- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat..., EC | ESM2025UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR) ,EC| ESM2025Emma W. Littleton; Anita Shepherd; Anna B. Harper; Astley F. S. Hastings; Naomi E. Vaughan; Jonathan Doelman; Detlef P. van Vuuren; Timothy M. Lenton;doi: 10.1111/gcbb.12982
handle: 2164/19964
AbstractLarge‐scale bioenergy plays a key role in climate change mitigation scenarios, but its efficacy is uncertain. This study aims to quantify that uncertainty by contrasting the results of three different types of models under the same mitigation scenario (RCP2.6‐SSP2), consistent with a 2°C temperature target. This analysis focuses on a single bioenergy feedstock, Miscanthus × giganteus, and contrasts projections for its yields and environmental effects from an integrated assessment model (IMAGE), a land surface and dynamic global vegetation model tailored to Miscanthus bioenergy (JULES) and a bioenergy crop model (MiscanFor). Under the present climate, JULES, IMAGE and MiscanFor capture the observed magnitude and variability in Miscanthus yields across Europe; yet in the tropics JULES and IMAGE predict high yields, whereas MiscanFor predicts widespread drought‐related diebacks. 2040–2049 projections show there is a rapid scale up of over 200 Mha bioenergy cropping area in the tropics. Resulting biomass yield ranges from 12 (MiscanFor) to 39 (JULES) Gt dry matter over that decade. Change in soil carbon ranges from +0.7 Pg C (MiscanFor) to −2.8 Pg C (JULES), depending on preceding land cover and soil carbon.2090–99 projections show large‐scale biomass energy with carbon capture and storage (BECCS) is projected in Europe. The models agree that <2°C global warming will increase yields in the higher latitudes, but drought stress in the Mediterranean region could produce low yields (MiscanFor), and significant losses of soil carbon (JULES and IMAGE). These results highlight the uncertainty in rapidly scaling‐up biomass energy supply, especially in dry tropical climates and in regions where future climate change could result in drier conditions. This has important policy implications—because prominently used scenarios to limit warming to ‘well below 2°C’ (including the one explored here) depend upon its effectiveness.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 11 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f...UKRI| Perennial Biomass Crops for Greenhouse Gas RemovalRebecca von Hellfeld; Astley Hastings; Jason Kam; Rebecca Rowe; John Clifton‐Brown; Iain Donnison; Anita Shepherd;AbstractTo achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new Miscanthus cultivars for electricity generation via thermal power station furnaces. Miscanthus is still relatively new compared with other agriculture practices, so market assessments and improvements are needed to reduce the barriers to entry for prospective growers. This publication provides a profile of UK Miscanthus growers and their businesses, their experiences of benefits and drawbacks of the crop, and what they see as potential barriers to entry for prospective farmers. A survey of current Miscanthus growers in England and Wales was conducted and indicated that most farmers were content with the crop and that its environmental and economic benefits were noted. However, it was evident that with a geographically limited UK market, growers wanted to see a better distribution of biomass processing stations to reduce the ongoing costs of transport. With growing demand for renewables, including bio‐energy sources, it was determined important to provide information and support for stable farming operations and to incentivise the adoption of Miscanthus. Such incentives include ongoing development of new cultivars, focussing on traits such as production potential and stressor resilience, and growers indicated preference for an annual planting grant. These developments are predicted to further improve the crop's profit margin, making it a more cost‐effective crop for farmers. Sensitively managed Miscanthus also has the potential to contribute to carbon sequestration, soil health, and aspects of farmland biodiversity. Incentivising such management in government land–based environmental schemes would offer additional income streams and help to promote environmental positive crop planting.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 27 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | UK Energy Research Centre...UKRI| UK Energy Research Centre Phase 4A. Shepherd; S. Roberts; G. Sünnenberg; A. Lovett; A.F.S. Hastings;handle: 2164/17429
Onshore wind electricity generation is key to mitigating greenhouse gas emissions. Poorly sited wind farms degrade high carbon soils and habitats, diminishing overall emission reductions. We explore the viability of the Scottish Government’s renewable energy plan with respect to land use, natural capital and low carbon storage. With avoidance of sensitive peatlands a main consideration, six constraining factors were combined to determine areas of least habitat and soil sensitivity to onshore wind development in Scotland. Currently, 14 out of 21 terrestrial habitats have been impacted by installation of 389 onshore wind sites. Accounting for 73% of the total area, Coniferous Woodland, Acid Grassland, Bog, and Heather Grassland have been the largest habitats impacted. The most common soils of the least sensitive areas available for installation are brown earth and podzols, and construction of new wind farms on environmentally sensitive areas can be minimised by targeting relatively disturbed habitats such as improved grasslands. Scotland has a potential of 2.75 Mha of relatively low sensitive land, the largest areas sited in the Highlands, Dumfries and Galloway and Aberdeenshire. Additional to current installed capacity (13.9 GW), Scotland would require 6.6 GW of installed onshore wind capacity to function without nuclear energy generation and 464 GWh additional storage capacity (provided by 8.2 GW wind capacity). This equates to an installed and additional total of 346.676 ha required for wind electricity generation, potentially satisfied by shared land use with 23% of Scottish improved grasslands. Scotland has the available land area to achieve the Scottish Government’s policy to move towards carbon-neutral, nuclear-free electricity generation through the use of renewables alone. Questions remain on which source of low carbon dispatchable (immediately accessible) energy to use in the case of a several day wind lull.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/17429Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.10.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 44 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/17429Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.10.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, NetherlandsPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f...UKRI| Perennial Biomass Crops for Greenhouse Gas RemovalAnita Shepherd; Danny Awty‐Carroll; Jason Kam; Chris Ashman; Elena Magenau; Enrico Martani; Mislav Kontek; Andrea Ferrarini; Stefano Amaducci; Chris Davey; Vanja Jurišić; Gert‐Jan Petrie; Mohamad Al Hassan; Isabelle Lamy; Iris Lewandowski; Emmanuel de Maupeou; Jon McCalmont; Luisa Trindade; Kasper van der Cruijsen; Philip van der Pluijm; Rebecca Rowe; Andrew Lovett; Iain Donnison; Andreas Kiesel; John Clifton‐Brown; Astley Hastings;AbstractNew biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low‐cost rapid light interception measurements using a simple laboratory‐made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market‐ready hybrids for 2020–2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020–2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7–89.7 Mt year−1 biomass, with potential for 1.2–1.3 EJ year−1 energy and 36.3–40.3 Mt year−1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed‐propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19966Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19966Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Authors: Fabrizio Albanito; Sam Roberts; Anita Shepherd; Astley Hastings;handle: 2164/18756
open access via Elsevier agreement Thanks are due to Professor Andrew Lovett and his team at UEA, Scottish Natural Heritage, the James Hutton Institute, and the UK government for providing the GIS datasets interpreted in this study. This work was funded by the ADVENT project funded by the UK Natural Environment Research Council (NE/M019691/1) and ADVANCES funded by the UK Natural Environment Research Council (NE/M019691/1) and EPSRC funded UKERC-4. This work contribute to the RETINA project (NE/V003240/1). ; Peer reviewed ; Publisher PDF
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/18756Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.132480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/18756Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.132480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat..., UKRI | UK Energy Research Centre...UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| UK Energy Research Centre Phase 4Authors: Anita Shepherd; Mike Martin; Astley Hastings;doi: 10.1111/gcbb.12803
handle: 2164/16001
AbstractUncertainty is inherent in modelled projections of bioenergy with carbon capture and storage (BECCS), yet sometimes treated peripherally. One source of uncertainty comes from different climate and soil inputs. We investigated variations in 70‐year UK projections of Miscanthus × giganteus (M × g), BECCS and environmental impacts with input data. We used cohort datasets of UKCP18 RCP8.5 climate projections and Harmonized World Soil Database (HWSD) soil sequences, as inputs to the MiscanFor bioenergy model. Low annual yield occurred 1 in 10 years as a UK‐average but yield uncertainty varied regionally, especially south and east England. BECCS projections were similar among cohorts, with variation resulting from climate cohorts of the same database ensemble (3.99 ± 0.14 t C ha−1 year−1) larger than uncertainty resulting from soil sequences in each grid block (3.96 ± 0.03 t C ha−1 year−1). This is supported by annual time series, displaying variable annual climate and a close yield–BECCS–climate relationship but partial correspondence of yield and BECCS with maximal soil variability. Each HWSD soil grid square contains up to 10 ranked soil types. Predominant soil commonly has over 50% coverage, indicating why BECCS from combined soil sequences were not significantly different from BECCS using the dominant soil type. Mean BECCS from the full climate ensemble combined with the full soil sequences, over the current area of cropping limits in England and Wales, is 3.98 ± 0.14 t C ha−1 year−1. The bioenergy crop has a mean seasonal soil water deficit of 65.79 ± 4.27 mm and associated soil carbon gain of 0.22 ± 0.03 t C ha−1 year−1, with bioenergy feedstock calculated at 131 GJ t−1 y−1. The uncertainty is specific to the input datasets and model used. The message of this study is to ensure that uncertainty is accounted for when interpreting modelled projections of land use impacts.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Elsevier BV Funded by:UKRI | Supergen Bioenergy Hub 20...UKRI| Supergen Bioenergy Hub 2018Andrew Welfle; Alberto Almena; Muhammad Naveed Arshad; Scott W. Banks; Isabela Butnar; Katie Chong; Seth Cooper; Helen Daly; Samira García Freites; Fatih Güleç; Christopher Hardacre; Robert A. Holland; Lan Lan; Chai Siah Lee; Peter K. J. Robertson; Rebecca Rowe; A. Shepherd; Nathan Skillen; Silvia Tedesco; Patricia Thornley; Pedro Verdía; Ian Watson; Orla Williams; Mirjam Röder;La bioénergie est largement incluse dans les stratégies énergétiques pour son potentiel d'atténuation des GES. Les technologies de la bioénergie devront probablement être déployées à grande échelle pour atteindre les objectifs de décarbonation et, par conséquent, la biomasse devra être de plus en plus cultivée/mobilisée. Les risques de durabilité associés à la bioénergie peuvent s'intensifier avec l'augmentation du déploiement et lorsque les matières premières proviennent du commerce international. Cette recherche applique le modèle d'indicateur de durabilité de la bioéconomie (BSIM) pour cartographier et analyser la performance de la bioénergie sur 126 questions de durabilité, en évaluant 16 études de cas de bioénergie qui reflètent l'étendue des ressources de biomasse, des technologies, des vecteurs énergétiques et des bioproduits. La recherche trouve des tendances communes en matière de performance de durabilité dans tous les projets qui peuvent éclairer la politique et la prise de décision en matière de bioénergie. Les avantages potentiels en matière de durabilité sont identifiés pour les personnes (emplois, compétences, revenus, accès à l'énergie) ; pour le développement (économie, énergie, utilisation des terres) ; pour les systèmes naturels (sol, métaux lourds) ; et pour le changement climatique (émissions, carburants). En outre, des tendances cohérentes des risques de durabilité où une attention particulière est nécessaire pour assurer la viabilité des projets de bioénergie, y compris pour les infrastructures, la mobilisation des matières premières, la techno-économie et les stocks de carbone. L'atténuation des émissions peut être un objectif principal pour la bioénergie, cette recherche révèle que les projets de bioénergie peuvent offrir des avantages potentiels bien au-delà des émissions - il existe un argument en faveur du soutien de projets basés sur les services écosystémiques et/ou la stimulation économique qu'ils peuvent fournir. Compte tenu également de la vaste dynamique et des caractéristiques des projets de bioénergie, une approche rigide de l'évaluation de la durabilité peut être incompatible. L'octroi de « crédits » sur un plus large éventail d'indicateurs de durabilité, en plus d'exiger des performances minimales dans des domaines clés, peut être plus efficace pour assurer la durabilité de la bioénergie. La bioenergía está ampliamente incluida en las estrategias energéticas por su potencial de mitigación de GEI. Es probable que las tecnologías de bioenergía tengan que implementarse a escala para cumplir con los objetivos de descarbonización y, en consecuencia, la biomasa tendrá que crecer/movilizarse cada vez más. Los riesgos de sostenibilidad asociados con la bioenergía pueden intensificarse con el aumento del despliegue y donde las materias primas se obtienen a través del comercio internacional. Esta investigación aplica el Modelo de Indicadores de Sostenibilidad de la Bioeconomía (BSIM) para mapear y analizar el rendimiento de la bioenergía en 126 temas de sostenibilidad, evaluando 16 estudios de casos de bioenergía que reflejan la amplitud de los recursos de biomasa, las tecnologías, los vectores energéticos y los bioproductos. La investigación encuentra tendencias comunes en el desempeño de la sostenibilidad en todos los proyectos que pueden informar la política de bioenergía y la toma de decisiones. Se identifican posibles beneficios de sostenibilidad para las personas (empleos, habilidades, ingresos, acceso a la energía); para el desarrollo (economía, energía, utilización de la tierra); para los sistemas naturales (suelo, metales pesados) y para el cambio climático (emisiones, combustibles). Además, las tendencias consistentes de los riesgos de sostenibilidad donde se requiere un enfoque para garantizar la viabilidad de los proyectos de bioenergía, incluida la infraestructura, la movilización de materias primas, la tecnoeconomía y las reservas de carbono. La mitigación de emisiones puede ser un objetivo principal para la bioenergía, esta investigación encuentra que los proyectos de bioenergía pueden proporcionar beneficios potenciales mucho más allá de las emisiones: existe un argumento para apoyar proyectos basados en los servicios ecosistémicos y/o la estimulación económica que pueden brindar. También dada la amplia dinámica y características de los proyectos de bioenergía, un enfoque rígido de evaluación de la sostenibilidad puede ser incompatible. La concesión de "créditos" a través de una gama más amplia de indicadores de sostenibilidad, además de requerir rendimientos mínimos en áreas clave, puede ser más eficaz para garantizar la sostenibilidad de la bioenergía. Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding 'credit' across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability. يتم تضمين الطاقة الحيوية على نطاق واسع في استراتيجيات الطاقة لإمكانات التخفيف من غازات الدفيئة. من المرجح أن يتم نشر تقنيات الطاقة الحيوية على نطاق واسع لتحقيق أهداف إزالة الكربون، وبالتالي سيتعين زيادة نمو/تعبئة الكتلة الحيوية. قد تزداد مخاطر الاستدامة المرتبطة بالطاقة الحيوية مع زيادة الانتشار وحيث يتم الحصول على المواد الأولية من خلال التجارة الدولية. يطبق هذا البحث نموذج مؤشر استدامة الاقتصاد الحيوي (BSIM) لرسم وتحليل أداء الطاقة الحيوية عبر 126 قضية استدامة، وتقييم 16 دراسة حالة للطاقة الحيوية تعكس اتساع موارد الكتلة الحيوية والتقنيات وناقلات الطاقة والمنتجات الحيوية. وجد البحث اتجاهات مشتركة في أداء الاستدامة عبر المشاريع التي يمكن أن تسترشد بها سياسة الطاقة الحيوية وصنع القرار. يتم تحديد فوائد الاستدامة المحتملة للناس (الوظائف والمهارات والدخل والوصول إلى الطاقة) ؛ للتنمية (الاقتصاد والطاقة واستخدام الأراضي) ؛ للنظم الطبيعية (التربة والمعادن الثقيلة)، و ؛ لتغير المناخ (الانبعاثات والوقود). أيضًا، الاتجاهات المتسقة لمخاطر الاستدامة حيث يكون التركيز مطلوبًا لضمان استمرارية مشاريع الطاقة الحيوية، بما في ذلك البنية التحتية وتعبئة المواد الوسيطة والاقتصاد التقني ومخزونات الكربون. قد يكون تخفيف الانبعاثات هدفًا أساسيًا للطاقة الحيوية، ويجد هذا البحث أن مشاريع الطاقة الحيوية يمكن أن توفر فوائد محتملة تتجاوز الانبعاثات - هناك حجة لدعم المشاريع القائمة على خدمات النظام الإيكولوجي و/أو التحفيز الاقتصادي الذي قد تقدمه. أيضًا نظرًا للديناميكيات والخصائص الواسعة لمشاريع الطاقة الحيوية، قد يكون النهج الصارم لتقييم الاستدامة غير متوافق. قد يكون منح "الائتمان" عبر مجموعة أوسع من مؤشرات الاستدامة بالإضافة إلى طلب الحد الأدنى من الأداء في المجالات الرئيسية أكثر فعالية في ضمان استدامة الطاقة الحيوية.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, United KingdomPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f..., UKRI | EPSRC Centre for Doctoral...UKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,UKRI| EPSRC Centre for Doctoral Training in BioenergyJohn Clifton‐Brown; Astley Hastings; Moritz von Cossel; Donal Murphy‐Bokern; Jon McCalmont; Jeanette Whitaker; Efi Alexopoulou; Stefano Amaducci; Larisa Andronic; Christopher Ashman; Danny Awty‐Carroll; Rakesh Bhatia; Lutz Breuer; Salvatore Cosentino; William Cracroft‐Eley; Iain Donnison; Berien Elbersen; Andrea Ferrarini; Judith Ford; Jörg Greef; Julie Ingram; Iris Lewandowski; Elena Magenau; Michal Mos; Martin Petrick; Marta Pogrzeba; Paul Robson; Rebecca L. Rowe; Anatolii Sandu; Kai‐Uwe Schwarz; Danilo Scordia; Jonathan Scurlock; Anita Shepherd; Judith Thornton; Luisa M. Trindade; Sylvia Vetter; Moritz Wagner; Pei‐Chen Wu; Toshihiko Yamada; Andreas Kiesel;AbstractDemand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023–27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio‐economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low‐carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long‐term, strategic R&D and education for positive environmental, economic and social sustainability impacts.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, United KingdomPublisher:Wiley Danny Awty‐Carroll; Elena Magenau; Mohamad Al Hassan; Enrico Martani; Mislav Kontek; Philip van der Pluijm; Chris Ashman; Emmanuel de Maupeou; Jon McCalmont; Gert‐Jan Petrie; Chris Davey; Kasper van der Cruijsen; Vanja Jurišić; Stefano Amaducci; Isabelle Lamy; Anita Shepherd; Jason Kam; Annick Hoogendam; Michele Croci; Oene Dolstra; Andrea Ferrarini; Iris Lewandowski; Luisa M. Trindade; Andreas Kiesel; John Clifton‐Brown;doi: 10.1111/gcbb.13026
handle: 2164/19972
AbstractMiscanthus, a C4 perennial rhizomatous grass from Asia is a leading candidate for the supply of sustainable biomass needed to grow the bioeconomy. European Miscanthus breeding programmes have recently produced a new range of seeded hybrids with the objective of increasing scalability to large acreages limited by current clonal propagation. For the EU‐GRACE project, new replicated field trials were established in seven locations across Europe in 2018 with eight intraspecific M. sinensis hybrids (sin × sin) and six M. sacchariflorus × M. sinensis (sac × sin) from Dutch and UK breeding programmes, respectively, with clonal Miscanthus × giganteus. The planting density of the sin × sin was double that of sac × sin (30,000 & 15,000 plants ha−1), creating commercially relevant upscaling comparisons between systems. Over the first 3 years, the establishment depended on location and hybrid. The mature sin × sin hybrids formed tight tufts of shoots up to 2.5 m tall which flower and senesce earlier than the taller sac × sin hybrids. Following the third growing season, the highest yields were recorded in Northern Italy at a low altitude (average 13.7 (max 21) Mg DM ha−1) and the lowest yielding was on the industrially damaged marginal land site in Northern France (average 7.0 (max 10) Mg DM ha−1). Moisture contents at spring harvest were lowest in Croatia (21.7%) and highest in Wales, UK (41.6%). Overall, lower moisture contents at harvest, which are highly desirable for transport, storage and for most end‐use applications, were found in sin × sin hybrids than sac × sin (30% and 40%, respectively). Yield depended on climate interactions with the hybrid and their associated planting systems. The sin × sin hybrids appeared better adapted to northern Europe and sac × sin hybrids to southern Europe. Longer‐term yield observations over crop lifespans will be needed to explore the biological (yield persistence) and economic costs and benefits of the different hybrid systems.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19972Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19972Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat..., EC | ESM2025UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR) ,EC| ESM2025Emma W. Littleton; Anita Shepherd; Anna B. Harper; Astley F. S. Hastings; Naomi E. Vaughan; Jonathan Doelman; Detlef P. van Vuuren; Timothy M. Lenton;doi: 10.1111/gcbb.12982
handle: 2164/19964
AbstractLarge‐scale bioenergy plays a key role in climate change mitigation scenarios, but its efficacy is uncertain. This study aims to quantify that uncertainty by contrasting the results of three different types of models under the same mitigation scenario (RCP2.6‐SSP2), consistent with a 2°C temperature target. This analysis focuses on a single bioenergy feedstock, Miscanthus × giganteus, and contrasts projections for its yields and environmental effects from an integrated assessment model (IMAGE), a land surface and dynamic global vegetation model tailored to Miscanthus bioenergy (JULES) and a bioenergy crop model (MiscanFor). Under the present climate, JULES, IMAGE and MiscanFor capture the observed magnitude and variability in Miscanthus yields across Europe; yet in the tropics JULES and IMAGE predict high yields, whereas MiscanFor predicts widespread drought‐related diebacks. 2040–2049 projections show there is a rapid scale up of over 200 Mha bioenergy cropping area in the tropics. Resulting biomass yield ranges from 12 (MiscanFor) to 39 (JULES) Gt dry matter over that decade. Change in soil carbon ranges from +0.7 Pg C (MiscanFor) to −2.8 Pg C (JULES), depending on preceding land cover and soil carbon.2090–99 projections show large‐scale biomass energy with carbon capture and storage (BECCS) is projected in Europe. The models agree that <2°C global warming will increase yields in the higher latitudes, but drought stress in the Mediterranean region could produce low yields (MiscanFor), and significant losses of soil carbon (JULES and IMAGE). These results highlight the uncertainty in rapidly scaling‐up biomass energy supply, especially in dry tropical climates and in regions where future climate change could result in drier conditions. This has important policy implications—because prominently used scenarios to limit warming to ‘well below 2°C’ (including the one explored here) depend upon its effectiveness.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 11 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f...UKRI| Perennial Biomass Crops for Greenhouse Gas RemovalRebecca von Hellfeld; Astley Hastings; Jason Kam; Rebecca Rowe; John Clifton‐Brown; Iain Donnison; Anita Shepherd;AbstractTo achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new Miscanthus cultivars for electricity generation via thermal power station furnaces. Miscanthus is still relatively new compared with other agriculture practices, so market assessments and improvements are needed to reduce the barriers to entry for prospective growers. This publication provides a profile of UK Miscanthus growers and their businesses, their experiences of benefits and drawbacks of the crop, and what they see as potential barriers to entry for prospective farmers. A survey of current Miscanthus growers in England and Wales was conducted and indicated that most farmers were content with the crop and that its environmental and economic benefits were noted. However, it was evident that with a geographically limited UK market, growers wanted to see a better distribution of biomass processing stations to reduce the ongoing costs of transport. With growing demand for renewables, including bio‐energy sources, it was determined important to provide information and support for stable farming operations and to incentivise the adoption of Miscanthus. Such incentives include ongoing development of new cultivars, focussing on traits such as production potential and stressor resilience, and growers indicated preference for an annual planting grant. These developments are predicted to further improve the crop's profit margin, making it a more cost‐effective crop for farmers. Sensitively managed Miscanthus also has the potential to contribute to carbon sequestration, soil health, and aspects of farmland biodiversity. Incentivising such management in government land–based environmental schemes would offer additional income streams and help to promote environmental positive crop planting.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 27 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | UK Energy Research Centre...UKRI| UK Energy Research Centre Phase 4A. Shepherd; S. Roberts; G. Sünnenberg; A. Lovett; A.F.S. Hastings;handle: 2164/17429
Onshore wind electricity generation is key to mitigating greenhouse gas emissions. Poorly sited wind farms degrade high carbon soils and habitats, diminishing overall emission reductions. We explore the viability of the Scottish Government’s renewable energy plan with respect to land use, natural capital and low carbon storage. With avoidance of sensitive peatlands a main consideration, six constraining factors were combined to determine areas of least habitat and soil sensitivity to onshore wind development in Scotland. Currently, 14 out of 21 terrestrial habitats have been impacted by installation of 389 onshore wind sites. Accounting for 73% of the total area, Coniferous Woodland, Acid Grassland, Bog, and Heather Grassland have been the largest habitats impacted. The most common soils of the least sensitive areas available for installation are brown earth and podzols, and construction of new wind farms on environmentally sensitive areas can be minimised by targeting relatively disturbed habitats such as improved grasslands. Scotland has a potential of 2.75 Mha of relatively low sensitive land, the largest areas sited in the Highlands, Dumfries and Galloway and Aberdeenshire. Additional to current installed capacity (13.9 GW), Scotland would require 6.6 GW of installed onshore wind capacity to function without nuclear energy generation and 464 GWh additional storage capacity (provided by 8.2 GW wind capacity). This equates to an installed and additional total of 346.676 ha required for wind electricity generation, potentially satisfied by shared land use with 23% of Scottish improved grasslands. Scotland has the available land area to achieve the Scottish Government’s policy to move towards carbon-neutral, nuclear-free electricity generation through the use of renewables alone. Questions remain on which source of low carbon dispatchable (immediately accessible) energy to use in the case of a several day wind lull.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/17429Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.10.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 44 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/17429Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.10.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, NetherlandsPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f...UKRI| Perennial Biomass Crops for Greenhouse Gas RemovalAnita Shepherd; Danny Awty‐Carroll; Jason Kam; Chris Ashman; Elena Magenau; Enrico Martani; Mislav Kontek; Andrea Ferrarini; Stefano Amaducci; Chris Davey; Vanja Jurišić; Gert‐Jan Petrie; Mohamad Al Hassan; Isabelle Lamy; Iris Lewandowski; Emmanuel de Maupeou; Jon McCalmont; Luisa Trindade; Kasper van der Cruijsen; Philip van der Pluijm; Rebecca Rowe; Andrew Lovett; Iain Donnison; Andreas Kiesel; John Clifton‐Brown; Astley Hastings;AbstractNew biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low‐cost rapid light interception measurements using a simple laboratory‐made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market‐ready hybrids for 2020–2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020–2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7–89.7 Mt year−1 biomass, with potential for 1.2–1.3 EJ year−1 energy and 36.3–40.3 Mt year−1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed‐propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19966Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19966Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Authors: Fabrizio Albanito; Sam Roberts; Anita Shepherd; Astley Hastings;handle: 2164/18756
open access via Elsevier agreement Thanks are due to Professor Andrew Lovett and his team at UEA, Scottish Natural Heritage, the James Hutton Institute, and the UK government for providing the GIS datasets interpreted in this study. This work was funded by the ADVENT project funded by the UK Natural Environment Research Council (NE/M019691/1) and ADVANCES funded by the UK Natural Environment Research Council (NE/M019691/1) and EPSRC funded UKERC-4. This work contribute to the RETINA project (NE/V003240/1). ; Peer reviewed ; Publisher PDF
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/18756Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.132480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/18756Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.132480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat..., UKRI | UK Energy Research Centre...UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| UK Energy Research Centre Phase 4Authors: Anita Shepherd; Mike Martin; Astley Hastings;doi: 10.1111/gcbb.12803
handle: 2164/16001
AbstractUncertainty is inherent in modelled projections of bioenergy with carbon capture and storage (BECCS), yet sometimes treated peripherally. One source of uncertainty comes from different climate and soil inputs. We investigated variations in 70‐year UK projections of Miscanthus × giganteus (M × g), BECCS and environmental impacts with input data. We used cohort datasets of UKCP18 RCP8.5 climate projections and Harmonized World Soil Database (HWSD) soil sequences, as inputs to the MiscanFor bioenergy model. Low annual yield occurred 1 in 10 years as a UK‐average but yield uncertainty varied regionally, especially south and east England. BECCS projections were similar among cohorts, with variation resulting from climate cohorts of the same database ensemble (3.99 ± 0.14 t C ha−1 year−1) larger than uncertainty resulting from soil sequences in each grid block (3.96 ± 0.03 t C ha−1 year−1). This is supported by annual time series, displaying variable annual climate and a close yield–BECCS–climate relationship but partial correspondence of yield and BECCS with maximal soil variability. Each HWSD soil grid square contains up to 10 ranked soil types. Predominant soil commonly has over 50% coverage, indicating why BECCS from combined soil sequences were not significantly different from BECCS using the dominant soil type. Mean BECCS from the full climate ensemble combined with the full soil sequences, over the current area of cropping limits in England and Wales, is 3.98 ± 0.14 t C ha−1 year−1. The bioenergy crop has a mean seasonal soil water deficit of 65.79 ± 4.27 mm and associated soil carbon gain of 0.22 ± 0.03 t C ha−1 year−1, with bioenergy feedstock calculated at 131 GJ t−1 y−1. The uncertainty is specific to the input datasets and model used. The message of this study is to ensure that uncertainty is accounted for when interpreting modelled projections of land use impacts.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Elsevier BV Funded by:UKRI | Supergen Bioenergy Hub 20...UKRI| Supergen Bioenergy Hub 2018Andrew Welfle; Alberto Almena; Muhammad Naveed Arshad; Scott W. Banks; Isabela Butnar; Katie Chong; Seth Cooper; Helen Daly; Samira García Freites; Fatih Güleç; Christopher Hardacre; Robert A. Holland; Lan Lan; Chai Siah Lee; Peter K. J. Robertson; Rebecca Rowe; A. Shepherd; Nathan Skillen; Silvia Tedesco; Patricia Thornley; Pedro Verdía; Ian Watson; Orla Williams; Mirjam Röder;La bioénergie est largement incluse dans les stratégies énergétiques pour son potentiel d'atténuation des GES. Les technologies de la bioénergie devront probablement être déployées à grande échelle pour atteindre les objectifs de décarbonation et, par conséquent, la biomasse devra être de plus en plus cultivée/mobilisée. Les risques de durabilité associés à la bioénergie peuvent s'intensifier avec l'augmentation du déploiement et lorsque les matières premières proviennent du commerce international. Cette recherche applique le modèle d'indicateur de durabilité de la bioéconomie (BSIM) pour cartographier et analyser la performance de la bioénergie sur 126 questions de durabilité, en évaluant 16 études de cas de bioénergie qui reflètent l'étendue des ressources de biomasse, des technologies, des vecteurs énergétiques et des bioproduits. La recherche trouve des tendances communes en matière de performance de durabilité dans tous les projets qui peuvent éclairer la politique et la prise de décision en matière de bioénergie. Les avantages potentiels en matière de durabilité sont identifiés pour les personnes (emplois, compétences, revenus, accès à l'énergie) ; pour le développement (économie, énergie, utilisation des terres) ; pour les systèmes naturels (sol, métaux lourds) ; et pour le changement climatique (émissions, carburants). En outre, des tendances cohérentes des risques de durabilité où une attention particulière est nécessaire pour assurer la viabilité des projets de bioénergie, y compris pour les infrastructures, la mobilisation des matières premières, la techno-économie et les stocks de carbone. L'atténuation des émissions peut être un objectif principal pour la bioénergie, cette recherche révèle que les projets de bioénergie peuvent offrir des avantages potentiels bien au-delà des émissions - il existe un argument en faveur du soutien de projets basés sur les services écosystémiques et/ou la stimulation économique qu'ils peuvent fournir. Compte tenu également de la vaste dynamique et des caractéristiques des projets de bioénergie, une approche rigide de l'évaluation de la durabilité peut être incompatible. L'octroi de « crédits » sur un plus large éventail d'indicateurs de durabilité, en plus d'exiger des performances minimales dans des domaines clés, peut être plus efficace pour assurer la durabilité de la bioénergie. La bioenergía está ampliamente incluida en las estrategias energéticas por su potencial de mitigación de GEI. Es probable que las tecnologías de bioenergía tengan que implementarse a escala para cumplir con los objetivos de descarbonización y, en consecuencia, la biomasa tendrá que crecer/movilizarse cada vez más. Los riesgos de sostenibilidad asociados con la bioenergía pueden intensificarse con el aumento del despliegue y donde las materias primas se obtienen a través del comercio internacional. Esta investigación aplica el Modelo de Indicadores de Sostenibilidad de la Bioeconomía (BSIM) para mapear y analizar el rendimiento de la bioenergía en 126 temas de sostenibilidad, evaluando 16 estudios de casos de bioenergía que reflejan la amplitud de los recursos de biomasa, las tecnologías, los vectores energéticos y los bioproductos. La investigación encuentra tendencias comunes en el desempeño de la sostenibilidad en todos los proyectos que pueden informar la política de bioenergía y la toma de decisiones. Se identifican posibles beneficios de sostenibilidad para las personas (empleos, habilidades, ingresos, acceso a la energía); para el desarrollo (economía, energía, utilización de la tierra); para los sistemas naturales (suelo, metales pesados) y para el cambio climático (emisiones, combustibles). Además, las tendencias consistentes de los riesgos de sostenibilidad donde se requiere un enfoque para garantizar la viabilidad de los proyectos de bioenergía, incluida la infraestructura, la movilización de materias primas, la tecnoeconomía y las reservas de carbono. La mitigación de emisiones puede ser un objetivo principal para la bioenergía, esta investigación encuentra que los proyectos de bioenergía pueden proporcionar beneficios potenciales mucho más allá de las emisiones: existe un argumento para apoyar proyectos basados en los servicios ecosistémicos y/o la estimulación económica que pueden brindar. También dada la amplia dinámica y características de los proyectos de bioenergía, un enfoque rígido de evaluación de la sostenibilidad puede ser incompatible. La concesión de "créditos" a través de una gama más amplia de indicadores de sostenibilidad, además de requerir rendimientos mínimos en áreas clave, puede ser más eficaz para garantizar la sostenibilidad de la bioenergía. Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding 'credit' across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability. يتم تضمين الطاقة الحيوية على نطاق واسع في استراتيجيات الطاقة لإمكانات التخفيف من غازات الدفيئة. من المرجح أن يتم نشر تقنيات الطاقة الحيوية على نطاق واسع لتحقيق أهداف إزالة الكربون، وبالتالي سيتعين زيادة نمو/تعبئة الكتلة الحيوية. قد تزداد مخاطر الاستدامة المرتبطة بالطاقة الحيوية مع زيادة الانتشار وحيث يتم الحصول على المواد الأولية من خلال التجارة الدولية. يطبق هذا البحث نموذج مؤشر استدامة الاقتصاد الحيوي (BSIM) لرسم وتحليل أداء الطاقة الحيوية عبر 126 قضية استدامة، وتقييم 16 دراسة حالة للطاقة الحيوية تعكس اتساع موارد الكتلة الحيوية والتقنيات وناقلات الطاقة والمنتجات الحيوية. وجد البحث اتجاهات مشتركة في أداء الاستدامة عبر المشاريع التي يمكن أن تسترشد بها سياسة الطاقة الحيوية وصنع القرار. يتم تحديد فوائد الاستدامة المحتملة للناس (الوظائف والمهارات والدخل والوصول إلى الطاقة) ؛ للتنمية (الاقتصاد والطاقة واستخدام الأراضي) ؛ للنظم الطبيعية (التربة والمعادن الثقيلة)، و ؛ لتغير المناخ (الانبعاثات والوقود). أيضًا، الاتجاهات المتسقة لمخاطر الاستدامة حيث يكون التركيز مطلوبًا لضمان استمرارية مشاريع الطاقة الحيوية، بما في ذلك البنية التحتية وتعبئة المواد الوسيطة والاقتصاد التقني ومخزونات الكربون. قد يكون تخفيف الانبعاثات هدفًا أساسيًا للطاقة الحيوية، ويجد هذا البحث أن مشاريع الطاقة الحيوية يمكن أن توفر فوائد محتملة تتجاوز الانبعاثات - هناك حجة لدعم المشاريع القائمة على خدمات النظام الإيكولوجي و/أو التحفيز الاقتصادي الذي قد تقدمه. أيضًا نظرًا للديناميكيات والخصائص الواسعة لمشاريع الطاقة الحيوية، قد يكون النهج الصارم لتقييم الاستدامة غير متوافق. قد يكون منح "الائتمان" عبر مجموعة أوسع من مؤشرات الاستدامة بالإضافة إلى طلب الحد الأدنى من الأداء في المجالات الرئيسية أكثر فعالية في ضمان استدامة الطاقة الحيوية.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, United KingdomPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f..., UKRI | EPSRC Centre for Doctoral...UKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,UKRI| EPSRC Centre for Doctoral Training in BioenergyJohn Clifton‐Brown; Astley Hastings; Moritz von Cossel; Donal Murphy‐Bokern; Jon McCalmont; Jeanette Whitaker; Efi Alexopoulou; Stefano Amaducci; Larisa Andronic; Christopher Ashman; Danny Awty‐Carroll; Rakesh Bhatia; Lutz Breuer; Salvatore Cosentino; William Cracroft‐Eley; Iain Donnison; Berien Elbersen; Andrea Ferrarini; Judith Ford; Jörg Greef; Julie Ingram; Iris Lewandowski; Elena Magenau; Michal Mos; Martin Petrick; Marta Pogrzeba; Paul Robson; Rebecca L. Rowe; Anatolii Sandu; Kai‐Uwe Schwarz; Danilo Scordia; Jonathan Scurlock; Anita Shepherd; Judith Thornton; Luisa M. Trindade; Sylvia Vetter; Moritz Wagner; Pei‐Chen Wu; Toshihiko Yamada; Andreas Kiesel;AbstractDemand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023–27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio‐economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low‐carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long‐term, strategic R&D and education for positive environmental, economic and social sustainability impacts.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, United KingdomPublisher:Wiley Danny Awty‐Carroll; Elena Magenau; Mohamad Al Hassan; Enrico Martani; Mislav Kontek; Philip van der Pluijm; Chris Ashman; Emmanuel de Maupeou; Jon McCalmont; Gert‐Jan Petrie; Chris Davey; Kasper van der Cruijsen; Vanja Jurišić; Stefano Amaducci; Isabelle Lamy; Anita Shepherd; Jason Kam; Annick Hoogendam; Michele Croci; Oene Dolstra; Andrea Ferrarini; Iris Lewandowski; Luisa M. Trindade; Andreas Kiesel; John Clifton‐Brown;doi: 10.1111/gcbb.13026
handle: 2164/19972
AbstractMiscanthus, a C4 perennial rhizomatous grass from Asia is a leading candidate for the supply of sustainable biomass needed to grow the bioeconomy. European Miscanthus breeding programmes have recently produced a new range of seeded hybrids with the objective of increasing scalability to large acreages limited by current clonal propagation. For the EU‐GRACE project, new replicated field trials were established in seven locations across Europe in 2018 with eight intraspecific M. sinensis hybrids (sin × sin) and six M. sacchariflorus × M. sinensis (sac × sin) from Dutch and UK breeding programmes, respectively, with clonal Miscanthus × giganteus. The planting density of the sin × sin was double that of sac × sin (30,000 & 15,000 plants ha−1), creating commercially relevant upscaling comparisons between systems. Over the first 3 years, the establishment depended on location and hybrid. The mature sin × sin hybrids formed tight tufts of shoots up to 2.5 m tall which flower and senesce earlier than the taller sac × sin hybrids. Following the third growing season, the highest yields were recorded in Northern Italy at a low altitude (average 13.7 (max 21) Mg DM ha−1) and the lowest yielding was on the industrially damaged marginal land site in Northern France (average 7.0 (max 10) Mg DM ha−1). Moisture contents at spring harvest were lowest in Croatia (21.7%) and highest in Wales, UK (41.6%). Overall, lower moisture contents at harvest, which are highly desirable for transport, storage and for most end‐use applications, were found in sin × sin hybrids than sac × sin (30% and 40%, respectively). Yield depended on climate interactions with the hybrid and their associated planting systems. The sin × sin hybrids appeared better adapted to northern Europe and sac × sin hybrids to southern Europe. Longer‐term yield observations over crop lifespans will be needed to explore the biological (yield persistence) and economic costs and benefits of the different hybrid systems.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19972Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19972Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu