- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 LuxembourgPublisher:Informa UK Limited Funded by:SNSF | PV2050: Simulation and ch..., EC | Sharc25SNSF| PV2050: Simulation and characterization: from cells to systems ,EC| Sharc25Weiss, Thomas Paul; Carron, Romain; Wolter, Max H.; Löckinger, Johannes; Avancini, Enrico; Siebentritt, Susanne; Buecheler, Stephan; Tiwari, Ayodhya N.;Time-resolved photoluminescence (TRPL) is applied to determine an effective lifetime of minority charge carriers in semiconductors. Such effective lifetimes include recombination channels in the bulk as well as at the surfaces and interfaces of the device. In the case of Cu(In,Ga)Se2 absorbers used for solar cell applications, trapping of minority carriers has also been reported to impact the effective minority carrier lifetime. Trapping can be indicated by an increased temperature dependence of the experimentally determined photoluminescence decay time when compared to the temperature dependence of Shockley–Read–Hall (SRH) recombination alone and can lead to an overestimation of the minority carrier lifetime. Here, it is shown by technology computer-aided design (TCAD) simulations and by experiment that the intentional double-graded bandgap profile of high efficiency Cu(In,Ga)Se2 absorbers causes a temperature dependence of the PL decay time similar to trapping in case of a recombinative front surface. It is demonstrated that a passivated front surface results in a temperature dependence of the decay time that can be explained without minority carrier trapping and thus enables the assessment of the absorber quality by means of the minority carrier lifetime. Comparison with the absolute PL yield and the quasi-Fermi-level splitting (QFLS) corroborate the conclusion that the measured decay time corresponds to the bulk minority carrier lifetime of 250 ns for the double-graded CIGS absorber under investigation.
Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . Peer-reviewedLicense: CC BYData sources: SygmaScience and Technology of Advanced MaterialsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2019Data sources: Open Repository and Bibliography - LuxembourgScience and Technology of Advanced MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2019.1586583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . Peer-reviewedLicense: CC BYData sources: SygmaScience and Technology of Advanced MaterialsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2019Data sources: Open Repository and Bibliography - LuxembourgScience and Technology of Advanced MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2019.1586583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Tobias Bertram; Thomas Paul Weiss; Ashley Finger; Jan Sendler; Susanne Siebentritt; Germain Rey; David Regesch;Abstract There are different ways to determine the bandgap of a semiconductor. In the case of strong tailing they lead to different results. Various versions of Tauc’s plot give the gap of extended states, whereas the photoluminescence and the quantum efficiency extend into the tail states. The absorption edge in kesterite is determined by tail states therefore different methods to determine the band gap lead to different results. To decide whether the main recombination path is in the bulk or at the interface, the activation energy of the recombination rate should be compared to the energy of the radiative recombination in the bulk. This is the energy of the photoluminescence maximum and can be approximated by the linear extrapolation of the low energy edge of the quantum efficiency spectrum.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Funded by:SNSF | Combining macroscopic and...SNSF| Combining macroscopic and microscopic characterization of recombination losses in high efficiency CIGS solar cells - how to reach the theoretical limit?Thomas Paul Weiss; Stephan Stutterheim; Johannes Löckinger; Stephan Buecheler; Romain Carron; Benjamin Bissig; Ayodhya N. Tiwari; Julian Perrenoud; Peter Fuchs; Enrico Avancini; Patrick Reinhard; Thomas Feurer;doi: 10.1002/pip.2811
AbstractThis review summarizes the current status of Cu(In,Ga)(S,Se)2 (CIGS) thin film solar cell technology with a focus on recent advancements and emerging concepts intended for higher efficiency and novel applications. The recent developments and trends of research in laboratories and industrial achievements communicated within the last years are reviewed, and the major developments linked to alkali post deposition treatment and composition grading in CIGS, surface passivation, buffer, and transparent contact layers are emphasized. Encouraging results have been achieved for CIGS‐based tandem solar cells and for improvement in low light device performance. Challenges of technology transfer of lab's record high efficiency cells to average industrial production are obvious from the reported efficiency values. One section is dedicated to development and opportunities offered by flexible and lightweight CIGS modules. Copyright © 2016 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu287 citations 287 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Marina Mousel; Susanne Siebentritt; Thomas Paul Weiss; Alex Redinger; David Regesch;Evaluating interfering capacitance steps in admittance spectroscopy for solar cell defect analysis is still a problem which needs to be solved. While the common analysis developed by Walter et al.[1] is capable of extracting defect distributions from the capacitance data, it results in erroneous defect densities in the presence of overlapping capacitance steps. We derive an expression for the capacitance step caused by defects with a density of states distributed in energy. By adding several of these defect distributions, interfering capacitance steps can be described. Thus, it is possible to fit the entire capacitance spectrum simultaneously for all temperatures. We apply the presented method to Cu 2 ZnSnSe 4 -based solar cells with power conversion efficiencies between 5% and 7%. Comparing the obtained defect parameters with the ones obtained by the method from Walter et al. reveals that the Walter method overestimates the defect densities in the case of overlapping capacitance steps.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2358073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2358073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Michele Melchiorre; Germain Rey; Thomas Paul Weiss; Jan Sendler; Conrad Spindler; Florian Werner; Ashley Finger; Mael Guennou; Susanne Siebentritt; M. Hála;Abstract Low temperature (100 and 250 °C) post-deposition annealings were applied to Cu 2 ZnSnSe 4 (CZTSe) absorbers to modify the ordering degree of the kesterite. Spectrophotometry and photoluminescence revealed a blue or red shift of the band gap and the luminescence peak after ordering or disordering post-treatments, respectively. For most solar cells, the open circuit voltage was found to be limited by bulk recombination and to follow band gap variations, leading to a constant open circuit voltage deficit. For the range of ordering degree investigated, the large open circuit voltage deficit, typically encountered in kesterite solar cells, could not be attributed to disorder. Capacitance–voltage measurements demonstrated that the net carrier concentration of ordered CZTSe is reduced by one order of magnitude compared to disordered CZTSe. Besides its beneficial effects on the open circuit voltage, the ordering post-treatment was also found to increase the collection of photo-generated carriers, resulting in a high current density and a significant improvement in device efficiency.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 LuxembourgPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | KESTCELLSEC| KESTCELLSRedinger, Alex; Sendler, Jan; Djemour, Rabie; Weiss, Thomas P.; Rey, Germain; Dale, Phillip; Siebentritt, Susanne;We present a high-temperature Cu $_2$ ZnSnSe $_4$ coevaporation study, where solar cells with a power conversion efficiency of 7.1% have been achieved. The process is monitored with laser light scattering in order to follow the incorporation of the Sn into the film. We observe the segregation of ZnSe at the Mo/CZTSe interface. Optical analysis has been carried out with photoluminescence and spectrophotometry. We observe strong band tailing and a bandgap, which is significantly lower than in other reported efficient CZTSe absorbers. The photoluminescence at room temperature is lower than the bandgap due to the existence of a large quantity of tail states. Finally, we present effects of low-temperature postannealing of the absorbers on ordering of the Cu/Zn atoms in CZTSe and solar cell parameters. We observe strong changes in all solar cell parameters upon annealing. The efficiency of the annealed devices is significantly reduced, although ordering is improved compared with ones made from nonannealed absorbers.
IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2015Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2377561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2015Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2377561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Informa UK Limited Funded by:SNSF | PV2050: Novel materials a..., SNSF | PV2050: Building blocks f...SNSF| PV2050: Novel materials and interfaces for advanced photovoltaic devices ,SNSF| PV2050: Building blocks for Next Generation Multi-Junction Solar CellsThomas Feurer; Benjamin Bissig; Thomas P. Weiss; Romain Carron; Enrico Avancini; Johannes Löckinger; Stephan Buecheler; Ayodhya N. Tiwari;Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.
Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2018.1444317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2018.1444317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Luxembourg, United StatesPublisher:Wiley Authors: Florian Werner; Christian Kameni Boumenou; Michele Melchiorre; Hossam Elanzeery; +6 AuthorsFlorian Werner; Christian Kameni Boumenou; Michele Melchiorre; Hossam Elanzeery; Thomas Paul Weiss; A. Urbaniak; Finn Babbe; Finn Babbe; Susanne Siebentritt; Mohit Sood;AbstractInterface recombination in a complex multilayered thin‐film solar structure causes a disparity between the internal open‐circuit voltage (VOC,in), measured by photoluminescence, and the external open‐circuit voltage (VOC,ex), that is, a VOC deficit. Aspirations to reach higher VOC,ex values require a comprehensive knowledge of the connection between VOC deficit and interface recombination. Here, a near‐surface defect model is developed for copper indium di‐selenide solar cells grown under Cu‐excess conditions. These cell show the typical signatures of interface recombination: a strong disparity between VOC,in and VOC,ex, and extrapolation of the temperature dependent q·VOC,ex to a value below the bandgap energy. Yet, these cells do not suffer from reduced interface bandgap or from Fermi‐level pinning. The model presented is based on experimental analysis of admittance and deep‐level transient spectroscopy, which show the signature of an acceptor defect. Numerical simulations using the near‐surface defects model show the signatures of interface recombination without the need for a reduced interface bandgap or Fermi‐level pinning. These findings demonstrate that the VOC,in measurements alone can be inconclusive and might conceal the information on interface recombination pathways, establishing the need for complementary techniques like temperature dependent current–voltage measurements to identify the cause of interface recombination in the devices.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/53w2h8c0Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2021Data sources: Open Repository and Bibliography - LuxembourgeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/53w2h8c0Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2021Data sources: Open Repository and Bibliography - LuxembourgeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Luxembourg, ItalyPublisher:Wiley Funded by:EC | Sharc25EC| Sharc25Florian Werner; Max Hilaire Wolter; Susanne Siebentritt; Giovanna Sozzi; Simone Di Napoli; Roberto Menozzi; Philip Jackson; Wolfram Witte; Romain Carron; Enrico Avancini; Thomas Paul Weiss; Stephan Buecheler;doi: 10.1002/pip.3032
handle: 11381/2851302
AbstractWe study the impact of different alkali post‐deposition treatments by thermal admittance spectroscopy and temperature‐dependent current‐voltage (IVT) characteristics of high‐efficiency Cu(In,Ga)Se2 thin‐film solar cells fabricated from low‐temperature and high‐temperature co‐evaporated absorbers. Capacitance steps observed by admittance spectroscopy for all samples agree with the widely observed N1 signature and show a clear correlation to a transport barrier evident from IVT characteristics measured in the dark, indicating that defects are likely not responsible for these capacitance steps. Activation energies extracted from capacitance spectra and IVT characteristics vary considerably between different samples but show no concise correlation to the alkali species used in the post‐deposition treatments. Numerical device simulations show that the transport barrier in our devices might be related to conduction band offsets in the absorber/buffer/window stack.
Progress in Photovol... arrow_drop_down Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Full-Text: http://hdl.handle.net/11381/2851302Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2018Data sources: Open Repository and Bibliography - LuxembourgProgress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Full-Text: http://hdl.handle.net/11381/2851302Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2018Data sources: Open Repository and Bibliography - LuxembourgProgress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 LuxembourgPublisher:Wiley Hala, Matej; Fujii, Shohei; Redinger, Alex; Inoue, Yukari; Rey, Germain; Thevenin, Maxime; Depredurand, Valérie; Weiss, Thomas; Bertram, Tobias; Siebentritt, Susanne;doi: 10.1002/pip.2601
AbstractWe present an approach for deposition of highly conductive nominally undoped ZnO films that are suitable for the n‐type window of low band gap solar cells. We demonstrate that low‐voltage radio frequency (RF) biasing of growing ZnO films during their deposition by non‐reactive sputtering makes them as conductive as when doped by aluminium (ρ≤1·10−3Ω cm). The films prepared with additional RF biasing possess lower free‐carrier concentration and higher free‐carrier mobility than Al‐doped ZnO (AZO) films of the same resistivity, which results in a substantially higher transparency in the near infrared region (NIR). Furthermore, these films exhibit good ambient stability and lower high‐temperature stability than the AZO films of the same thickness. We also present the characteristics of Cu(InGa)Se2, CuInSe2 and Cu2ZnSnSe4‐based solar cells prepared with the transparent window bilayer formed of the isolating and conductive ZnO films and compare them to their counterparts with a standard ZnO/AZO bilayer. We show that the solar cells with nominally undoped ZnO as their transparent conductive oxide layer exhibit an improved quantum efficiency for λ > 900 nm, which leads to a higher short circuit current density JSC. This aspect is specifically beneficial in preparation of the Cu2ZnSnSe4 solar cells with band gap down to 0.85 eV; our champion device reached a JSC of nearly 39 mAcm−2, an open circuit voltage of 378mV, and a power conversion efficiency of 8.4 %. Copyright © 2015 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: CC BY ND SAData sources: UnpayWallOpen Repository and Bibliography - LuxembourgArticle . 2015Data sources: Open Repository and Bibliography - LuxembourgProgress in Photovoltaics Research and ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: CC BY ND SAData sources: UnpayWallOpen Repository and Bibliography - LuxembourgArticle . 2015Data sources: Open Repository and Bibliography - LuxembourgProgress in Photovoltaics Research and ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 LuxembourgPublisher:Informa UK Limited Funded by:SNSF | PV2050: Simulation and ch..., EC | Sharc25SNSF| PV2050: Simulation and characterization: from cells to systems ,EC| Sharc25Weiss, Thomas Paul; Carron, Romain; Wolter, Max H.; Löckinger, Johannes; Avancini, Enrico; Siebentritt, Susanne; Buecheler, Stephan; Tiwari, Ayodhya N.;Time-resolved photoluminescence (TRPL) is applied to determine an effective lifetime of minority charge carriers in semiconductors. Such effective lifetimes include recombination channels in the bulk as well as at the surfaces and interfaces of the device. In the case of Cu(In,Ga)Se2 absorbers used for solar cell applications, trapping of minority carriers has also been reported to impact the effective minority carrier lifetime. Trapping can be indicated by an increased temperature dependence of the experimentally determined photoluminescence decay time when compared to the temperature dependence of Shockley–Read–Hall (SRH) recombination alone and can lead to an overestimation of the minority carrier lifetime. Here, it is shown by technology computer-aided design (TCAD) simulations and by experiment that the intentional double-graded bandgap profile of high efficiency Cu(In,Ga)Se2 absorbers causes a temperature dependence of the PL decay time similar to trapping in case of a recombinative front surface. It is demonstrated that a passivated front surface results in a temperature dependence of the decay time that can be explained without minority carrier trapping and thus enables the assessment of the absorber quality by means of the minority carrier lifetime. Comparison with the absolute PL yield and the quasi-Fermi-level splitting (QFLS) corroborate the conclusion that the measured decay time corresponds to the bulk minority carrier lifetime of 250 ns for the double-graded CIGS absorber under investigation.
Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . Peer-reviewedLicense: CC BYData sources: SygmaScience and Technology of Advanced MaterialsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2019Data sources: Open Repository and Bibliography - LuxembourgScience and Technology of Advanced MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2019.1586583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . Peer-reviewedLicense: CC BYData sources: SygmaScience and Technology of Advanced MaterialsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2019Data sources: Open Repository and Bibliography - LuxembourgScience and Technology of Advanced MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2019.1586583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Tobias Bertram; Thomas Paul Weiss; Ashley Finger; Jan Sendler; Susanne Siebentritt; Germain Rey; David Regesch;Abstract There are different ways to determine the bandgap of a semiconductor. In the case of strong tailing they lead to different results. Various versions of Tauc’s plot give the gap of extended states, whereas the photoluminescence and the quantum efficiency extend into the tail states. The absorption edge in kesterite is determined by tail states therefore different methods to determine the band gap lead to different results. To decide whether the main recombination path is in the bulk or at the interface, the activation energy of the recombination rate should be compared to the energy of the radiative recombination in the bulk. This is the energy of the photoluminescence maximum and can be approximated by the linear extrapolation of the low energy edge of the quantum efficiency spectrum.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Funded by:SNSF | Combining macroscopic and...SNSF| Combining macroscopic and microscopic characterization of recombination losses in high efficiency CIGS solar cells - how to reach the theoretical limit?Thomas Paul Weiss; Stephan Stutterheim; Johannes Löckinger; Stephan Buecheler; Romain Carron; Benjamin Bissig; Ayodhya N. Tiwari; Julian Perrenoud; Peter Fuchs; Enrico Avancini; Patrick Reinhard; Thomas Feurer;doi: 10.1002/pip.2811
AbstractThis review summarizes the current status of Cu(In,Ga)(S,Se)2 (CIGS) thin film solar cell technology with a focus on recent advancements and emerging concepts intended for higher efficiency and novel applications. The recent developments and trends of research in laboratories and industrial achievements communicated within the last years are reviewed, and the major developments linked to alkali post deposition treatment and composition grading in CIGS, surface passivation, buffer, and transparent contact layers are emphasized. Encouraging results have been achieved for CIGS‐based tandem solar cells and for improvement in low light device performance. Challenges of technology transfer of lab's record high efficiency cells to average industrial production are obvious from the reported efficiency values. One section is dedicated to development and opportunities offered by flexible and lightweight CIGS modules. Copyright © 2016 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu287 citations 287 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Marina Mousel; Susanne Siebentritt; Thomas Paul Weiss; Alex Redinger; David Regesch;Evaluating interfering capacitance steps in admittance spectroscopy for solar cell defect analysis is still a problem which needs to be solved. While the common analysis developed by Walter et al.[1] is capable of extracting defect distributions from the capacitance data, it results in erroneous defect densities in the presence of overlapping capacitance steps. We derive an expression for the capacitance step caused by defects with a density of states distributed in energy. By adding several of these defect distributions, interfering capacitance steps can be described. Thus, it is possible to fit the entire capacitance spectrum simultaneously for all temperatures. We apply the presented method to Cu 2 ZnSnSe 4 -based solar cells with power conversion efficiencies between 5% and 7%. Comparing the obtained defect parameters with the ones obtained by the method from Walter et al. reveals that the Walter method overestimates the defect densities in the case of overlapping capacitance steps.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2358073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2358073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Michele Melchiorre; Germain Rey; Thomas Paul Weiss; Jan Sendler; Conrad Spindler; Florian Werner; Ashley Finger; Mael Guennou; Susanne Siebentritt; M. Hála;Abstract Low temperature (100 and 250 °C) post-deposition annealings were applied to Cu 2 ZnSnSe 4 (CZTSe) absorbers to modify the ordering degree of the kesterite. Spectrophotometry and photoluminescence revealed a blue or red shift of the band gap and the luminescence peak after ordering or disordering post-treatments, respectively. For most solar cells, the open circuit voltage was found to be limited by bulk recombination and to follow band gap variations, leading to a constant open circuit voltage deficit. For the range of ordering degree investigated, the large open circuit voltage deficit, typically encountered in kesterite solar cells, could not be attributed to disorder. Capacitance–voltage measurements demonstrated that the net carrier concentration of ordered CZTSe is reduced by one order of magnitude compared to disordered CZTSe. Besides its beneficial effects on the open circuit voltage, the ordering post-treatment was also found to increase the collection of photo-generated carriers, resulting in a high current density and a significant improvement in device efficiency.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 LuxembourgPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | KESTCELLSEC| KESTCELLSRedinger, Alex; Sendler, Jan; Djemour, Rabie; Weiss, Thomas P.; Rey, Germain; Dale, Phillip; Siebentritt, Susanne;We present a high-temperature Cu $_2$ ZnSnSe $_4$ coevaporation study, where solar cells with a power conversion efficiency of 7.1% have been achieved. The process is monitored with laser light scattering in order to follow the incorporation of the Sn into the film. We observe the segregation of ZnSe at the Mo/CZTSe interface. Optical analysis has been carried out with photoluminescence and spectrophotometry. We observe strong band tailing and a bandgap, which is significantly lower than in other reported efficient CZTSe absorbers. The photoluminescence at room temperature is lower than the bandgap due to the existence of a large quantity of tail states. Finally, we present effects of low-temperature postannealing of the absorbers on ordering of the Cu/Zn atoms in CZTSe and solar cell parameters. We observe strong changes in all solar cell parameters upon annealing. The efficiency of the annealed devices is significantly reduced, although ordering is improved compared with ones made from nonannealed absorbers.
IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2015Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2377561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down Open Repository and Bibliography - LuxembourgArticle . 2015Data sources: Open Repository and Bibliography - LuxembourgIEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2377561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Informa UK Limited Funded by:SNSF | PV2050: Novel materials a..., SNSF | PV2050: Building blocks f...SNSF| PV2050: Novel materials and interfaces for advanced photovoltaic devices ,SNSF| PV2050: Building blocks for Next Generation Multi-Junction Solar CellsThomas Feurer; Benjamin Bissig; Thomas P. Weiss; Romain Carron; Enrico Avancini; Johannes Löckinger; Stephan Buecheler; Ayodhya N. Tiwari;Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.
Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2018.1444317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2018.1444317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Luxembourg, United StatesPublisher:Wiley Authors: Florian Werner; Christian Kameni Boumenou; Michele Melchiorre; Hossam Elanzeery; +6 AuthorsFlorian Werner; Christian Kameni Boumenou; Michele Melchiorre; Hossam Elanzeery; Thomas Paul Weiss; A. Urbaniak; Finn Babbe; Finn Babbe; Susanne Siebentritt; Mohit Sood;AbstractInterface recombination in a complex multilayered thin‐film solar structure causes a disparity between the internal open‐circuit voltage (VOC,in), measured by photoluminescence, and the external open‐circuit voltage (VOC,ex), that is, a VOC deficit. Aspirations to reach higher VOC,ex values require a comprehensive knowledge of the connection between VOC deficit and interface recombination. Here, a near‐surface defect model is developed for copper indium di‐selenide solar cells grown under Cu‐excess conditions. These cell show the typical signatures of interface recombination: a strong disparity between VOC,in and VOC,ex, and extrapolation of the temperature dependent q·VOC,ex to a value below the bandgap energy. Yet, these cells do not suffer from reduced interface bandgap or from Fermi‐level pinning. The model presented is based on experimental analysis of admittance and deep‐level transient spectroscopy, which show the signature of an acceptor defect. Numerical simulations using the near‐surface defects model show the signatures of interface recombination without the need for a reduced interface bandgap or Fermi‐level pinning. These findings demonstrate that the VOC,in measurements alone can be inconclusive and might conceal the information on interface recombination pathways, establishing the need for complementary techniques like temperature dependent current–voltage measurements to identify the cause of interface recombination in the devices.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/53w2h8c0Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2021Data sources: Open Repository and Bibliography - LuxembourgeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/53w2h8c0Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2021Data sources: Open Repository and Bibliography - LuxembourgeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Luxembourg, ItalyPublisher:Wiley Funded by:EC | Sharc25EC| Sharc25Florian Werner; Max Hilaire Wolter; Susanne Siebentritt; Giovanna Sozzi; Simone Di Napoli; Roberto Menozzi; Philip Jackson; Wolfram Witte; Romain Carron; Enrico Avancini; Thomas Paul Weiss; Stephan Buecheler;doi: 10.1002/pip.3032
handle: 11381/2851302
AbstractWe study the impact of different alkali post‐deposition treatments by thermal admittance spectroscopy and temperature‐dependent current‐voltage (IVT) characteristics of high‐efficiency Cu(In,Ga)Se2 thin‐film solar cells fabricated from low‐temperature and high‐temperature co‐evaporated absorbers. Capacitance steps observed by admittance spectroscopy for all samples agree with the widely observed N1 signature and show a clear correlation to a transport barrier evident from IVT characteristics measured in the dark, indicating that defects are likely not responsible for these capacitance steps. Activation energies extracted from capacitance spectra and IVT characteristics vary considerably between different samples but show no concise correlation to the alkali species used in the post‐deposition treatments. Numerical device simulations show that the transport barrier in our devices might be related to conduction band offsets in the absorber/buffer/window stack.
Progress in Photovol... arrow_drop_down Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Full-Text: http://hdl.handle.net/11381/2851302Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2018Data sources: Open Repository and Bibliography - LuxembourgProgress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2018Full-Text: http://hdl.handle.net/11381/2851302Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefOpen Repository and Bibliography - LuxembourgArticle . 2018Data sources: Open Repository and Bibliography - LuxembourgProgress in Photovoltaics Research and ApplicationsArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 LuxembourgPublisher:Wiley Hala, Matej; Fujii, Shohei; Redinger, Alex; Inoue, Yukari; Rey, Germain; Thevenin, Maxime; Depredurand, Valérie; Weiss, Thomas; Bertram, Tobias; Siebentritt, Susanne;doi: 10.1002/pip.2601
AbstractWe present an approach for deposition of highly conductive nominally undoped ZnO films that are suitable for the n‐type window of low band gap solar cells. We demonstrate that low‐voltage radio frequency (RF) biasing of growing ZnO films during their deposition by non‐reactive sputtering makes them as conductive as when doped by aluminium (ρ≤1·10−3Ω cm). The films prepared with additional RF biasing possess lower free‐carrier concentration and higher free‐carrier mobility than Al‐doped ZnO (AZO) films of the same resistivity, which results in a substantially higher transparency in the near infrared region (NIR). Furthermore, these films exhibit good ambient stability and lower high‐temperature stability than the AZO films of the same thickness. We also present the characteristics of Cu(InGa)Se2, CuInSe2 and Cu2ZnSnSe4‐based solar cells prepared with the transparent window bilayer formed of the isolating and conductive ZnO films and compare them to their counterparts with a standard ZnO/AZO bilayer. We show that the solar cells with nominally undoped ZnO as their transparent conductive oxide layer exhibit an improved quantum efficiency for λ > 900 nm, which leads to a higher short circuit current density JSC. This aspect is specifically beneficial in preparation of the Cu2ZnSnSe4 solar cells with band gap down to 0.85 eV; our champion device reached a JSC of nearly 39 mAcm−2, an open circuit voltage of 378mV, and a power conversion efficiency of 8.4 %. Copyright © 2015 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: CC BY ND SAData sources: UnpayWallOpen Repository and Bibliography - LuxembourgArticle . 2015Data sources: Open Repository and Bibliography - LuxembourgProgress in Photovoltaics Research and ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: CC BY ND SAData sources: UnpayWallOpen Repository and Bibliography - LuxembourgArticle . 2015Data sources: Open Repository and Bibliography - LuxembourgProgress in Photovoltaics Research and ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu