC | QUINCY, EC | LUC4C, EC | IMBALANCE-P +9 projectsEC| QUINCY ,EC| LUC4C ,EC| IMBALANCE-P ,EC| CRESCENDO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| RINGO ,EC| FIBER ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| HELIXBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 990 citations 990 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 24visibility views 24 download downloads 76 Powered bymore_vert OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, AustraliaPublisher:Springer Science and Business Media LLC Zhen Yu; Philippe Ciais; Shilong Piao; Richard A. Houghton; Chaoqun Lü; Hanqin Tian; Evgenios Agathokleous; Giri Kattel; Stephen Sitch; Daniel Goll; Xu Yue; Anthony P. Walker; Pierre Friedlingstein; Atul K. Jain; Shirong Liu; Guoyi Zhou;AbstractCarbon budget accounting relies heavily on Food and Agriculture Organization land-use data reported by governments. Here we develop a new land-use and cover-change database for China, finding that differing historical survey methods biased China’s reported data causing large errors in Food and Agriculture Organization databases. Land ecosystem model simulations driven with the new data reveal a strong carbon sink of 8.9 ± 0.8 Pg carbon from 1980 to 2019 in China, which was not captured in Food and Agriculture Organization data-based estimations due to biased land-use and cover-change signals. The land-use and cover-change in China, characterized by a rapid forest expansion from 1980 to 2019, contributed to nearly 44% of the national terrestrial carbon sink. In contrast, climate changes (22.3%), increasing nitrogen deposition (12.9%), and rising carbon dioxide (8.1%) are less important contributors. This indicates that previous studies have greatly underestimated the impact of land-use and cover-change on the terrestrial carbon balance of China. This study underlines the importance of reliable land-use and cover-change databases in global carbon budget accounting.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320284Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32961-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 129 citations 129 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320284Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32961-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 02 Sep 2024 United Kingdom, Netherlands, Switzerland, FrancePublisher:Wiley Funded by:EC | QUINCY, EC | IMBALANCE-PEC| QUINCY ,EC| IMBALANCE-PMingkai Jiang; Anthony P. Walker; Christian Körner; César Terrer; Kelly A. Heilman; Kristine Grace Cabugao; Benton N. Taylor; Elliott Campbell; Susan E. Trumbore; Margaret S. Torn; Jürgen Knauer; Josep Peñuelas; Julia Pongratz; Julia Pongratz; David S. Ellsworth; William K. Smith; Sean M. McMahon; Manon Sabot; Natasha MacBean; David J. P. Moore; Graham D. Farquhar; Roel J. W. Brienen; Phillip J. van Mantgem; A. Shafer Powell; Sönke Zaehle; Victor O. Leshyk; Martin G. De Kauwe; Terhi Riutta; Heather Graven; Steve L. Voelker; Fortunat Joos; Kathleen K. Treseder; Philippe Ciais; Simone Fatichi; Simone Fatichi; Benjamin N. Sulman; Lianhong Gu; Bruce A. Hungate; Martin Heimann; Juergen Schleucher; Matthew E. Craig; Pieter A. Zuidema; Stephen Sitch; Joshua B. Fisher; Colleen M. Iversen; Belinda E. Medlyn; Ralph F. Keeling; Mary E. Whelan; Ana Bastos; Yadvinder Malhi; David Frank; Katerina Georgiou; Maxime Cailleret; Maxime Cailleret; Tim R. McVicar; Tim R. McVicar; Sebastian Leuzinger; Soumaya Belmecheri; Yao Liu; Josep G. Canadell; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Trevor F. Keenan; Trevor F. Keenan; Richard J. Norby; Anna T. Trugman; Giovanna Battipaglia; Vanessa Haverd;doi: 10.1111/nph.16866 , 10.48350/153006
pmid: 32789857
SummaryAtmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 366 citations 366 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 90visibility views 90 download downloads 614 Powered bymore_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Copernicus GmbH Shilong Piao; Akihiko Ito; S. Li; Yao Huang; Philippe Ciais; X. Wang; Shushi Peng; R. J. Andres; Jingyun Fang; Sujong Jeong; Jiafu Mao; Anwar Mohammat; Hiroyuki Muraoka; Huijuan Nan; Changhui Peng; Philippe Peylin; Xiaoying Shi; Stephen Sitch; Shengli Tao; Hanqin Tian; Mingjie Xu; Guanghui Yu; Ning Zeng; Biao Zhu;Abstract. This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North- and South-Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990–2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's natural carbon sink from these three approaches are comparable: −0.264 ± 0.033 Pg C yr−1 from inventory-remote sensing model-data fusion approach, −0.393 ± 0.141 Pg C yr−1 (not considering biofuel emissions) or −0.204 ± 0.141 Pg C yr−1 (considering biofuel emissions) for carbon cycle models, and −0.270 ± 0.507 Pg C yr−1 for atmospheric inverse models. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO2 together resulted in a carbon sink of −0.289 ± 0.135 Pg C yr−1, while land use change and nitrogen deposition had a contribution of −0.013 ± 0.029 Pg C yr−1 and −0.107 ± 0.025 Pg C yr−1, respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13–26% of East Asia's CO2 emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial ecosystems over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO2 changes, which cannot be considered as independent for their effects on carbon storage.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:American Geophysical Union (AGU) Funded by:ANR | CLAND, UKRI | NCEO LTS-SANR| CLAND ,UKRI| NCEO LTS-SXuhui Wang; Yahui Gao; Sujong Jeong; Akihiko Ito; Ana Bastos; Benjamin Poulter; Yilong Wang; Philippe Ciais; Hanqin Tian; Wenping Yuan; Naveen Chandra; Frédéric Chevallier; Lei Fan; Songbai Hong; Ronny Lauerwald; Wei Li; Zhengyang Lin; Naiqing Pan; Prabir K. Patra; Shushi Peng; Lishan Ran; Yuxing Sang; Stephen Sitch; T. Mäki; Rona L. Thompson; Chenzhi Wang; Kai Wang; Tao Wang; Yi Xi; Li Xu; Yanzi Yan; Jeongmin Yun; Yao Zhang; Yuzhong Zhang; Zhen Zhang; Bo Zheng; Feng Zhou; Shu Tao; Josep G. Canadell; Shilong Piao;AbstractEast Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid‐century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long‐lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1(the top‐down approach) and −36.1 ± 207.1 Tg CO2eq yr−1(the bottom‐up approach) during 2000–2019. This net GHG sink includes a large land CO2sink (−1229.3 ± 430.9 Tg CO2 yr−1based on the top‐down approach and −1353.8 ± 158.5 Tg CO2 yr−1based on the bottom‐up approach) being offset by biogenic CH4and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top‐down and bottom‐up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.
Global Biogeochemica... arrow_drop_down Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Biogeochemica... arrow_drop_down Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, United KingdomPublisher:Proceedings of the National Academy of Sciences Malhi, Yadvinder; Aragao, L. E. O. C.; Galbraith, David; Huntingford, Chris; Fisher, Rosie A; Zelazowski, Przemyslaw; Sitch, Stephen A; McSweeney, Carol; Meir, Patrick;We examine the evidence for the possibility that 21st-century climate change may cause a large-scale “dieback” or degradation of Amazonian rainforest. We employ a new framework for evaluating the rainfall regime of tropical forests and from this deduce precipitation-based boundaries for current forest viability. We then examine climate simulations by 19 global climate models (GCMs) in this context and find that most tend to underestimate current rainfall. GCMs also vary greatly in their projections of future climate change in Amazonia. We attempt to take into account the differences between GCM-simulated and observed rainfall regimes in the 20th century. Our analysis suggests that dry-season water stress is likely to increase in E. Amazonia over the 21st century, but the region tends toward a climate more appropriate to seasonal forest than to savanna. These seasonal forests may be resilient to seasonal drought but are likely to face intensified water stress caused by higher temperatures and to be vulnerable to fires, which are at present naturally rare in much of Amazonia. The spread of fire ignition associated with advancing deforestation, logging, and fragmentation may act as nucleation points that trigger the transition of these seasonal forests into fire-dominated, low biomass forests. Conversely, deliberate limitation of deforestation and fire may be an effective intervention to maintain Amazonian forest resilience in the face of imposed 21st-century climate change. Such intervention may be enough to navigate E. Amazonia away from a possible “tipping point,” beyond which extensive rainforest would become unsustainable.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/80328Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0804619106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 723 citations 723 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/80328Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0804619106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, New ZealandPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., NSF | LTER: Biodiversity, Multi..., ARC | ARC Centres of Excellence... +3 projectsARC| Discovery Projects - Grant ID: DP130101252 ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,ARC| ARC Centres of Excellences - Grant ID: CE140100008 ,ARC| Future Fellowships - Grant ID: FT110100457 ,UKRI| SAMBBA (South American Biomass Burning Analysis) ,ARC| Climate dependence of plant respiration in a warmer, drier worldMary A. Heskel; Andy Wiltshire; Owen K. Atkin; Keith J. Bloomfield; Peter B. Reich; Ethan E. Butler; Stephen Sitch; Anna B. Harper; Kevin L. Griffin; Odhran S. O'Sullivan; Mark G. Tjoelker; Yadvinder Malhi; Lina M. Mercado; Alberto Martínez-de la Torre; Chris Huntingford; Ming Chen; Matthew H. Turnbull; Patrick Meir; Patrick Meir; Kirk R. Wythers;AbstractLand-atmosphere exchanges influence atmospheric CO2. Emphasis has been on describing photosynthetic CO2 uptake, but less on respiration losses. New global datasets describe upper canopy dark respiration (Rd) and temperature dependencies. This allows characterisation of baseline Rd, instantaneous temperature responses and longer-term thermal acclimation effects. Here we show the global implications of these parameterisations with a global gridded land model. This model aggregates Rd to whole-plant respiration Rp, driven with meteorological forcings spanning uncertainty across climate change models. For pre-industrial estimates, new baseline Rd increases Rp and especially in the tropics. Compared to new baseline, revised instantaneous response decreases Rp for mid-latitudes, while acclimation lowers this for the tropics with increases elsewhere. Under global warming, new Rd estimates amplify modelled respiration increases, although partially lowered by acclimation. Future measurements will refine how Rd aggregates to whole-plant respiration. Our analysis suggests Rp could be around 30% higher than existing estimates.
University of Canter... arrow_drop_down University of Canterbury, Christchurch: UC Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10092/15406Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2017License: CC BYFull-Text: https://doi.org/10.1038/s41467-017-01774-zData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Canterbury, Christchurch: UC Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10092/16240Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-017-01774-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 10 Powered bymore_vert University of Canter... arrow_drop_down University of Canterbury, Christchurch: UC Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10092/15406Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2017License: CC BYFull-Text: https://doi.org/10.1038/s41467-017-01774-zData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Canterbury, Christchurch: UC Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10092/16240Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-017-01774-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | RINGO, SNSF | ICOS-CH Phase 3, EC | PARIS +2 projectsEC| RINGO ,SNSF| ICOS-CH Phase 3 ,EC| PARIS ,NWO| The Ruisdael Observatory for atmospheric science ,SNSF| ICOS-CH: Integrated Carbon Observation System in SwitzerlandAuke M. van der Woude; Wouter Peters; Emilie Joetzjer; Sébastien Lafont; Gerbrand Koren; Philippe Ciais; Michel Ramonet; Yidi Xu; Ana Bastos; Santiago Botía; Stephen Sitch; Remco de Kok; Tobias Kneuer; Dagmar Kubistin; Adrien Jacotot; Benjamin Loubet; Pedro-Henrique Herig-Coimbra; Denis Loustau; Ingrid T. Luijkx;AbstractThe year 2022 saw record breaking temperatures in Europe during both summer and fall. Similar to the recent 2018 drought, close to 30% (3.0 million km2) of the European continent was under severe summer drought. In 2022, the drought was located in central and southeastern Europe, contrasting the Northern-centered 2018 drought. We show, using multiple sets of observations, a reduction of net biospheric carbon uptake in summer (56-62 TgC) over the drought area. Specific sites in France even showed a widespread summertime carbon release by forests, additional to wildfires. Partial compensation (32%) for the decreased carbon uptake due to drought was offered by a warm autumn with prolonged biospheric carbon uptake. The severity of this second drought event in 5 years suggests drought-induced reduced carbon uptake to no longer be exceptional, and important to factor into Europe’s developing plans for net-zero greenhouse gas emissions that rely on carbon uptake by forests.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.inrae.fr/hal-04233219Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsArchive de l'Observatoire de Paris (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41851-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.inrae.fr/hal-04233219Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsArchive de l'Observatoire de Paris (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41851-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:American Association for the Advancement of Science (AAAS) Daniel J. Hayes; Oliver L. Phillips; Pekka E. Kauppi; Philippe Ciais; Richard A. Houghton; Jingyun Fang; Jingyun Fang; Anatoly Shvidenko; Stephen W. Pacala; Shilong Piao; A. David McGuire; Simon L. Lewis; Yude Pan; Robert B. Jackson; Werner A. Kurz; Josep G. Canadell; Aapo Rautiainen; Stephen Sitch; Richard Birdsey;pmid: 21764754
Net average global annual uptake of atmospheric carbon dioxide by forests was 1.1 petagrams of carbon, roughly one-sixth of fossil fuel emissions.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Full-Text: https://cea.hal.science/cea-00819253Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Full-Text: https://cea.hal.science/cea-00819253Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1201609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6K citations 5,748 popularity Top 0.01% influence Top 0.01% impulse Top 0.01% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Full-Text: https://cea.hal.science/cea-00819253Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Full-Text: https://cea.hal.science/cea-00819253Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1201609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu